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On Sum and Stability of Continuous G-Frames

Azam Yousefzadeheyni1 and Mohammad Reza Abdollahpour2∗

Abstract. In this paper, we give some conditions under which the
finite sum of continuous g-frames is again a continuous g-frame. We
give necessary and sufficient conditions for the continuous g-frames
Λ = {Λw ∈ B (H,Kw) : w ∈ Ω} and Γ = {Γw ∈ B (H,Kw) : w ∈ Ω}
and operators U and V on H such that ΛU+ΓV = {ΛwU+ΓwV ∈
B (H,Kw) : w ∈ Ω} is again a continuous g-frame. Moreover, we
obtain some sufficient conditions under which the finite sum of con-
tinuous g-frames are stable under small perturbations.

1. Introduction

Frames were first introduced by Duffin and Schaeffer in the study of
nonharmonic Fourier sereis [7] and reintroduced in 1986 by Daubechies,
Grossmann and Meyer [6]. In [13], Sun introduced the concept of g-
frames in a Hilbert space. The notion of continuous frames was intro-
duced by Kaiser in [8] and independently by Ali, Antoine and Cazeau
[2]. In 2008, continuous g-frames were introduced by Abdollahpour and
Faroughi [1].

This paper is organized as follows. First, we summarize some facts
about continuous g-frames from [1]. By generalizing some results of [5]
and [9], in Section 2, we give some condtions that the finite sum of
continous g-frames to be a continous g-frame and in Section 3, we study
some new results in stability of finite sum of continuous g-frames.

Throughout this paper, H is a complex Hilbert space and (Ω, µ) is
a measure space with positive measure µ and {Kw}w∈Ω is a family of
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closed subspaces of Hilbert space K. We denote the space of all bounded
linear operators from H into K by B (H,K).

Definition 1.1. Let F ∈
∏

w∈ΩKw. We say that F is strongly measur-
able if F as a mapping of Ω to K is measurable, where∏

w∈Ω
Kw =

{
f : Ω −→

∪
w∈Ω

Kw : f (w) ∈ Kw

}
.

Definition 1.2. We say that Λ = {Λw ∈ B (H,Kw) : w ∈ Ω} is a con-
tinuous g-frame for H with respect to {Kw}w∈Ω (or simply continuous
g-frame) if

(i) for each f ∈ H, {Λwf}w∈Ω is strongly measurable,
(ii) there are two constants 0 < AΛ ≤ BΛ < ∞ such that

(1.1) AΛ ∥f∥2 ≤
∫
Ω
∥Λwf∥2 dµ (w) ≤ BΛ ∥f∥2 , f ∈ H.

We call AΛ and BΛ the lower and upper continuous g-frame bounds,
respectively.
Λ is called a tight continuous g-frame if AΛ = BΛ and a Parseval con-
tinuous g-frame if AΛ = BΛ = 1. If the right hand inequality of (1.1)
holds for all f ∈ H, then we say that Λ is a continuous g-Bessel family
for H with respect to {Kw}w∈Ω (or simply continuous g-Bessel family).
In this case, BΛ is called the continuous g-Bessel constant. We denote
by AΛ and BΛ the lower and upper bounds of continuous g-frame Λ,
respectively.

Proposition 1.3 ([1]). Let Λ = {Λw ∈ B (H,Kw) : w ∈ Ω} be a con-
tinuous g-frame for H with continuous g-frame bounds AΛ, BΛ. Then,
there exists a unique positive and invertible operator SΛ : H −→ H such
that for each f, g ∈ H,

⟨SΛf, g⟩ =
∫
Ω

⟨
Λ∗
wΛwf, g

⟩
dµ (w) ,

and AΛIH ≤ SΛ ≤ BΛIH .

The operator SΛ in Proposition 1.3 is called the continuous g-frame
operator of Λ. Also, we have

⟨f, g⟩ =
∫
Ω

⟨
S−1
Λ fΛ∗

wΛwg
⟩
dµ (w)(1.2)

=

∫
Ω

⟨
f,Λ∗

wΛwS
−1
Λ g

⟩
dµ (w) , f, g ∈ H.

Let

K̂ =

{
F ∈

∏
w∈Ω

Kw : F is storngly measurable,

∫
Ω
∥F (w)∥2 dµ (w) < ∞

}
.
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It is clear that, K̂ is a Hilbert space with pointwise operations and the
inner product given by

⟨F,G⟩ =
∫
Ω

⟨
F (w) , G (w)

⟩
dµ (w) , F,G ∈ K̂.

Proposition 1.4 ([1]). Let Λ = {Λw ∈ B (H,Kw) : w ∈ Ω} be a contin-

uous g-Bessel family. Then the mapping TΛ : K̂ −→ H defined by

⟨TΛF, g⟩ =
∫
Ω

⟨
Λ∗
wF (w) , g

⟩
dµ (w) , F ∈ K̂, g ∈ H,

is linear and bounded with ∥TΛ∥ ≤
√
BΛ. Also, for each g ∈ H we have

T ∗
Λ (g) (w) = Λwg, w ∈ Ω.

The operators TΛ and T ∗
Λ in Proposition 1.4 are called the synthesis

and analysis operators of Λ, respectively.

2. The Sum of Continuous G-Frames

The authours in [12] have given some conditions under which the finite
sum of frames can be also frames. In [10], Madadian and Rahmani have
discussed that the finite sum of continuous g-frames can be a continuous
g-frame under some conditions.

In this section, we study the sum of continuous g-frames and gener-
alize some results of [5] and [9] to continuous g-frames.

The following example shows that the sum of two continuous g-frames
is not necessarily a continuous g-frame.

Example 2.1. Let Λ = {Λw ∈ B (H,Kw) : w ∈ Ω} be a continuous g-
frame. Let Γw = −Λw for all w ∈ Ω, then Γ = {Γw ∈ B (H,Kw) : w ∈ Ω}
is a continuous g-frame and Λ+Γ = {Λw + Γw ∈ B (H,Kw) : w ∈ Ω} is
not a continuous g-frame.

Here we give some conditions under which Λ + Γ is a continuous g-
frame for H.

Theorem 2.2. Let Λ = {Λw ∈ B (H,Kw) : w ∈ Ω} be a continuous g-
frame and Γ = {Γw ∈ B (H,Kw) : w ∈ Ω} be a continuous g-Bessel fam-
ily. For non-zero constants a, b, if

AΛ|a|2 − 2BΓ|b|2 > 0,

then aΛ + bΓ = {aΛw + bΓw ∈ B (H,Kw) : w ∈ Ω} is a continuous g-
frame.

Proof. By the Cauchy-Schwarz inequality, for any f ∈ H, we have∫
Ω
∥(aΛw + bΓw) f∥2 dµ (w)
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=

∫
Ω

⟨
aΛwf + bΓwf, aΛwf + bΓwf

⟩
dµ (w)

=

∫
Ω
∥aΛwf∥2 dµ (w) +

∫
Ω
2Re

⟨
aΛwf, bΓwf

⟩
dµ (w)

+

∫
Ω
∥bΓwf∥2 dµ (w)

≤
∫
Ω
∥aΛwf∥2 dµ (w) + 2

∫
Ω

∣∣⟨aΛwf, bΓwf
⟩∣∣dµ (w)

+

∫
Ω
∥bΓwf∥2 dµ (w)

≤
∫
Ω
∥aΛwf∥2 dµ (w) + 2

∫
Ω
∥aΛwf∥ ∥bΓwf∥ dµ (w)

+

∫
Ω
∥bΓwf∥2 dµ (w)

≤
∫
Ω
∥aΛwf∥2 dµ (w) + 2

(∫
Ω
∥aΛwf∥2 dµ (w)

) 1
2

×
(∫

Ω
∥bΓwf∥2 dµ (w)

) 1
2

+

∫
Ω
∥bΓwf∥2 dµ (w)

=

[(∫
Ω
∥aΛwf∥2 dµ (w)

) 1
2

+

(∫
Ω
∥bΓwf∥2 dµ (w)

) 1
2

]2
≤ 2

∫
Ω
|a|2 ∥Λwf∥2 dµ (w) + 2

∫
Ω
|b|2 ∥Γwf∥2 dµ (w)

= 2|a|2
∫
Ω
∥Λwf∥2 dµ (w) + 2|b|2

∫
Ω
∥Γwf∥2 dµ (w)

≤ 2
(
|a|2BΛ + |b|2BΓ

)
∥f∥2 .

On the other hand, for each f ∈ H,∫
Ω
∥aΛwf∥2 dµ (w)

=

∫
Ω
∥(aΛw + bΓw) f − bΓwf∥2 dµ (w)

≤ 2

∫
Ω
∥aΛwf + bΓwf∥2 dµ (w) + 2

∫
Ω
∥bΓwf∥2 dµ (w) ,

so

2

∫
Ω
∥aΛwf + bΓwf∥2 dµ (w)

≥
∫
Ω
∥aΛwf∥2 dµ (w)− 2

∫
Ω
∥bΓwf∥2 dµ (w)
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=

∫
Ω
|a|2 ∥Λwf∥2 dµ (w)− 2

∫
Ω
|b|2 ∥Γwf∥2 dµ (w)

= |a|2
∫
Ω
∥Λwf∥2 dµ (w)− 2|b|2

∫
Ω
∥Γwf∥2 dµ (w)

≥
(
|a|2AΛ − 2|b|2BΓ

)
∥f∥2 , f ∈ H.

□
Corollary 2.3. Let Λ = {Λw ∈ B (H,Kw) : w ∈ Ω} be a continuous
g-frame and Γ = {Γw ∈ B (H,Kw) : w ∈ Ω} be a continuous g-Bessel

family. If BΓ < AΛ
2 , then Λ + Γ = {Λw + Γw ∈ B (H,Kw) : w ∈ Ω} is a

continuous g-frame.

Proof. It is sufficient to put a = b = 1, in Theorem 2.2. □
Theorem 2.4. Let Λ = {Λw ∈ B (H,Kw) : w ∈ Ω} and Γ = {Γw ∈
B (H,Kw) : w ∈ Ω} be two continuous g-frames. Let U, V ∈ B(H). If
TΛT

∗
Γ = 0 and U or V is a self-adjoint surjective operator, then ΛU +

ΓV = {ΛwU + ΓwV ∈ B (H,Kw) : w ∈ Ω} is a continuous g-frame.

Proof. Since TΛT
∗
Γ = 0, for any f ∈ H, we have∫

Ω
∥(ΛwU + ΓwV )f∥2 dµ (w)

=

∫
Ω
∥ΛwUf∥2 dµ (w) +

∫
Ω

⟨
Γ∗
wΛwUf, V f

⟩
dµ (w)

+

∫
Ω

⟨
Λ∗
wΓwV f, Uf

⟩
dµ (w) +

∫
Ω
∥ΓwV f∥2 dµ (w)

=

∫
Ω
∥ΛwUf∥2 dµ (w) +

⟨
TΓT

∗
ΛUf, V f

⟩
+
⟨
TΛT

∗
ΓV f, Uf

⟩
+

∫
Ω
∥ΓwV f∥2 dµ (w)

≤ BΛ ∥Uf∥2 +BΓ ∥V f∥2

≤
(
BΛ ∥U∥2 +BΓ ∥V ∥2

)
∥f∥2 , f ∈ H.

Now, suppose that U is a self-adjoint surjective operator. By Lemma
2.4.1 of [3], there exists a constant C > 0 such that

∥Uf∥2 ≥ C ∥f∥2 , f ∈ H.

Then ∫
Ω
∥(ΛwU + ΓwV ) f∥2 dµ (w)

=

∫
Ω
∥ΛwUf∥2 dµ (w) +

∫
Ω
∥ΓwV f∥2 dµ (w)



162 A. YOUSEFZADEHEYNI AND M.R. ABDOLLAHPOUR

≥
∫
Ω
∥ΛwUf∥2 dµ (w)

≥ AΛ ∥Uf∥2

≥ AΛC ∥f∥2 , f ∈ H.

Therefore, ΛU + ΓV = {ΛwU + ΓwV ∈ B (H,Kw) : w ∈ Ω} is a contin-
uous g-frame. □
Corollary 2.5. Let Λ = {Λw ∈ B (H,Kw) : w ∈ Ω} and Γ = {Γw ∈
B (H,Kw) : w ∈ Ω} be two continuous g-frames. If TΛT

∗
Γ = 0, then

Λ + Γ = {Λw + Γw ∈ B (H,Kw) : w ∈ Ω} is a continuous g-frame.

Proof. It is sufficient to put U = V = IH , in Theorem 2.4. □
Corollary 2.6. Let Λ = {Λw ∈ B (H,Kw) : w ∈ Ω} and Γ = {Γw ∈
B (H,Kw) : w ∈ Ω} be two continuous g-frames. If TΛT

∗
Γ = 0 and

U ∈ B (H), then ΛU + Γ = {ΛwU + Γw ∈ B (H,Kw) : w ∈ Ω} is a
continuous g-frame.

Proof. It is sufficient to put V = IH , in Theorem 2.4. □
Theorem 2.7. Let Λi =

{
Λi
w ∈ B (H,Kw) : w ∈ Ω

}
be a continuous g-

frame for i ∈ I = {1, 2, . . . ,M}. Let {αi}i∈I be a sequence of scalars.
Then ∑

i∈I
αiΛ

i =

{∑
i∈I

αiΛ
i
w ∈ B (H,Kw) : w ∈ Ω

}
,

is a continuous g-frame if and only if there exist β > 0 and some j ∈ I
such that

β

∫
Ω

∥∥Λj
wf
∥∥2 dµ (w) ≤

∫
Ω

∥∥∥∥∥∑
i∈I

αiΛ
i
wf

∥∥∥∥∥
2

dµ (w) , f ∈ H.

Proof. First, suppose that
∑

i∈I αiΛ
i is a continuous g-frame for H.

Then

A∑
i∈I αiΛi ∥f∥2 ≤

∫
Ω

∥∥∥∥∥∑
i∈I

αiΛ
i
wf

∥∥∥∥∥
2

dµ (w) ≤ B∑
i∈I αiΛi ∥f∥2 , f ∈ H.

(2.1)

Since for j ∈ I, Λj is a continuous g-frame for H, we have

AΛj ∥f∥2 ≤
∫
Ω

∥∥Λj
wf
∥∥2 dµ (w) ≤ BΛj ∥f∥2 , f ∈ H, j ∈ I.(2.2)

By the inequalities (2.1) and (2.2), for any f ∈ H, we have∫
Ω

∥∥∥∥∥∑
i∈I

αiΛ
i
wf

∥∥∥∥∥
2

dµ (w) ≥ A∑
i∈I αiΛi ∥f∥2



ON SUM AND STABILITY OF CONTINUOUS G-FRAMES 163

≥
A∑

i∈I αiΛi

BΛj

∫
Ω

∥∥Λj
wf
∥∥2 dµ (w) ,

thus, it is sufficient to put β =
A∑

i∈I αiΛ
i

B
Λj

.

Conversely, we suppose that there exists β > 0 such that

β

∫
Ω

∥∥Λj
wf
∥∥2 dµ (w) ≤

∫
Ω

∥∥∥∥∥∑
i∈I

αiΛ
i
wf

∥∥∥∥∥
2

dµ (w) , f ∈ H,

for some j ∈ I. Thus∫
Ω

∥∥∥∥∥∑
i∈I

αiΛ
i
wf

∥∥∥∥∥
2

dµ (w) ≥ β

∫
Ω

∥∥Λj
wf
∥∥2 dµ (w)

≥ βAΛj ∥f∥2 , f ∈ H.

On the other hand, by the Cauchy- Schwarz inequality, we have∫
Ω

∥∥∥∥∥∑
i∈I

αiΛ
i
wf

∥∥∥∥∥
2

dµ (w) ≤
∫
Ω

(∑
i∈I

∥∥αiΛ
i
wf
∥∥)2

dµ (w)

≤
∫
Ω
M
∑
i∈I

∣∣αi

∣∣2 ∥∥Λi
wf
∥∥2 dµ (w)

≤
∫
Ω
M2

(
max
i∈I

|αi|2
)∑

i∈I

∥∥Λi
wf
∥∥2 dµ (w)

= M2

(
max
i∈I

|αi|2
)∑

i∈I

∫
Ω

∥∥Λi
wf
∥∥2 dµ (w)

≤ M2

(
max
i∈I

|αi|2
)∑

i∈I
BΛi ∥f∥2

≤ M3

(
max
i∈I

|αi|2
)(

max
i∈I

BΛi

)
∥f∥2 , f ∈ H.

So,
∑

i∈I αiΛ
i is a continuous g-frame for H. □

3. The Stability of Continuous G-Frames

In [4], Christensen has discussed the stability of frames in the Hilbert
spaces under perturbations. Also, Sun has proved that g-frames are sta-
ble under small perturbations [14]. The perturbation result was gener-
alized to continous g-frames in [1]. In this section, we study the stability
of continuous g-frames.

Theorem 3.1. Suppose that Γ = {Γw ∈ B (H,Kw) : w ∈ Ω} is a family
of operators such that for each f ∈ H, {Γwf}w∈Ω is strongly measurable.
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Let Λ = {Λw ∈ B (H,Kw) : w ∈ Ω} be a continuous g-frame and Λ+Γ =
{Λw + Γw ∈ B (H,Kw) : w ∈ Ω} is a continuous g-Bessel family. If
AΛ − 2BΛ+Γ > 0, then Γ is a continuous g-frame for H.

Proof. We have∫
Ω
∥Γwf∥2 dµ (w) =

∫
Ω
∥(Γw + Λw) f − Λwf∥2 dµ (w)

≤ 2

(∫
Ω
∥(Γw + Λw) f∥2 dµ (w) +

∫
Ω
∥Λwf∥2 dµ (w)

)
≤ 2 (BΛ+Γ +BΛ) ∥f∥2 , f ∈ H.

Also,

2

∫
Ω
∥Γwf∥2 dµ (w) ≥

∫
Ω
∥Λwf∥2 dµ (w)− 2

∫
Ω
∥(Λw + Γw) f∥2 dµ (w)

≥ AΛ ∥f∥2 − 2BΛ+Γ ∥f∥2

= (AΛ − 2BΛ+Γ) ∥f∥2 , f ∈ H.

So, Γ is a continuous g-frame for H. □
Theorem 3.2. Suppose that Γ = {Γw ∈ B (H,Kw) : w ∈ Ω} is a family
of operators such that for each f ∈ H, {Γwf}w∈Ω is strongly measurable.
Let Λ = {Λw ∈ B(H,Kw) : w ∈ Ω} be a continuous g-frame. Then Γ is
a continuous g-Bessel family for H if and only if there exists a constant
λ > 0 such that∫

Ω
∥(Λw − Γw) f∥2 dµ (w) ≤ λ

∫
Ω
∥Λwf∥2 dµ (w) , f ∈ H.

Proof. First, suppose that Γ is a continuous g-Bessel family for H. Since
Λ is a continuous g-frame for H, we have

∥f∥2 ≤ 1

AΛ

∫
Ω
∥Λwf∥2 dµ (w) , f ∈ H,

thus ∫
Ω
∥Γwf∥2 dµ (w) ≤ BΓ ∥f∥2

≤ BΓ

AΛ

∫
Ω
∥Λwf∥2 dµ (w) , f ∈ H.

So∫
Ω
∥(Λw − Γw) f∥2 dµ (w) ≤ 2

∫
Ω
∥Λwf∥2 dµ (w) + 2

∫
Ω
∥Γwf∥2 dµ (w)

≤ 2

(
1 +

BΓ

AΛ

)∫
Ω
∥Λwf∥2 dµ (w) , f ∈ H.
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Conversely, for any f ∈ H, we have∫
Ω
∥Γwf∥2 dµ (w) =

∫
Ω
∥(Γw − Λw) f + Λwf∥2 dµ (w)

≤ 2

∫
Ω
∥(Γw − Λw) f∥2 dµ (w) + 2

∫
Ω
∥Λwf∥2 dµ (w)

≤ 2

(
λ

∫
Ω
∥Λwf∥2 dµ (w) +

∫
Ω
∥Λwf∥2 dµ (w)

)
≤ 2 (λ+ 1)BΛ ∥f∥2 ,

therefore Γ is a continuous g-Bessel family for H. □

Theorem 3.3. Suppose that Γ = {Γw ∈ B (H,Kw) : w ∈ Ω} is a family
of operators such that for each f ∈ H, {Γwf}w∈Ω is strongly measurable.
Let Λ = {Λw ∈ B (H,Kw) : w ∈ Ω} be a continuous g-frame and a and
b be non-zero constants. Suppose that there exist constants 0 ≤ λ, µ < 1

2
such that for any f ∈ H,∫

Ω
∥(aΛw − bΓw) f∥2 dµ (w)

≤ λ

∫
Ω
∥aΛwf∥2 dµ (w) + µ

∫
Ω
∥bΓwf∥2 dµ(w).

Then Γ is a continuous g-frame for H.

Proof. For any f ∈ H,∫
Ω
∥bΓwf∥2 dµ (w)

=

∫
Ω
∥(bΓw − aΛw) f + aΛwf∥2 dµ (w)

≤ 2

∫
Ω
∥(bΓw − aΛw) f∥2 dµ (w) + 2

∫
Ω
∥aΛwf∥2 dµ (w)

≤ 2λ

∫
Ω
∥aΛwf∥2 dµ (w) + 2µ

∫
Ω
∥bΓwf∥2 dµ (w)

+ 2

∫
Ω
∥aΛwf∥2 dµ (w)

= 2 (λ+ 1)

∫
Ω
∥aΛwf∥2 dµ (w) + 2µ

∫
Ω
∥bΓwf∥2 dµ (w) .

So

(1− 2µ)

∫
Ω
∥bΓwf∥2 dµ (w) ≤ 2 (λ+ 1)

∫
Ω
∥aΛwf∥2 dµ (w) , f ∈ H,
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therefore, for any f ∈ H,

(1− 2µ) |b|2
∫
Ω
∥Γwf∥2 dµ (w) ≤ 2 (λ+ 1) |a|2

∫
Ω
∥Λwf∥2 dµ (w) .

Thus ∫
Ω
∥Γwf∥2 dµ (w) ≤ 2 (λ+ 1) |a|2

(1− 2µ) |b|2

∫
Ω
∥Λwf∥2 dµ (w)

≤ 2 (λ+ 1) |a|2

(1− 2µ) |b|2
BΛ ∥f∥2 , f ∈ H.

On the other hand, for any f ∈ H, we have∫
Ω
∥aΛwf∥2 dµ (w) =

∫
Ω
∥(aΛw − bΓw) f + bΓwf∥2 dµ (w)

≤ 2λ

∫
Ω
∥aΛwf∥2 dµ (w) + 2µ

∫
Ω
∥bΓwf∥2 dµ (w)

+ 2

∫
Ω
∥bΓwf∥2 dµ (w) .

Also, for each f ∈ H, we have

(1− 2λ) |a|2
∫
Ω
∥Λwf∥2 dµ (w) ≤ 2 (1 + µ) |b|2

∫
Ω
∥Γwf∥2 dµ (w) .

Thus ∫
Ω
∥Γwf∥2 dµ (w) ≥ (1− 2λ) |a|2

2 (1 + µ) |b|2
AΛ ∥f∥2 , f ∈ H,

therefore, Γ is a continuous g-frame for H. □
Theorem 3.4. For i ∈ I = {1, 2, . . . ,M}, let Λi = {Λi

w ∈ B (H,Kw) :
w ∈ Ω} be a continuous g-Bessel family. Let Γi = {Γi

w ∈ B (H,Kw) :
w ∈ Ω} be a continuous g-Bessel family such that∫

Ω

∥∥(Λi
w − Γi

w

)
f
∥∥2 dµ (w) ≤ λ

∫
Ω

∥∥Λi
wf
∥∥2 dµ (w) , f ∈ H,

for i ∈ I and λ ≥ 0. If for some j ∈ I, there exists AΛj > 0 such that∫
Ω

∥∥Λj
wf
∥∥2 dµ (w) ≥ AΛj ∥f∥2 , f ∈ H,

and

2 (M − 1)
∑
i̸=j

∥TΛi∥2 + 4Mλ
∑
i∈I

∥TΛi∥2 < AΛj ,

then, ∑
i∈I

Γi =

{∑
i∈I

Γi
w ∈ B (H,Kw) : w ∈ Ω

}
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is a continuous g-frame.

Proof. For each f ∈ H,∫
Ω

∥∥Λj
wf
∥∥2 dµ (w) =

∫
Ω

∥∥∥∥∥∥
∑
i∈I

Λi
wf −

∑
i̸=j

Λi
wf

∥∥∥∥∥∥
2

dµ (w)

≤ 2

∫
Ω

∥∥∥∥∥∑
i∈I

Λi
wf

∥∥∥∥∥
2

dµ (w) + 2

∫
Ω

∥∥∥∥∥∥
∑
i ̸=j

Λi
wf

∥∥∥∥∥∥
2

dµ (w) ,

thus for any f ∈ H,

∫
Ω

∥∥∥∥∥∑
i∈I

Λi
wf

∥∥∥∥∥
2

dµ (w) ≥ 1

2

∫
Ω

∥∥Λj
wf
∥∥2 dµ (w)−

∫
Ω

∥∥∥∥∥∥
∑
i ̸=j

Λi
wf

∥∥∥∥∥∥
2

dµ (w) .

(3.1)

Also, ∫
Ω

∥∥Λi
wf
∥∥2 dµ (w) = ∥(TΛi)∗ f∥2(3.2)

≤ ∥(TΛi)∗∥2 ∥f∥2

= ∥TΛi∥2 ∥f∥2 , f ∈ H.

Then, by the inequalities (3.1) and (3.2), for any f ∈ H, we have∫
Ω

∥∥∥∥∥∑
i∈I

Γi
wf

∥∥∥∥∥
2

dµ (w)

≥ 1

2

∫
Ω

∥∥∥∥∥∑
i∈I

Λi
wf

∥∥∥∥∥
2

dµ (w)− 2

∫
Ω

∥∥∥∥∥∑
i∈I

(
Γi
w − Λi

w

)
f

∥∥∥∥∥
2

dµ (w)


≥ 1

2

1

2

∫
Ω

∥∥Λj
wf
∥∥2 dµ (w)−

∫
Ω

∥∥∥∥∥∥
∑
i ̸=j

Λi
wf

∥∥∥∥∥∥
2

dµ (w)

−2

∫
Ω

∥∥∥∥∥∑
i∈I

(
Γi
w − Λi

w

)
f

∥∥∥∥∥
2

dµ (w)


≥ 1

2

1

2

∫
Ω

∥∥Λj
wf
∥∥2 dµ (w)− (M − 1)

∑
i ̸=j

∫
Ω

∥∥Λi
wf
∥∥2 dµ (w)

−2M
∑
i∈I

∫
Ω

∥∥(Γi
w − Λi

w

)
f
∥∥2 dµ (w)

)
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≥ 1

2

(
1

2
AΛj ∥f∥2 − (M − 1)

∑
i̸=j

∥TΛi∥2 ∥f∥2 − 2Mλ
∑
i∈I

∥TΛi∥2 ∥f∥2
)

=
1

4

AΛj − 2 (M − 1)
∑
i̸=j

∥TΛi∥2 − 4Mλ
∑
i∈I

∥TΛi∥2
 ∥f∥2 .

For any i ∈ I and f ∈ H, we have∫
Ω

∥∥∥∥∥∑
i∈I

Γi
wf

∥∥∥∥∥
2

dµ (w)

=

∫
Ω

∥∥∥∥∥∑
i∈I

(
Γi
w − Λi

w

)
f +

∑
i∈I

Λi
wf

∥∥∥∥∥
2

dµ (w)

≤ 2

∫
Ω

∥∥∥∥∥∑
i∈I

(
Γi
w − Λi

w

)
f

∥∥∥∥∥
2

dµ (w) +

∫
Ω

∥∥∥∥∥∑
i∈I

Λi
wf

∥∥∥∥∥
2

dµ (w)


≤ 2M

(∫
Ω

∑
i∈I

∥∥(Γi
w − Λi

w

)
f
∥∥2 dµ (w) +

∫
Ω

∑
i∈I

∥∥Λi
wf
∥∥2 dµ (w)

)

≤ 2M

(
λ

∫
Ω

∑
i∈I

∥∥Λi
wf
∥∥2 dµ (w) +

∫
Ω

∑
i∈I

∥∥Λi
wf
∥∥2 dµ (w)

)

= 2M (1 + λ)
∑
i∈I

∫
Ω

∥∥Λi
wf
∥∥2 dµ (w)

≤ 2M (1 + λ)
∑
i∈I

BΛi ∥f∥2

≤ 2M2 (1 + λ)max
i∈I

BΛi ∥f∥2 .

Therefore, ∑
i∈I

Γi =

{∑
i∈I

Γi
w ∈ B (H,Kw) : w ∈ Ω

}
,

is a continuous g-frame. □
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