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On Preserving Properties of Linear Maps on C∗-algebras

Fatemeh Golfarshchi1∗ and Ali Asghar Khalilzadeh2

Abstract. Let A and B be two unital C∗-algebras and φ : A →
B be a linear map. In this paper, we investigate the structure
of linear maps between two C∗-algebras that preserve a certain
property or relation. In particular, we show that if φ is unital, B
is commutative and V (φ(a)∗φ(b)) ⊆ V (a∗b) for all a, b ∈ A, then φ
is a ∗-homomorphism. It is also shown that if φ(|ab|) = |φ(a)φ(b)|
for all a, b ∈ A, then φ is a unital ∗-homomorphism.

1. Introduction

In 1970, Kaplansky asked the following question:
Let φ : A −→ B be a unital and invertibility preserving linear map be-
tween unital Banach algebrasA andB. Is φ a Jordan homomorphism?[6].
The Kaplansky,s question was originated by Gleason-Kahane-Zelazko
Theorem which states that every invertibility preserving unital linear
functional on a unital complex Banach algebra is multiplicative [18]. In
this paper we explain and prove a Gleason-Kahane-Zelazko type Theo-
rem and show that if A is a unital C∗-algebra and φ is a unital linear
functional on A such that V (φ(a)∗φ(b)) ⊆ V (a∗b) for all a, b ∈ A, then
φ is a ∗-homomorphism.
Another kind of linear preserver problems is absolute value preserving
linear maps and in this paper, we will characterize this kind of maps.

Let (X, d) and (Y, d
′
) be metric spaces. A map f : X → Y is said to

be a contraction if there exist 0 ≤ k < 1 such that

d
′
(f(x1), f(x2)) ≤ kd(x1, x2); x1, x2 ∈ X.
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Let A be a complex unital normed algebra, and

D(A, 1) =
{
f ∈ A′, f(1) =∥ f ∥= 1

}
,

where A′ is the dual space of A. The elements of D(A, 1) are called the
normalized states on A. For a ∈ A let,

V (a) = {f(a) : f ∈ D(A, 1)}, v(a) = sup{|λ| : λ ∈ V (A)}.

The sets V (a) and v(a) are called the numerical range and numerical
radius of a respectively and the spectrum of a is denoted by σ(a), namely

σ(a) = {λ ∈ C : λ− a ∈ sing(A)}.

Also the convex hull of σ(x) is denoted by coσ(x). If H is a Hilbert
space, for every T ∈ B(H), the numerical range of T is the set

W (T ) = {⟨T (x), x⟩ : x ∈ H, ∥x∥ = 1} ,

and the numerical radius of T is defined by w(T ) = sup{|λ| : λ ∈W (T )}.
When A = B(H) and T ∈ A, the set V (T ) becomes the closure ofW (T ).
Let A and B be complex unital normed algebras. A linear map φ : A→
B is said to be numerical range compressing if V (φ(x)) ⊆ V (x), numer-
ical range preserving if V (φ(x)) = V (x) and Jordan homomorphism if
φ(x2) = φ(x)2 for all x ∈ A. Also φ is said to be unital if φ(1A) = 1B.

Let A be a unital C∗-algebra. An element a of A is said to be positive
if V (a) ⊆ R+ or a∗ = a and σ(a) ⊆ R+. We denote by A+ the set of all
positive elements of A. Also a is called normal and unitary, if a∗a = aa∗

and a∗a = aa∗ = 1, respectively. We recall that if a is a unitary element
of A, then σ(a) = {λ ∈ C : |λ| = 1} [17].

A linear map φ from a unital C∗-algebra A into a unital C∗-algebra
B is said unitary preserving if φ(u) is unitary whenever u is unitary in
A. We say that φ preserves absolute values if φ(|x|) = |φ(x)|, where
|x|2 = x∗x and ∗-homomorphism, if φ(xy) = φ(x)φ(y) and φ(x∗) =
φ(x)∗ for every x, y ∈ A. For any positive integer n we define φn :
Mn(A) → Mn(B) by φn((ai,j)i,j) = φ((ai,j))i,j , where Mn(A) denotes
the set of all n × n matrices with entries in A. The map φ is called
positive if φ(a) ≥ 0 for all a ∈ A+ and n−positive if φn is positive.
Also φ is called completely positive if φ is n−positive for all n. Every
positive linear map is not necessary completely positive, for example
if φ : M2(C) → M2(C) is defined by φ(A) = At, then φ is positive
but is not necessary completely positive, [10, Example 4.2]. Every
∗-homomorphism on a ∗-algebras is completely positive [2, Example
II.6.9.3] but the converse is false. For example if φ : M2(C) → C is
defined by φ ((ai,j)i,j) =

∑
ai,i, then φ is completely positive by [10,
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Exercise 3.5]. But φ is not a homomorphism because

φ

([
1 0
0 2

])2

= 9 , φ

([
1 0
0 2

]2)
= 5.

A subspace S of a unital C∗-algebra A is called operator system if it is
self-adjoint (S = S∗) and contains the unit of A.

Numerical range of operators is very important and was studied by
many authors, see, e.g., [1, 5, 7, 11, 13]. In this paper, we characterize
a linear map φ from a unital C∗-algebra A into a unital commutative
C∗-algebra B and show that if φ is unital and V (φ(a)∗φ(b)) ⊆ V (a∗b) or
V (φ(a)φ(b)φ(a)) ⊆ V (aba) for all a, b ∈ A, then φ is a ∗-homomorphism.
Also if V (φ(a)φ(b)φ(a)∗) ⊆ V (aba∗) for all a, b ∈ A, then φ is a unital
∗-homomorphism. We show that every Jordan homomorphism from a
complex Banach algebra into C is a numerical range compressing, but
the converse is false.

Also in this paper, we discuss about absolute value preserving linear
maps and show that if φ is a linear map from a unital C∗-algebra A into
a unital commutative C∗-algebra B such that |φ(a)φ(b)| = φ(|ab|) for
all a, b ∈ A, then φ is a unital ∗-homomorphism.

2. Preliminaries

Let A be a unital C∗-algebra. If a and b are positive elements of A
such that a2 = b2, then σ

(
a2 − b2

)
= −σ

(
b2 − a2

)
= σ(0) = {0}. Since

a2−b2 and b2−a2 are self-adjoint, a2 ≥ b2 and a2 ≤ b2, so by [9, Theorem
2.2.6], a ≥ b and a ≤ b. This implies that a = b, [2, Proposition II.3.1.2].
Let X be a compact Hausdorff space. We denote by C(X) the algebra
of all continuous complex functionals on X.

Theorem 2.1. Let A be a unital C∗-algebra and φ : A → C(X) be a
positive linear map. If φ is a unitary preserving map, then φ is a unital
∗-homomorphism.

Proof. Since φ is positive and preserves unitary elements, φ(1A) is pos-
itive and φ(1A)

2 = φ(1A)
∗φ(1A) = 1C(X)

, so φ(1A) = 1C(x).

Since φ is unital and positive by [2, Proposition II.6.9.4], φ is a con-
traction. Also, since φ is a bounded linear map and A is an operator
system, φ is completely positive [10, Proposition 3.9].

Now, let a and b be elements of A such that ∥a∥ < 1 and ∥b∥ < 1.
Since −1A is a unitary element of A by [2, Poroposition II.3.2.13], there
exist unitary elements u1,u2,v1,v2 of A such that a− 1A = u1 + u2 and
b− 1A = v1 + v2. So

φ(ab) = φ(1A) + φ(v1) + φ(v2) + φ(u1) + φ(u2)
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+ φ(u1v1) + φ(u1v2) + φ(u2v1) + φ(u2v2).

Since v1 is a unitary element of A and φ preserves unitary elements, we
have

φ(v1)
∗φ(v1) = 1C(X)

= φ(1A)

= φ(v∗1v1),

and therefore φ(xv1) = φ(x)φ(v1) for all x ∈ A by [2, Poroposition
II.6.9.18]. Similarly, we can show that φ(xv2) = φ(x)φ(v2) for all x ∈ A.
Therefore

φ(ab) = 1C(X) + φ(v1) + φ(v2) + φ(u1) + φ(u2) + φ(u1)φ(v1)

+ φ(u1)φ(v2) + φ(u2)φ(v1) + φ(u2)φ(v2)

= (1C(X) + φ(u1) + φ(u2))(1 + φ(v1) + φ(v2))

= φ(a)φ(b).

Let ∥a∥ ≥ 1 and ∥b∥ ≥ 1 and let a
′
= a

1+∥a∥ and b
′
= b

1+∥b∥ . Then

∥a′∥ < 1 and ∥b′∥ < 1. Therefore φ(a
′
b
′
) = φ(a

′
)φ(b

′
) and hence

φ(ab) = φ(a)φ(b). Also if a ∈ A is self-adjoint, then there exist positive
elements b, c ∈ A such that a = b − c. Thus φ(a∗) = φ(b) − φ(c) =
(φ(b) − φ(c))∗ = φ(a)∗. Let a ∈ A be arbitrary. Then there exist
self-adjoint elements x, y ∈ A such that a = x+ iy, so

φ(a∗) = φ(x− iy)

= φ(x)− iφ(y)

= (φ(x) + iφ(y))∗

= φ(a)∗.

□
Remark 2.2. Since by [9, Theorem 2.1.10], every non-zero commutative
C∗-algebra B is isomorphic to C(Ω(B)), where Ω(B) is the set of all
linear homomorphisms from B into C, every unitary preserving positive
linear map from a unital C∗-algebra A into a unital commutative C∗-
algebra B is a unital ∗-homomorphism.

3. Numerical Range Preserving Maps

Let H and K be complex Hilbert spaces, A,B ∈ B(H) and φ :
B(H) → B(K) be a surjective map. Theorem 2.1 in [5] shows that
W (φ(A)φ(B)) = W (AB) if and only if there exists unitary opera-
tor U in B(H,K) such that φ is of the form φ(A) = ϵUAU∗ for all
A ∈ B(H), where ϵ = ±1. Similarly Theorem 2.2 in [5] states that
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W (φ(A)φ(B)φ(A)) =W (ABA) if and only if there exist a scalar λ with
λ3 = 1 and a unitary operator U : H → K such that either φ(A) =
λUAU or φ(A) = λUAtU , where At is the transpose of A with respect
to an arbitrary fixed orthonormal basis of H. Also W (φ(A)∗φ(B)) =
W (A∗B) if and only if there exist unitary operators U and V in B(H,K)
such that φ is of the form φ(A) = UAV ∗ [5, Corollary 4.3].

Let A and B be unital C∗-algebras and φ be a unital linear mapping
from A onto B. Theorem 2.3 in [13] states that if W (φ(a)) = W (a)
for all a ∈ A, then φ is a Jordan ∗−isomorphism. Furthermore, if B is
prime, then φ is a C∗−isomorphism or C∗−anti-isomorphism.

In this section, we characterize the numerical range of a map from a
unital C∗-algebra into a unital commutative C∗-algebra.

Lemma 3.1. Let A be a unital complex Banach algebra and φ : A→ C
be a linear functional. If V (φ(a)) = V (a) for all a ∈ A, then φ is a
unital monomorphism.

Proof. Since V (φ(1A)) = V (1A) = {1}, v (φ(1)− 1) = 0 and by [3,
Theorem 1.4.1] φ(1)−1 = 0, therefore φ is unital. Let a ∈ A be invertible
but φ(a) is singular, then φ(a) = 0. Thus V (a) = V (φ(a)) = 0, so a = 0
by [3, Theorem, 1.4.1]. But this is a contraction, so φ is an invertibility
preserving functional, therefore by Gleason-Kahane-Zelazko Theorem,
φ is multiplicative.

If a ∈A and φ(a) = 0, then V (a) = V (φ(a)) = 0 and by [3, Theorem
1.4.1] a = 0, so φ is injective. □
Lemma 3.2. Let A be a unital complex Banach algebra and φ : A→ C
be a linear functional. If φ is a Jordan homomorphism, then φ is a
unital numerical range compressing.

Proof. Since φ is a Jordan homomorphism, then by [4, Proposition,
II.16.6] φ is a homomorphism, so φ is continuous and ∥φ∥ = φ(1A) = 1
[4, Proposition II.16.3]. Let a ∈ A and λ ∈ V (φ(a)), then there exists
f ∈ D(C, 1) such that λ = f(φ(a)). Let g = fφ. Then g is linear,
continuous and for all x ∈ A

|g(x)| = |f(φ(x))| ≤ ∥f∥∥φ∥∥x∥ = ∥x∥,
so ∥g∥ ≤ 1, also g(1A) = (fφ)(1A) = 1, thus ∥g∥ = 1 and it follows that
g ∈ D(A, 1A), but λ = g(a). Therefore λ ∈ V (a). □
Remark 3.3. The converse of Lemma 3.2 is false. To see that, let

A =

{[
a 0
b c

]
: a, b, c ∈ C

}
and define φ : A→ C by φ

([
a 0
b c

])
= a+c

2 ,

then

V

(
φ

([
a 0
b c

]))
= V

(
a+ c

2

)
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=

{
a+ c

2

}
.

Also a, c ∈ σ

([
a 0
b c

])
, so a, c ∈ V

([
a 0
b c

])
[3, Theorem I.2.6]. Also

by [4, Proposition 1.10.4], V

([
a 0
b c

])
is convex, so a+c

2 ∈ V

([
a 0
b c

])
.

Therefore V (φ(x)) ⊆ V (x) for all x ∈ A. But φ is not a Jordan homo-

morphism, because φ

([
1 0
0 2

])2

= 9
4 and φ

([
1 0
0 2

]2)
= φ

([
1 0
0 4

])
=

5
2 .

Theorem 3.4. Let A and B be unital C∗-algebras and φ : A→ B be a
unital linear map. If B is commutative and V (φ(a)∗φ(b)) ⊆ V (a∗b) for
all a, b ∈ A, then φ is a ∗-homomorphism.

Proof. Let a ∈ A be positive. Then V (φ(a)) = V (φ(1A)
∗φ(a)) ⊆

V (1Aa) ⊆ R+, so φ is a positive map. Let u ∈ A be unitary, then

V (φ(u)∗φ(u)) ⊆ V (u∗u)

= V (1)

= {1},
thus φ(u)∗φ(u) = 1B, so φ is a unitary preserving positive linear map.
Therefore φ is a ∗-homomorphism by Remark 2.2. □
Corollary 3.5. Let A and B be unital C∗-algebras and φ : A→ B be a
surjective unital linear map. If B is commutative and V (φ(a)∗φ(b)) =
V (a∗b) for all a, b ∈ A, then φ is a ∗-isomorphism.

Proof. If a ∈A and φ(a) = 0, then

v(a) = v(φ(1)∗φ(a))

= v(φ(a))

= v(0)

= 0,

and by [4, Theorem 1.10.14] a = 0, so φ is injective. Also φ is a ∗-
homomorphism, by Theorem 3.4, so φ is a ∗-isomorphism. □
Theorem 3.6. Let A be a unital C∗-algebra. If φ is a linear functional
on A such that V (φ(a)φ(b)) ⊆ V (ab) for all a, b ∈ A, then φ is a scaler
of a ∗-homomorphism .

Proof. V (φ(1A)φ(1A)) ⊆ V (1) = {1}, so φ(1A)2 = 1, thus φ(1A) = 1 or
φ(1A) = −1. Also if a ∈ A is self-adjoint, then

V (φ(a)) = V (φ(a)φ(1))
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⊆ V (a)

⊆ R,

or

V (φ(a)) = V (φ(a)φ(−1))

⊆ V (−a)
⊆ R,

so φ(a) is self-adjoint. Now let x ∈ A, then there exist self-adjoint
elements a, b ∈ A such that x = a+ ib, then

φ(x∗) = φ(a− ib)

= φ(a)− iφ(b)

= (φ(a) + iφ(b))∗

= φ(x)∗,

so V (φ(a)∗φ(b)) = V (φ(a∗)φ(b)) ⊆ V (a∗b) for all a, b ∈ A. Then, by
Theorem 3.4, φ is ∗-preserving and φ(ab) = ±φ(a)φ(b) for all a, b ∈
A. □

Corollary 3.7. Let A and B be unital C∗-algebras and φ : A → B be
a linear map. If B is commutative and V (φ(a)φ(b)) ⊆ V (ab) for all
a, b ∈ A, then φ is a scaler of a ∗-homomorphism.

Proof. Let τ be a multiplicative functional on B and ψ = τφ. If
a, b ∈ A and λ ∈ V (ψ(a)ψ(b)), then there exists f ∈ D(C, 1) such
that λ = f(ψ(a)ψ(b)) = fτ(φ(a)φ(b)). But fτ(1) = ∥fτ∥ = 1, so
λ ∈ V (φ(a)φ(b)), thus λ ∈ V (ab). Therefore V (ψ(a)ψ(b)) ⊆ V (ab) and
by Theorem 3.9, for all x, y ∈ A, we have

τ(φ(xy)) = ψ(xy)

= ±ψ(x)ψ(y)
= ±τ(φ(x))τ(φ(y))
= τ(±φ(x)φ(y),

and

τ(φ(x∗)) = ψ(x∗)

= ψ(x)∗

= τ(φ(x)∗).

Since B is semi-simple, Ω(B) separates the points of B [4, Corollary
II.17.7], so φ(xy) = ±φ(x)φ(y) and φ(x∗) = φ(x)∗. □
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Corollary 3.8. Let A and B be unital C∗-algebras and φ : A → B be
a surjective linear map. If B is commutative and V (φ(a)φ(b)) = V (ab)
for all a, b ∈ A, then φ is a scaler of a ∗-isomorphism.

Proof. The map φ is injective. Also ±φ is a ∗-homomorphism, by Corol-
lary 3.7, so φ is a scaler of a ∗-isomorphism. □
Theorem 3.9. Let A be a unital C∗-algebra and φ be a unital linear
functional on A. If V (φ(a)φ(b)φ(a)) ⊆ V (aba) for all a, b ∈ A, then φ
is a ∗-homomorphism.

Proof. Let a ∈ A be positive, then V (φ(a)) ⊆ V (a) ⊆ R+, so φ is
positive. Therefore φ(a∗) = φ(a)∗ for all a ∈ A. Since φ is unital and
positive, then by [2, Proposition II.6.9.4] φ is a contraction. Also since
φ is a bounded linear functional and A is an operator system, then φ is
completely positive [10, Proposition 3.8], thus φ is 2-positive.

Let a, b ∈ A and ab = 0, then V (φ(a)φ(b)φ(a) ⊆ V (aba) = {0}, so
φ(a) = 0 or φ(b) = 0. Thus φ preserves zero product elements, therefore
φ is a homomorphism [16, Theorem 2]. □
Theorem 3.10. Let A and B be unital C∗-algebras and φ : A→ B be a
unital linear map. If B is commutative and V (φ(a)φ(b)φ(a)) ⊆ V (aba)
for all a, b ∈ A, then φ is a ∗-homomorphism.

Proof. Let τ be a multiplicative functional on B. Then τ(1) = ∥τ∥ = 1
by [4, Proposition I.16.3]. Let ψ = τφ, then ψ(1) = 1. Also if a, b ∈ A
and λ ∈ V (ψ(a)ψ(b)ψ(a)), then there exists f ∈ D(C, 1) such that

λ = f(ψ(a)ψ(b)ψ(a))

= fτ(φ(a)φ(b)φ(a).

But fτ(1) = ∥fτ∥ = 1, so λ ∈ V (φ(a)φ(b)φ(a)), thus λ ∈ V (aba).
Therefore V (ψ(a)ψ(b)ψ(a)) ⊆ V (aba), so by Theorem 3.9, for all x, y ∈
A, we have

τ(φ(xy)) = ψ(xy)

= ψ(x)ψ(y)

= τ(φ(x))τ(φ(y))

= τ(φ(x)φ(y)),

and

τ(φ(x∗)) = ψ(x∗)

= ψ(x)∗

= τ(φ(x)∗).

Since B is semi-simple, φ(xy) = φ(x)φ(y) and φ(x∗) = φ(x)∗. □
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Theorem 3.11. Let A be a unital C∗-algebra and φ be a linear func-
tional on A. If V (φ(a)φ(b)φ(a)∗) ⊆ V (aba∗) for all a, b ∈ A, then φ is
a unital ∗-homomorphism.

Proof. Since V (φ(1A)φ(1A)φ(1A)
∗) ⊆ V (1) = {1}, φ(1A)φ(1A)φ(1A)∗ =

1, thus φ(1A) = 1. Let a ∈ A be positive. Then

V (φ(a)) = V (φ(1A)φ(a)φ(1A)
∗)

⊆ V (a)

⊆ R+,

so φ(a) is positive. Let u ∈ A be unitary. Then

V (φ(u)φ(u)∗) = V (φ(u)φ(1)φ(u)∗)

⊆ V (uu∗)

= {1},

so φ(u)φ(u)∗ = 1. Therefore, φ is a unital ∗-homomorphism by Remark
2.2. □

Lemma 3.12. Let A and B be unital C∗-algebras and φ : A → B be a
linear map. If B is commutative and V (φ(a)φ(b)φ(a)∗) ⊆ V (aba∗) for
all a, b ∈ A, then φ is a unital ∗-homomorphism.

Proof. Let τ be a multiplicative functional on B. Then τ(1) = ∥τ∥ = 1
by [4, Proposition I.16.3].

Let ψ = τφ. If a, b ∈ A and λ ∈ V (ψ(a)ψ(b)ψ(a)∗), then there
exists f ∈ D(C, 1) such that λ = f(ψ(a)ψ(b)ψ(a)∗). Since B is a C∗-
algebra, then by [9, Theorem 2.1.9.], τ(x∗) = τ(x)∗ for all x ∈ B, so λ =
fτ(φ(a)φ(b)φ(a)∗). But fτ(1) = ∥fτ∥ = 1, so λ ∈ V (φ(a)φ(b)φ(a)∗),
thus λ ∈ V (aba∗). Therefore V (ψ(a))ψ(b)ψ(a)∗) ⊆ V (aba∗), so ψ is a
unital ∗-homomorphism by Theorem 3.11. Therefore, for all x, y ∈ A,
we have

τ(φ(xy)) = ψ(xy)

= ψ(x)ψ(y)

= τ(φ(x))τ(φ(y))

= τ(φ(x)φ(y)).

Similarly

τ(φ(x∗)) = ψ(x∗)

= ψ(x)∗

= τ(φ(x)∗),
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and

τ(φ(1)) = ψ(1)

= 1

= τ(1).

SinceB is semi-simple, φ(xy) = φ(x)φ(y) and φ(x∗) = φ(x)∗ and φ(1) =
1. □

4. Absolute Value Preserving Maps

Let H and K be Hilbert spaces and φ : B(H) → B(K) be an ad-
ditive map. Theorem 2 in [12] states that if φ(|A|) = |φ(A)| for every
A ∈ B(H), φ(iI)K ⊂ ¯φ(I)K and φ(I) is a projection, then φ is the
sum of two ∗-homomorphisms which one is C-linear and the other is
C-antilinear.

Let A and B be unital C∗-algebras and φ : A→ B be a map satisfying
φ(|a|) = |φ(a)| for every a ∈ A. Theorem 2 in [16] states that, if φ is
linear, then φ is positive and φ(a1a2) = φ(1A)φ(a1)φ(a2) for all a1, a2 ∈
A. Also Theorem 2.2 in [14] says that, if φ is additive and surjective and
φ(1) is a projection, then φ is unital and the restriction of φ to both As

and Ask is a Jordan ∗-homomorphism onto the corresponding set in B
where As is the set of all self-adjoint elements of A and Ask is the set of
all skew-self-adjoint elements of A. Furthermore, if B is a C∗-algebra of
real-rank zero, then φ is a C-linear or C-antilinear ∗-homomorphism on
A [14, Theorem 2.5].

Theorem 2.9 in [15] states that, if φ : A → B is a additive map
which satisfies φ(|ab|) = |φ(a)φ(b)| for every a, b ∈ A and φ(c) = 1 for
some c ∈ A, then φ is unital and the restriction of φ to As is a Jordan
homomorphism. Moreover, if φ is surjective and B is a real rank zero,
then φ is a C−linear or C−antilinear ∗-homomorphism.

Molnar in [8, Theorem 3] was proved if A and B are von Neumann
algebras, A ̸= CI is a factor and φ : A → B is a bijective map which
satisfies φ(|ab|) = |φ(a)φ(b)| for every a, b ∈ A. Then φ is of the form
φ(a) = τ(a)ψ(a) for all a ∈ A, where ψ : A → B is either a linear
or a conjugate-linear ∗-algebra isomorphism and τ : A → C is a scalar
function of modulus 1.

In this section, we show that if φ is a linear map from a unital C∗-
algebra into a unital commutative C∗-algebra B such that |φ(a)φ(b)| =
φ(|ab|) for all a, b ∈ A, then φ is a unital ∗-homomorphism.

Remark 4.1. Let A and B be unital C∗-algebras. If B is commutative
and φ : A → B is a unital linear map such that φ(|a|) = |φ(a)| for
all a ∈ A, then by using Remark 2.2 we can show that φ is a unital
∗-homomorphism which compares with Theorem 2 in [16].
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Theorem 4.2. Let A be a unital C∗-algebra and φ be a linear functional
on A. If φ(|ab|) = |φ(a)φ(b)| for all a, b ∈ A, then φ is a unital ∗-
homomorphism.

Proof. If a ∈ A+, then |a|2 = a2 and since a and |a| are positive, |a| = a,
thus φ(a) = φ(|a|) = |φ(a)| ≥ 0, so φ is a positive. Since φ(1A) is
positive, φ(1A) = φ(|1A|) = |φ(1A)2| = φ(1A)

2. So φ(1A) = 0 or
φ(1A) = 1. If φ(1A) = 0, then φ(a) = φ(|a|) = |φ(a)φ(1A)| = 0
for all a ∈ A+ and by [10, Remark 2.2.2] φ(a) = 0 for all a ∈ A, so
φ = 0 and it is a contraction, therefore φ(1) = 1. If u ∈ A is unitary,
then |u| = 1, so |φ(u)| = |φ(u)φ(1)| = φ(|u|) = φ(1) = 1. Thus
φ(u)∗φ(u) = |φ(u)|2 = 1, so φ is unitary preserving. Therefore φ is a
unital ∗-homomorphism by Remark 2.2. □

Corollary 4.3. Let A and B be unital C∗-algebras and φ : A → B
be a linear map. If B is commutative and φ(|ab|) = |φ(a)φ(b)| for all
a, b ∈ A, then φ is a unital ∗-homomorphism.

Proof. Let τ be a multiplicative functional on B and ψ = τφ. Since τ
is ∗-homomorphism, then for all a ∈ A, we have:

|τ(a)|2 = τ(a)∗τ(a)

= τ(a∗a)

= τ(|a|2)
= (τ(|a|))2.

Since |τ(a)| and τ(|a|) are positive, |τ(a)| = τ(|a|). Now let a, b ∈ A.
Then

ψ(|ab|) = τφ(|ab|)
= τ(φ(|ab|))
= τ(|φ(a)φ(b)|)
= |τ(φ(a)φ(b))|
= |τ(φ(a))τ(φ(b))|
= |ψ(a)ψ(b)|.

So ψ is a unital ∗-homomorphism by Theorem 4.2. Therefore, for all
x, y ∈ A, we have

τ(φ(xy)) = ψ(xy)

= ψ(x)ψ(y)

= τ(φ(x))τ(φ(y))

= τ(φ(x)φ(y)).



136 F. GOLFARSHCHI AND A. A. KHALILZADEH

Similarly

τ(φ(x∗)) = ψ(x∗)

= ψ(x)∗

= τ(φ(x)∗),

and

τ(φ(1)) = ψ(1)

= 1

= τ(1).

SinceB is semi-simple, φ(xy) = φ(x)φ(y) and φ(x∗) = φ(x)∗ and φ(1) =
1. □
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