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Estimates of Norm and Essential norm of Differences of
Differentiation Composition Operators on Weighted Bloch
Spaces

Mostafa Hassanlou

ABSTRACT. Norm and essential norm of differences of differenti-
ation composition operators between Bloch spaces have been es-
timated in this paper. As a result, we find characterizations for
boundedness and compactness of these operators.

1. INTRODUCTION AND PRELIMINARIES

Let D be the open unit ball in C and H (D) the class of all analytic
functions on D. The study of composition operators on subspaces of
H(D) is of more importance, since these operators play an important
role in the study of isometries on some spaces. The main purpose of the
study of composition operators is to find the relations between operator-
theoretic properties of these operators like continuity and compactness
and function-theoretic of the symbol induces of the operator. First of
all, we should determine the space that the composition operator acting
on. Such spaces containing analytic functions are Bergman, Bloch and
so on. Another interesting subject is to study of differences of two or
more composition operators between spaces of analytic functions which
is related to the topological structure of space of all composition opera-
tor. Specific information on these operators and spaces can be found in
[2, ©3, 20]. The composition operators can be generalized to weighted
composition operators and to generalized composition operators using
integration or derivative. The definition of the last one Dj which is
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called generalized composition operator or differentiation composition
operator is

Dyf=1"op,

where ¢ : D — D is an analytic function, n is a nonnegative integer
and f € H(D). In case n = 0, we just have composition operator
Dgf = Cyf = fop. For 0 < a < oo, the weighted Banach space of
analytic functions is defined by

i = {f € HO): Il =sup (1 1) 5G| < oc,
zeD
and the weighted Bloch space B, is the space of all analytic functions f

for which

< oQ.

sup (1 — [2*)" [ /'(2)

z€eD

B, is a Banach space with the norm

1 £l = 17(0)] + sup (1= 1) [f(=)].

zE

Differences of (weighted) composition operators between Bloch spaces
and Bloch spaces into H* spaces are studied in [4, §]. The bounded-
ness and compactness of the differences of two (integration) generalized
composition operators on the Bloch space are investigated in [G]. A
comprehensive study of differences of composition operators has been
done by Moorhouse [[1]. Compact differences of composition operators
on some spaces characterized in [[4] and between Bloch and Lipschitz
spaces one can see [[Z]. A characterization of differences of generalized
weighted composition operators between growth spaces to be bounded
or compact, were completely done in [IH] and between Bloch and Bers-
type spaces, the similar work has been done by Liu and Li [9]. For other
references, see [, [, 8, 00, [6-1Y].

The aim of this paper is to estimate the norm and essential norm of
differences of two generalized composition operators between weighted
Bloch spaces. As a result, we can obtain conditions on which the differ-
ences of two generalized composition operators are bounded or compact.

Study of differences of these operators is mainly depended on the
pseudo-hyperbolic distance p(z,w) between z and w, p(z,w) = |ow(2)],
where o, is the Mobius transformation of D defined by 0,(2) = {==,
for a,z € D. All constants will be shown by C' and the notation A ~ B
means that there exits positive constants C; and Cy such that C1 A <
B < C3A. We need the following lemma which is Proposition 8 of [I9].




ESTIMATES OF NORM AND ESSENTIAL NORM 111

Lemma 1.1. Let n > 1 be an integer. Then f € B, if and only if
SUDP,ep (1 — |Z|2)0‘—i_n_1 |f(")(z)‘ < 00. Moreover

n—1
115, = D[ FP O] +sup (1= %)™ £ (z)]
k=0 zeD

If f € B, then
/1,

1 |Z|2)a+n71 :

£ ()] < :

Also if f € Bq, then f™ € H,_j and ||[f™| ,oc < C|lfllg,, where
a+n—1

C' is a positive constant. So by Lemma 2.3 of [[Z],

A =P ) = (1 ) ) w)
(n) 5w
= CHf H plzw)

< C ||f||Ba p(z,w) '
Also from Remark 3.3 of [3] we have
(12) (=BT ) - (1= )T RO (w)

< Csup (1= 2P)"" 7 x| 1) p (2, w),

zeD,
where D, = {z: |z] <r < 1}.
2. OPERATOR NORM

In this section, estimation for the operator norm of differences of two
operators has been obtained. We set

(1= [21*)" u(z) (L= [21*)" u(z)

B ) 2N
(1= 1) T )

Theorem 2.1. Suppose that @, : 1D — D be analytic functions. Then
there exists a positive constant C such that

|~ D3| < C max {sgg My o(2)p (9(2), ().

My, (2) =

sup }Mgo’,go(z) - M#’WJ@)
z€D

,Ml,@<o>,M1,w<o>}

or

123 = D3| < €max {sup My (21 (612,610
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sgg‘ﬂ4¢cw(z)—-ﬂ4¢@¢(z) ,A{Lw(O),Ale(O)}.

Proof. For every f € B, we have

7™ (0(0)) = 1™ (1(0)
@ () (o(2))
= ') (=)
£ 15, £ 15,
— a+n—1
(1-1e@P)" (1= wOP)
Foup Moo (2) (1= o))" £ (p(2)
— My (2) (L= () )™ £ ()|
e M W
(1= le(0)) (1 - l()P)

+3up |[Myo(2) = My ()] (1= lol)F)

7o (p(2))|

1(D% = D) fllg, =

+ sup (1 — |z|2)a
zeD

a+n—1

+n—1

a+n

X

(1= le)™" 1 (o(2))

+n

+ sup }M,ﬁ/,d,(z)‘
z€eD

= (1= eEP) A ()

< My ,(0) [ fll5, + M1y(0) [ fli5,
+ Clflls, sup | My () = My (2)]

+C /s, sup | My (2)| p (0(2),%(2)) -

By the definition of the operator norm

|D%— D2 < Cmax {sgg My ()0 (0(2), $(2)),

Sgg}ﬂ4¢cw(2)—-ﬂ4¢gw(z) 7A4L¢(O)7A4L¢(O)}
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Changing the role of ¢ and 1, one can obtain

|~ D3| < C max {sgg My ()0 (0(2),(2))

s [My1o(2) — My (2)] My o 0), Ml,w(o)} |

O

Theorem 2.2. Suppose that p,v : D — D be analytic functions. If
Dg — DZZ : Bo — By is bounded, then there exists a positive constant C
such that

D2~ DY > € max {sgg M o(2)p (p(2), ().

sup [ My g(2) — M¢f,¢<z>} .

zeD
or

[0 = D3] = Cmax {sup Mool (012, 0(:),

WPMMM@—MMM@@-
zeD

Proof. Suppose that D — Dg : B, — B, be bounded. Fix w € D with
|o(w)| > r where 7 is constant and define

1 <—|<P )

7-(a+n+1)mwr (1 o(w)z )aﬂ,

ul) = 220 gy 4 ),

where 7(a) =1, 7(a+n+1)=(a+n+1)7(a+n) and

Ao =0, Anzzn:(”ﬂfi)”(a“).

guw(2) =

—~  T(at+n+l)
Direct calculations shows that g, fu, € Ba and
2
(1= le(w)?)
9(n+1)( )= at+n+2’
(1 —p(w)z
2
(1= le(w)P)
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The boundedness of D — D:Z shows that

o0 > C||Dg = Di|| 2 [[(D = D) fullg,
I (p(2) = () LD (6(2))]
@ () F50) (p(w)) = ' (w) S5 ((w))|

1= [w)® ¢ (w) (1 - [pw)?)”
|0ty wi - ) totarvio
(1 - elwivw)

— |lb(w)|? i w)|?
U é(;l)¢<£1)a+ii2) ) ot

> sup (1 — ]z\z)a
z€D

> (1= [wl*)"

2

Again for g,, we have
00 > C||Dg = Dyl = [[(DG = D) 9w,

> (1= )¢ ()50 (p(w)) = ¢ () 15+ ((w))]

) O ) ) (1= few)P)”

o a+n+2

=l @B™ (1 Sauw)
(1~ )P (1 - o))’

a+n+2
(1= plwjvw))
Multiplying both sides by p (¢(w), ¥ (w)) and noting that p is bounded,

we get

(2.1) sup [ M (w)p (p(w), (w))| < .
weD,|p(w)[>r

= | My p(2) — My (2)

If |o(w)| < r, then we define another function

(2 = W(w)"
(n+2)!

Then k,, € B, and kz(unﬂ)(z) = z —(w). Using the boundedness of the
operator, we have

00 > 0| DG = Dijf| = [|(Df — D) kulls,
> (1= [w*)™ ¢ (w)k{™HY (o)) = o' (w)kl ) ((w))
= (1= )" [¢(w) (p(w) = $(w))].

kw(z) =
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So

— w]?) ¢’ (w w) — P(w
22) (M ()] p (ol v = U PV o) — o)
(1= le@)?) " |1 = plw)w)
< (D2 = D) ka5,

From (1) and (222) we get
(2.3) 81615 |Mtp:,tp(z)‘ p(e(2),¥(2) <C HDS — DZ[)H < 0.
In a similar way and changing the role of ¢ and 1 in the definition of

test functions, the following condition can be obtained

24) s My ()] p(p(e), 0(2) < C||D = Dyl < .

Now we prove that

sup | My ,(2) — My 4(2)| < oo.
zeD

Using the test functions g,, again and noting the boundedness of the
operator, we obtain

00 > [[(Dg = D) gul,

> | My p(w) — My y(w)

= ‘Mw w(w) (
(1—\w (w)P

(1 o) <w>)“+”+2

> |M, = My (w)| = [ My (w)]

95,,““) () (1= o)) = gD (w(w) (1 - [(w)?)

1-

a+n a+n

X

Then

oo > ]M¢/7¢(w)’ ||ngBa p(¢(w)v¢(w))

g4 (p(w)) (1= le(w)P)

a-+n

> | My p(w)]

a+n

— g4t (w(w)) (1 - [e(w)?)
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where the inequalities come from Lemma [T and relation (24). Thus

sup | My (w) — My (w)| < o0,
weD, |p(w)|>r

If [p(w)] < r and [$(w)| > 152 then p(p(w), (w)) > Fis. So (E3)

and (M) ShOW that Sup|(p(w)|<r’|¢(w)|2% MSO/#)('LU) - Mw/7¢(UJ)‘ < 0.
In the last case [p(w)| < r and [1(w)| < 1E, the test function h(z) =

('ZnTT)! can be applied. Then h € B, and h(»*D(z) = 1. So

o0 > [[(Dg = D) b,
> (1= |wf?)” ¢ (w) — ¢'(w)|
> | Myp(2) = Myrp(2)] (1= lo(w)]?)
a2 | (1= o)) = (1 o)
According to Lemma [0 and (E34),
Mo (1= o)™ = (1= o))

< | My (2)| 1B, p (p(w), (w)) < oo.
Mcp’,so<w) - M¢/,¢(w)‘ < 0o0. From all

a+n

a+n

a+n a+n

Therefore SUp|u) <. oy (u) < 142
cases we conclude that
sup ‘Mwﬁp(w) - MT/)’#}(“))‘ < 00.
weD

By a few calculation we can see that

(2.5) sup | My (w) = My y(w)] < €| DG = D[] < oo.
The relations (P=3) and (Z3) imply that

D%~ DY > C max {sgg My o (2)p (9(2), 9(2))

sup [ My g(2) — wa,¢<z>\} .

zeD

O

Corollary 2.3. Suppose that o, : D — D be analytic functions. Then
the continuity ofDZ—Dz : Bo, = By, is equivalent to each of the following
conditions

(i) sup.ep Mcp’,cp(z)p ¢(2),¥(2)) < oo,
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(i) sup.ep wa,w(Z)P(sD( ) ¥(2)) < oo,
sup,ep | My o(2) — My (2)] < oc.

3. ESSENTIAL NORM

In the next theorem, we directly obtain an estimate for the essential

norm |[D? — D" . Recall that for an operator T' between Ba-
® ¥ e,Bo—Ba

nach spaces X and Y, the essential norm ||T||, x_, is the distance of T’
from the space of all compact operators. Moreover the essential norm is
zero if and only if the operator is compact.

Theorem 3.1. Let o > 0 and ¢,¢ be analytic self maps of D and
Dg — DZZ : By — B, is bounded. Then

lp(2)| =1

limsup | My 4 (2)| p (¢(2),0(2)) ,
(2)| =1

HD:LO — D:ZHQBQ—%Q /A~ max {limsup ‘Mq,/,@(z)‘ p(o(2),¥(2)),

lim sup | My p(2) = My ()| ¢ -
min{|e(2)],|¥(2)|]}—=1

Proof. At first, we prove the upper estimate. For 0 < r < 1, the operator
K, : By = Ba, (K f)(2) = fr(2) = f(rz) is bounded by 1 and also
compact. Moreover f,. — f uniformly on compact subsets of D as r —
1. Let {r;} be a sequence in (0,1) such that r; - 1 as — oco. So

(Dg - D:Z) K, : Bo — By is compact. Then

HDZ_ e.Ba—Ba < H(DZ_DZ) - (D”—Dg) KWHBaﬁBa
= sup [(D} - Dj) f(0) — (Dg — Dj) fr,(0)]
£l s, <1
+ sup )((Dg —DZ) f)/(z)
I£llg, <1

= (D = Dy) fr,)" (2)
= sup |(F = 1) (2(0) = (F = £,)" ((0)

Il fllg, <1

&) (f = £,) " (0(2)

+ sup sup (1-[z*)"
[fllp, <1 2€D

— () (f = o)™ (@02))|
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< sup |(F = £) " (0(0) = (F = £,)™ (w(0))]

1fllg, <1
+oswp (I+J),
Ifllp, <1
where
a+n ntl
I=sup | My o(2) = My ()| (1= o)) [(F = 7)™ (012)
and

"U—ﬁﬁ““Mwaﬁ-

It is easy to see that ’(f—ij)(n) (p(0)) — (f_ij)(n) (@ZJ(O))‘ — 0
as j — oo, since {¢(0)} and {¥(0)} are compact subsets of D and
fT(Jn) — £ uniformly on compact subsets of ID. Suppose that f € By is
arbitrary and || f|z. < 1. We divide into four cases:

Case 1: |p(2)| < rn and |[¢(2)| < ry, where N is a positive integer
such that for all j > N, r; > 1/2. Since f., — f uniformly on compact
subsets of D as j — oo, r;-”l f,(?H) — f(+1) yniformly on compact
subsets of . This fact and the boundedness of operator imply that

1<c s (1=l B) " (f = £,) " (0] 5 0
lp)(2)|<rn

as j — o0o. Again using Theorem P71 and (I2), we have

J<C sup | My (2)] p (0(2), ¥(2))
()| <r ()| <

X s (1 — Iso(z)|2)

a+n

(7 = 1) (ot2))|

a+n nt1
<C s (1=le2)P)" (£ = £) " (0(2))]
(2)EDy
which tends to zero as j — oco. So J — 0.
Case 2: |p(2)] < ry and |¢(2)] > rny. A similar argument shows
that I — 0 as j — oo. Using (), we obtain

J<C sup }Mww(z)‘ Hf - ferBa p(p(2),9(2))

le(z)|>rn

<C sup  [Myy(2)| p(0(2),9(2)) -
() >rw
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By taking the limit over j — oo,
J<Clim  sup | My y(2)]p(e(2),9(2))

J7%0 | (2)|>rN
= limsup | My 4 (2)| p (¢(2),9(2)) -
lo(2)|—1

Case 3: |¢(2)| > rn and [¢(2)| > ry. For J we have the same
argument as previous case. About I, (IT) implies that

I<cC Sup }Mso’,so(z) - qu’,w(z)‘ Hf - ferBa
lp(2)[>rn, Y (2)[>rn

< sup ‘Mgo’,g&(z) - Mw’,w(z)( :
le(2)|>rn, 1Y (z)[>rN
Thus
I<C lim sup | Myt p(2) = My (2)|
I70p(2) [>T, Y (2)|>rN
= lim sup ‘M<p',<p(2) - Mwaw(z)} :
min{|p(2)],14(2)[} =1

Case 4: |p(z)] > ry and |¢(2)| < ry. Rewrite the statements and
define

1= sup M (2) = Mo )] (1= [0IE) ™ (= 1) (0
and
7= s0p M (] | (1= 10I7) " (7 = 1) (ol
- (1= ) 0 = 5 ).

The boundednes of the operator implies that
sup | My ,(2) — My 4(2)| < oo.
zeD

So
1<c(1-wEE) |- £ @)

which tends to zero as j — oo. Using (I), we obtain
J<C sup ‘Map’,ap(z” Hf—ferBaP(SO(Z),%b(Z))

lp(2)|>rN

<C sup My g(2)] p(0(2),9(2)) -
[w()>rn

By taking the limit over j — oo, we can write

J<Clim  sup  |My(2)]p(p(2),9(2))

I |p(2) [>Ty
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= C'limsup |M<,0/,t,o(z)‘ Y (‘P(z)’ 1[}(2)) .
lp(2)[—=1
From all cases we can get the upper bound.
For the proof of lower estimate, let {r;} be a sequence in I such that
lo(2j)| = 1 and |¢(2;)] — 1 as j — oo. Consider the functions like we
used in the proof of Theorem B2 as follows

o i (1= letep?)
R T(a+n+ 1)W+1 (1 — np(zg)z)aﬂ?

() = L (o0(2) + Moo

where 7(a) =1, 7(a+n+1) = (a+n+1)7(a+n) and

n . .
(n+1—10)!7(a+1)
A =0 An =
0= " ZZ; T(a+n+1)
Then {g;} and {f;} are the bounded sequences in B, which converge to
zero uniformly on compact subsets of D. Do f;,g; — 0 weakly in B,.
Therefore, for any compact operator K : B, — B,,

] - = 1‘ K ] :0
jlir&HKfjHBa 0, jggoH 9ills,

Hence
(3.1)

(D% = D) = Kllg, 5, > Climsup | (DF = D) f; = K i,
J—00

—Ba
> Climsup H (Dg - Dg) fjHBa — limsup |[K fj| 5,
j—o0o J—00

> Climsup | My (2)p (9(2),9(25))

00
(1= P) " (1= le)P)
(1 _m¢(zj)>a+n+2 ’

X

(3.2)

I(Dg - Dy)

= K55, = Climsup [(DF = D) g; = K5,

> Climsup || (Dg — D) g5 5, — limsup || Kyl 5,
j—o0 J—00
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> C'limsup ‘M<p/,<p(zj) = My (%))

1= weP) T (1= 1o )
2
(1 - W%‘W(%‘))ww
> Cliﬁgp | My o (2)p (0(25), ¥ (25))
— My y(25)p (p(2), (%))
1= e)?) T (1 )
( 2
(1-o)

X

2

X

Then (B8) and (82) results in

I(DZ = Dy) = Klls, 5, 2 ¢ lim sup [ Mot o(25)| 2 ((2),9(2)) -

We get from the definition of the essential norm

HDZ - D:ZHQ,BQ—}BO( K ciorgpact H (DZ - DZZ) - KHBQ

> Climsup | My, (2)] p (0(2), 0(2))..
lo(2)|—1

—Ba

Changing the role of ¢ and % in the definition of the functions f; and
gj, we can obtain

A T
> Climsup | My (2))| p (9(25), (%))
j—00

= Climsup | My 4(2)| p (¢(2),9(2)) .
[ (2)[ =1

—Ba

Again using the functions g;, we have

(D% = D) = Kllg, ., = Climsup |(D; — D) g = Kol 5,
J—00

—Ba

> lim sup |M¢/,¢(Zj) — My (%))

j—00
(1= 1)) (1= IetR)
(1-2m)
= limsup |M¢/,¢(Zj) — My (25) + My (25)

Jj—00

X
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(1= P) " (1= le)P)
(1-wGn) ™
> lim sup ’M¢/,¢(Zj) - Md)ﬁw(zﬂ')’

Jj—00

x | 1-—

— limsup ‘Mw/’w(zj)‘

J—00

< o (o) (1= lez))

= g (@lz) (1= 1))

It can be easily proved by Theorem I and (I2) that

" (o)) (1= le)P)

a+n‘

a+n

— lim sup }Mw’,zﬁ (z) ‘
j—00

— Y () (1 ) P)

tends to zero. So

H (Dg - D:Z) — KHBQHBQ Z Chmsup ‘M@/#p(zj') — M¢/7¢(ZJ)‘
j—00

=C lim sup ‘M@',@(z) - Mw',w('z)} :
min{|¢(2)],|¢(2)|}—1

Finally, we have

D} — Dy >C lim sup My o(2) — My (2)]
1P% = Dill. ., min{|w<z)|7\¢<z>|}+1| o wle)

O

Corollary 3.2. Let a > 0 and ¢,v¢ be analytic self maps of D and
Dy — Dy, - By — Bo is bounded. Then Dg — Dy, is compact if and only
if

lim sup ‘Mcp’,cp(z)’ p(p(2),9(2)) =0,
lp(2)|—=1

limsup | My (2)] p (9(2),9(2)) = 0,
(21

lim sup }Mgp’,go(z) - Mw’ﬂb(z)’ =0.
min{|<,0(z)|7‘¢’(z)|}_>1
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