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On Sum and Stability of Continuous G-Frames

Azam Yousefzadeheyni' and Mohammad Reza Abdollahpour®*

ABSTRACT. In this paper, we give some conditions under which the
finite sum of continuous g-frames is again a continuous g-frame. We
give necessary and sufficient conditions for the continuous g-frames
A={Aw € B(H,Ky):weQ}andT' ={I'y, € B(H,Ky,): w € Q}
and operators U and V on H such that AU+TV = {A,U+T,V €
B(H,Ky) : w € Q} is again a continuous g-frame. Moreover, we
obtain some sufficient conditions under which the finite sum of con-
tinuous g-frames are stable under small perturbations.

1. INTRODUCTION

Frames were first introduced by Duffin and Schaeffer in the study of
nonharmonic Fourier sereis [[7] and reintroduced in 1986 by Daubechies,
Grossmann and Meyer [6]. In [I3], Sun introduced the concept of g-
frames in a Hilbert space. The notion of continuous frames was intro-
duced by Kaiser in [R] and independently by Ali, Antoine and Cazeau
[2]. In 2008, continuous g-frames were introduced by Abdollahpour and
Faroughi [i].

This paper is organized as follows. First, we summarize some facts
about continuous g-frames from [1]. By generalizing some results of [5]
and [9], in Section B, we give some condtions that the finite sum of
continous g-frames to be a continous g-frame and in Section B, we study
some new results in stability of finite sum of continuous g-frames.

Throughout this paper, H is a complex Hilbert space and (€, i) is
a measure space with positive measure p and {Ky},cq is a family of
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closed subspaces of Hilbert space K. We denote the space of all bounded
linear operators from H into K by B (H, K).

Definition 1.1. Let F' € [], cq Kw. We say that F is strongly measur-
able if ' as a mapping of ) to K is measurable, where

HKw:{f:Q—> U Kw:f(w)eKw}.
wes we
Definition 1.2. We say that A = {A, € B(H,K,) : w € Q} is a con-
tinuous g-frame for H with respect to {Ky},,cq (or simply continuous
g-frame) if

(i) for each f € H, {Ayf},cq is strongly measurable,

(ii) there are two constants 0 < Ay < B < oo such that

(1.1) An I < /Q 1Aw fII* dpu (w) < BallfI?,  f € H.

We call Ay and Bp the lower and upper continuous g-frame bounds,
respectively.

A is called a tight continuous g-frame if Ay = Bj and a Parseval con-
tinuous g-frame if Ay = By = 1. If the right hand inequality of (I)
holds for all f € H, then we say that A is a continuous g-Bessel family
for H with respect to {Ky },,cq (or simply continuous g-Bessel family).
In this case, By is called the continuous g-Bessel constant. We denote
by Ap and Bp the lower and upper bounds of continuous g-frame A,
respectively.

Proposition 1.3 ([M]). Let A = {A, € B(H,Ky) : w € Q} be a con-
tinuous g-frame for H with continuous g-frame bounds Ap, By. Then,
there exists a unique positive and invertible operator Sy : H — H such
that for each f,g € H,

(Suf.g) = /Q (A Awf,g)dp (),

and Aplg < Spn < Balyg.

The operator Sy in Proposition I3 is called the continuous g-frame
operator of A. Also, we have

(1.2) (f.9) = /Q (ST FAS Awg)dp ()

- /Q (A AWST gVdp (w) . frg € H.
Let

K= {F € H K, : F is storngly measurable,/ | F ()| dp (w) < oo} .
we Q
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It is clear that, K is a Hilbert space with pointwise operations and the
inner product given by

<F,G>:/Q<F(w),G(w)>du(w), FGeR.

Proposition 1.4 ([Il]). Let A = {A,, € B (H, Ky,) : w € Q} be a contin-
uous g-Bessel family. Then the mapping Ty : K — H defined by

(T\F.g) = /Q (ALF (w),g)dp(w), FeR, gek.

is linear and bounded with | Tp|| < v Ba. Also, for each g € H we have
T3 (9) (w) = Awg, wE Q.

The operators Ty and T} in Proposition 4 are called the synthesis
and analysis operators of A, respectively.

2. THE SuM oF CONTINUOUS G-FRAMES

The authours in [12] have given some conditions under which the finite
sum of frames can be also frames. In [10], Madadian and Rahmani have
discussed that the finite sum of continuous g-frames can be a continuous
g-frame under some conditions.

In this section, we study the sum of continuous g-frames and gener-
alize some results of [5] and [9] to continuous g-frames.

The following example shows that the sum of two continuous g-frames
is not necessarily a continuous g-frame.

Example 2.1. Let A = {A, € B(H, K,) : w € Q} be a continuous g-
frame. Let I'y, = —Ay forallw € Q, thenI’ ={I", € B(H, Ky) : w € Q}
is a continuous g-frame and A+1I'= {A, + 'y € B(H, Ky) : w € Q} is
not a continuous g-frame.

Here we give some conditions under which A + I' is a continuous g-
frame for H.

Theorem 2.2. Let A = {A, € B(H,K,):w € Q} be a continuous g-
frame and ' = {T'y, € B(H, K,,) : w € Q} be a continuous g-Bessel fam-
ily. For non-zero constants a, b, if

Aplal)® — 2Br|b]* > 0,

then aA + bI' = {aA,, +bI'y, € B(H, Ky) : w € Q} is a continuous g-
frame.

Proof. By the Cauchy-Schwarz inequality, for any f € H, we have
[ @+ 00 117
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:/ (ahnf + BT f, a0 f + D0 f Y ()
Q
:/ HaAwaQdu(w)—ir/2Re<aAwf,waf>du (w)
Q Q
" /Q 18T £11% dps (1)
< [ llahaf |2 disw) + 2 | [ f BP0 f)du )
Q Q
b, flI2 d
" /Q 18T 112 djs (0)
2
< /Q ladu f11? dp () + 2 /Q lahu fIl 1T £1] dyt ()

+ / 18T £11% ds (1)

< [ lausldi o ( [ ot dnw) )
< ([ 10T P dn o ) + [ 10T da ()

[( [ e 1P o ) ([ prast?an w ))T

2 2 2 2
<9 /Q laf? [ A 112 dja () + 2 /Q B 10w 1 dpt ()
— 2 A 2 2 2
2al /Q 1w 112 dp (w) + 210 /Q 1D 112 dja ()

< 2(Jal*Ba + [b]*Br) || f]* -
On the other hand, for each f € H,

/ a1 dpt ()
Q
— /Q I(afw + BLw) £ — Lo I dpt ()
<2 [ Jahuf + 001 die )+ 2 [ (0002 dn (),
Q Q

SO

2/ |aAwf + b f11? dps (w)
Q
2 . 2
> [ la oI di ) =2 [ LT dn ()
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/ af? [ Aw [ dp (w / b 1T I dpt ()

12 o2
—laf? [ 18| du (o) = 20 [ [P do ()
> (laPAs — 2Br) [[fI?. f e H.
O

Corollary 2.3. Let A = {A, € B(H,Ky) : w € Q} be a continuous
g-frame and I' = {I'y, € B(H,K,) : w € Q} be a continuous g-Bessel
family. If Br < %, then A+ T ={Ay,+Ty € B(H,Ky,):w e} isa
continuous g-frame.

Proof. 1t is sufficient to put a = b =1, in Theorem 2. O

Theorem 2.4. Let A = {A, € B(H,Ky):we} and ' = {I'y, €
B(H,K,) : w € Q} be two continuous g-frames. Let U,V € B(H). If
TATY =0 and U or V is a self-adjoint surjective operator, then AU +
r'v={AU~+T,V € B(H,Ky,) :w € Q} is a conlinuous g-frame.

Proof. Since TA\T{: = 0, for any f € H, we have

/yy(AwU+FwV)f!!2du(w
= [T i) + [ (CUAULV $)di ()
+ [TV £U )+ [ 0V du ()
= [ IAUAI di ) + (TR TRULV )

+(TATFVF,Uf) + /Q WV £ dp (w)
< Ba U+ Br |V fI?
< (BallUI? + BrVIP) AP, f € H.

Now, suppose that U is a self-adjoint surjective operator. By Lemma
2.4.1 of [B], there exists a constant C' > 0 such that

IUfII>>CfII?, feH.
Then

/ 1Al + TuV) £ dpt (w)
/ 1AWU I djs (w / 1TV £ dps (o)
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ALUFI?d
> /Q AU £11 dps ()
> Ap|UF)?

> A\C||fI?, feH.

Therefore, AU +T'V = {A,U +T1,V € B(H,K,) : w € } is a contin-
uous g-frame. O

Corollary 2.5. Let A = {A, € B(H,Ky):weN} and T' = {I'y, €
B(H,Ky) : w € Q} be two continuous g-frames. If TATY = 0, then
A+T={Ay+Ty € B(H,Ky):w € Q} is a continuous g-frame.

Proof. 1t is sufficient to put U =V = I, in Theorem P4. O

Corollary 2.6. Let A = {A, € B(H,Ky) :weQ} and ' = {I', €
B(H,Ky) : w € Q} be two continuous g-frames. If TAT: = 0 and
U € B(H), then AU+T = {AU+T1T, € B(H,Ky) : w € Q} isa
continuous g-frame.

Proof. 1t is sufficient to put V = Iy, in Theorem P4, O

Theorem 2.7. Let A' = {A}, € B (H,K,) : w € Q} be a continuous g-
frame fori € I = {1,2,...,M}. Let {a;};c; be a sequence of scalars.

Then

ZaiAi = {Zai/\; € B(H,Ky,):we€ Q} ,
iel iel

s a continuous g-frame if and only if there exist 5 > 0 and some j € 1

such that

/3/9 183,71 dis () s/g

Proof. First, suppose that >, ; a; A" is a continuous g-frame for H.
Then
(2.1)

A e 2 < [
Q
Since for j € I, AJ is a continuous g-frame for H, we have
. 2 .
22 AuIAP< [ 8067 dn(w) < Bu 151, Fed. el

By the inequalities (20) and (E22), for any f € H, we have

/Q > il f

il

2
du(w), f€H.

> @il f

el

2
dru’(w) SBZ a; At Hf”z) J€H.

Dl f

icl

i€l

2
du(w) > Ay aoni |11

i€l
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A o |
> St g 1| dis )
NI Q

AZz’eI oAl
By
Conversely, we suppose that there exists 8 > 0 such that

I iy < [ IS oni s

el
for some j € I. Thus
/ Z%N
Q
> BA |IfIP, f€H.

i€l
On the other hand, by the Cauchy- Schwarz inequality, we have

[S et < [ (S i) anc

thus, it is sufficient to put 8 =

du w), f€H,

) 2 5 181 e

el el
< [ sl 48 do (o
i€l
< [ a2 (o) 35 407 s )
& el iel
ey [t
2 2 , 2
< 012 (max o )%;BN 11
< M? (max\az| ) <maxBA1> IfI?, feH.
el el
S0, D icr a; A" is a continuous g-frame for H. a

3. THE STABILITY OF CONTINUOUS GG-FRAMES

n [4], Christensen has discussed the stability of frames in the Hilbert
spaces under perturbations. Also, Sun has proved that g-frames are sta-
ble under small perturbations [[4]. The perturbation result was gener-
alized to continous g-frames in [@]. In this section, we study the stability
of continuous g-frames.

Theorem 3.1. Suppose that I' = {T'y, € B(H, Ky) : w € Q} is a family
of operators such that for each f € H, {T'y f},,cq is strongly measurable.
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Let A = {Ay € B(H,Ky) : w € Q} be a continuous g-frame and A+T" =
{Ay + Ty € B(H,Ky) : w € Q} is a continuous g-Bessel family. If
Apx — 2Bpyr > 0, then T is a continuous g-frame for H.

Proof. We have

/I!wall dpi (w /|| wt M) f — Auf 2 dpt (w)

<2(/ I+ ) P12 i)+ [ 001l () )

2(Basr + BA) |IfI?, feH.
Also,

/HwaH dpt (w /!Awf\l dps (w —2/ (A + o) £ dis ()

> An | fI? = 2Basr |1 fI?
= (Ax = 2Bair) | fIP, f e H.

So, I' is a continuous g-frame for H. O

Theorem 3.2. Suppose that I' = {T"y, € B(H, K,,) : w € Q} is a family
of operators such that for each f € H, {T'y f},cq is strongly measurable.
Let A = {Ay € B(H,Ky) : w € Q} be a continuous g-frame. Then I" is
a continuous g-Bessel family for H if and only if there exists a constant
A > 0 such that

/|| W) FI dp <A/||Awfr du(w), feH.

Proof. First, suppose that I' is a continuous g-Bessel family for H. Since
A is a continuous g-frame for H, we have

2 _ 1 2
17 < 5= [ IufIPduw), £ e,

thus
/Q 1T FI2 dpt (w) < Br |||
Br 2
< /Q |AwfIdu(w), feH.
/ 1A — Do) £ ds () < 2 / 1w 1% dp (w) + 2 / 1T 12 dp ()

<1+)/\|Awf|! du(w), feH.
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Conversely, for any f € H, we have

/ 1T 112 dps (w / (T — Aw) f + A1 du (w)
<2/ 1T — Au) 7112 dia (w0 +2/ 1A 12 dis ()

<2 /Q AP di )+ [ 18P ()
<

<2(A+1)Ba £l
therefore I is a continuous g-Bessel family for H. g

Theorem 3.3. Suppose that I' ={T"y, € B(H, Ky,) : w € Q} is a family
of operators such that for each f € H, {T'y f},,cq is strongly measurable.
Let A = {Ay € B(H,Ky) : w € Q} be a continuous g-frame and a and
b be non-zero constants. Suppose that there exist constants 0 < A\, u < %
such that for any f € H,

/ I(a w) FI dpe ()
2
<A /Q e £ dja (w) + p /Q 16T 112 dps(0).

Then I' is a continuous g-frame for H.

Proof. For any f € H,
/ 18T 12 dp (10)
Q
- / 1B — ahu) £+ aduf |2 dji ()
<2/ (b — ad) £1? dp (w +2/ lahu f11? dp ()
<2 /Q lahu £ dp (w) + 20 /Q 18T £11% dp ()
2 Ao flI?d
+ /Q oy £ dpe (10)

—2(\+1) /Q lahu £ dp (w) + 20 /Q 18T £11? dp ()
So

(1 2p) /Q BT £ dp (w) < 2(A+1) /Q lahu fIP du(w), f €,
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therefore, for any f € H,

(1 - 2u) b2 / ITw 2 dpe (w) < 2(A+1) [af? / 1A 1% dp ().
Q (9]
Thus

)\+1)|a|2/

Ty 2 du (w < — A d

et i) < G [ 18P )
20+ )P .

< Ba|lfl°, fe€H.

(= 20 2 22 11

On the other hand, for any f € H, we have

/ oo 12 dp (w / l(ahu — B0) f + Bl | dp ()

<22 /Q s £ dps () + 24 /Q BT 12 dps ()
1 /Q 18T £ dp ().

Also, for each f € H, we have

(1—2)) [af? / 1A 112 dp (w) < 2(1+ ) b2 / ITwfI12 di ().
(9] Q
Thus

2)) |al?
L) = G 2R AP, £ e

therefore, I' is a continuous g-frame for H. O
Theorem 3.4. Forie I ={1,2,...,M}, let A" = {A], € B(H,Ky,) :
w € Q} be a continuous g-Bessel family. Let I'" = {I'l, € B(H, K,) :
w € Q} be a continuous g-Bessel family such that
. . 2 . 2
LI~ 7P ) <3 [ P an), sen
foriel and A > 0. If for some j € I, there exists Ay; > 0 such that

D2
LI i) = 4 151, g e 8,
and
2(M = 1)) || Ti|* +4MAY I Tpsl* < Aps,
i#j icl
then,

dT= {ZFL eB(H,Kw):weQ}

el el
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18 a continuous g-frame.

Proof. For each f € H,

2
D Auf = A

L 1AL ) = | dp (w)
& icl itj
/ ZA’ dp (w / ZA’ dp (w
el i#j
thus for any f € H,
(3.1)
2
AZ dp (w A I dp (w AZ dp (w
Ju |t et 2 5 [ 1P o = [ 570
Also,
(32) 18| e )’ £

< [(@a) I 11112
= Txl®IF1*,  f e H.
Then, by the inequalities (B) and (82), for any f € H, we have

2
/ > LS
2
dp (w)>

dp (w)
el
2
1 i _
2(/9 > At du(w) 2 [
11 i o2 i
>2<2/9Awf da (w) — / Z;A

2
_2/Q ;(F@—Afﬂ)f du(w))
>;(;/{2A{},f2du(w) M —1) Z/ AL £ s (w

AV

> (T, —AL) f

el

2

dp (w

i#]

Y [ a0) 1 et

el
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1
2( A 1P = (M = 1) Y ITxlP AP = 2M0 ) |1 Tl (111 )

1#£j i€l
1
=7 | An —2(M - DY Tl = 4> Tl ) 11412
i#j iel
For any ¢« € I and f € H, we have

S|

el

du

2

ST, = AL FA D ALF| dp(w)
iel el
> AL

-0 s+ [
<o [ S0~ a0) P+ | i )

du

el el
< (o [ il o /ZHMH o)
el el
S oM (14 M) Z/ 1A% £ dis (w
el
<2M (1+ )Y Bui|lf?
el

<2M?(1+)) max Bys I1F1%

Therefore,
d = {ng) € B(H,Ky):we Q}
el el
is a continuous g-frame. O
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