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A New Iterative Algorithm for Multivalued Nonexpansive

Mappping and Equlibruim Problems with Applications

Thierno Mohadamane Mansour Sow

Abstract. In this paper, we introduce two iterative schemes by a
modified Krasnoselskii-Mann algorithm for finding a common ele-
ment of the set of solutions of equilibrium problems and the set of
fixed points of multivalued nonexpansive mappings in Hilbert space.
We prove that the sequence generated by the proposed method
converges strongly to a common element of the set of solutions of
equilibruim problems and the set of fixed points of multivalued non-
expansive mappings which is also the minimum-norm element of the
above two sets. Finally, some applications of our results to opti-
mization problems with constraint and the split feasibility problem
are given. No compactness assumption is made. The methods in
the paper are novel and different from those in early and recent
literature.

1. Introduction

Let (X, d) be a metric space, K be a nonempty subset of X and
T : K → 2K be a multivalued mapping. An element x ∈ K is called
a fixed point of T if x ∈ Tx. The fixed point set of T is denoted by
F (T ) := {x ∈ D(T ) : x ∈ Tx}.

It is easy to see that single-valued nonexpansive mapping is a partic-
ular case of multivalued nonexpansive mapping.

For several years, the study of fixed point theory for single-valued and
multivalued nonlinear mappings has attracted, and continues to attract,
the interest of several well known mathematicians (see, for example,
Kakutani [13], Nash [17, 18], Geanakoplos [11], Nadla [16], Downing
and Kirk [8], Sow et. al [23]).
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Interest in the study of fixed point theory for multivalued nonlinear
mappings stems, perhaps, mainly from its usefulness in real-world appli-
cations such as Game Theory and Non-Smooth Differential Equations.

1.1. Nonsmooth differential equations. A large number of problems
from mechanics and electrical engineering leads to differential inclusions
and differential equations with discontinuous right-hand sides, for ex-
ample, a dry friction force of some electronic devices. Below are two
models.

(1.1)
du

dt
= f(t, u), a.e., t ∈ I := [−a, a], u(0) = u0,

a, u0 ∈ R. These types of differential equations do not have solutions in
the classical sense. A generalized notion of solution is what is called a
solution in the sense of Fillipov.

Consider the following multi-valued initial value problem.

(1.2)

 −d2u
dt2

∈ u− 1
4 − 1

4sign(u− 1)
u(0) = 0;
u(π) = 0.

on Ω = (0, π);

Under some conditions, the solutions set of equations (1.1) and (1.2)
coincides with the fixed point set of some multivalued mappings.

Let D be a nonempty subset of a normed space E. The set D is called
proximinal (see, e.g., [19]) if for each x ∈ E, there exists u ∈ D such
that

d(x, u) = inf{∥x− y∥ : y ∈ D}
= d(x,D),

where d(x, y) = ∥x−y∥ for all x, y ∈ E. Every nonempty, closed and con-
vex subset of a real Hilbert space is proximinal. Let CB(D), K(D) and
P (D) denote the family of nonempty closed bounded subsets, nonempty
compact subsets, and nonempty proximinal bounded subsets of D, re-
spectively. The Hausdorff metric on CB(K) is defined by:

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
,

for all A,B ∈ CB(K). A multivalued mapping T : D(T ) ⊆ E → CB(E)
is called L-Lipschitzian if there exists L > 0 such that

(1.3) H(Tx, Ty) ≤ L∥x− y∥, ∀x, y ∈ D(T ).

Existence theorems for fixed point of multi-valued contractions and
nonexpansive mappings using the Hausdorff metric have been proved by
several authors (see, e.g., Nadler [16], Markin [15], Lim [14]). Later, an
interesting and rich fixed point theory for such maps and more general
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maps was developed which has applications in control theory, convex
optimization, differential inclusion, and economics (see, Gorniewicz [12]
and references cited therein).

Let H be a real Hilbert space and let C be a nonempty, closed and
convex subset of H. Let f be a bifunction of C × C into R, where R is
the real numbers. The equilibrium problem for f is to find x ∈ C such
that

(1.4) f(x, y) ≥ 0, ∀y ∈ C.

The set of solutions is denoted by EP (f). Equilibrium problems which
were introduced by Fan [9] and Blum and Oettli [1] have had a great
impact and influence on the development of several branches of pure and
applied sciences. It has been shown that the equilibrium problem theory
provides a novel and unified treatment of a wide class of problems which
arise in economics, finance, image reconstruction, ecology, transporta-
tion, network, elasticity, and optimization. It has been shown [22, 27]
that equilibrium, problems include variational inequalities, fixed point,
the Nash equilibrium, and game theory as special cases. A number of
iterative algorithms have recently been studying for fixed point and equi-
librium problems, see [1, 20, 21] and the references therein. However,
there were few results established for fixed point of set-valued mappings
and equilibrium problems.

It is our purpose in this paper to construct and study a new iterative
algorithm and prove strong convergence theorems for approximating a
common element of the set of solutions of equilibrium problems and
the set of fixed points of multivalued nonexpansive mappings in the
setting of a real Hilbert spaces. Then, we apply our main results to
optimization problems with constraint and the split feasiblity problem.
No compactness assumption is made, the iterative algorithms and results
presented in this paper generalize, unify and improve the previously
known results in this area. Finally, our method of proof is of independent
interest.

2. Preliminaries

This section collects some lemmas and definitions which will be used
in the proofs for the main results in the next section. Some of them are
known; others are not hard to derive.

Definition 2.1. Let E be real Banach space and T : D(T ) ⊂ E → 2E

be a multivalued mapping. I − T is said to be demiclosed at 0 if for
any sequence {xn} ⊂ D(T ) such that {xn} converges weakly to p and
d(xn, Txn) converges to zero, then p ∈ Tp.
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Lemma 2.2 ([5, Demi-closeness Principle]). Let E be a uniformly con-
vex Banach space satisfying the Opial condition, K be a nonempty closed
and convex subset of E. Let T : K → CB(K) be a multivalued nonex-
pansive mapping with convex-values. Then I −T is demi-closed at zero.

Lemma 2.3 ([6]). Let H be a real Hilbert space. Then, for any x, y ∈ H,
the following inequality holds:

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩.

Lemma 2.4 ([26, Xu]). Assume that {an} is a sequence of nonnegative
real numbers such that an+1 ≤ (1−αn)an+σn for all n ≥ 0, where {αn}
is a sequence in (0, 1) and {σn} is a sequence in R such that

(a)
∞∑
n=0

αn = ∞,

(b) lim sup
n→∞

σn
αn

≤ 0 or
∞∑
n=0

|σn| < ∞.

Then lim
n→∞

an = 0.

Lemma 2.5 ([7, Chidume et al.]). Let X be a reflexive real Banach
space and let A ,B ∈ CB(X).

Assume that B is weakly closed. Then, for every a ∈ A, there exists
b ∈ B such that

∥a− b∥ ≤ H(A,B).

For solving the equilibrium problem for a bifunction f : C × C → R,
let us assume that f satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim
t→0

f(tz + (1− t)x, y) ≤ f(x, y)

(A4) for each x ∈ C, y → f(x, y) is convex and lower semicontinuous.

The following lemma appears implicitly in [1].

Lemma 2.6 ([1]). Let C be a nonempty closed convex subset of H and
let f be a bifunction of C × C into R satisfying (A1)-(A4). Let r > 0
and x ∈ H. Then, there exists z ∈ C such that

f(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C.

The following lemma was also given in [25].
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Lemma 2.7 ([25]). Assume that f : C × C → R satisfies (A1)-(A4).
For r > 0 and x ∈ H, define a mapping Tr : H → C as follows

Tr(x) =

{
z ∈ C, f(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
,

for all x ∈ H. Then, the following hold:

1. Tr is single-valued;
2. Tr is firmly nonexpansive, i.e., ∥Tr(x) − Tr(y)∥2 ≤ ⟨Trx −

Try, x− y⟩ for any x, y ∈ H;
3. F (Tr) = EP (f);
4. EP (f) is closed and convex.

Lemma 2.8. Let H be a real Hilbert space, K a nonempty, closed and
convex subset of H. Let S : K → CB(K) be a multivalued nonexpansive
mapping such that F := EP (f) ∩ F (S) ̸= ∅. Suppose that Sp = {p} for
all p ∈ F. Then

⟨x− v, x− p⟩ ≥ 0, ∀x ∈ K, p ∈ F, v ∈ STrx.

Proof. Using Schwartz inequality, properties of S and Tr, we obtain

⟨x− v, x− p⟩ = ⟨x− v + p− p, x− p⟩
= ∥x− p∥2 − ⟨v − p, x− p⟩
≥ ∥x− p∥2 − ∥v − p∥∥x− p∥
≥ ∥x− p∥2 −H(STrx, STrp)∥x− p∥
≥ ∥x− p∥2 − ∥Trx− Trp∥∥x− p∥
≥ ∥x− p∥2 − ∥x− p∥2 ≥ 0.

Hence, ⟨x− v, x− p⟩ ≥ 0. □

3. Main Results

Let K be a nonempty, closed convex cone of a real Hilbert space and
S : K → CB(K) be a multivalued nonexpansive mapping. Let λ be
a constant in (0, 1). Let {Trn} be a sequence of mappings defined as
Lemma 2.7. Consider a multivalued mapping Sn on K defined by

Snx = αn(λx) + (1− αn)STrnx, ∀x ∈ K, n ≥ 0,

where {αn} is a real sequence in (0, 1). We show that Sn is a contraction.
For this, let x, y ∈ K. We have:

H(Snx, Sny) = max

{
sup

z1∈Snx
d
(
z1, Sny

)
, sup
z2∈Sny

d
(
z2, Snx

)}
.
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For z1 ∈ Snx, there exists z3 ∈ STrnx such that

z1 = αn(λx) + (1− αn)z3.

Hence,

d(z1, Sny) = d
(
αn(λx) + (1− αn)z3, Sny

)
(3.1)

= inf
z2∈Sny

∥αn(λx) + (1− αn)z3 − z2∥

≤ ∥αn(λx) + (1− αn)z3 − z2∥ ∀z2 ∈ Sny.

For z2 ∈ Sny, there exists z4 ∈ STrny such that

z2 = αn(λx) + (1− αn)z4.

So, from (3.1), it follows that,

d(z1, Sny) ≤ ∥αn(λx) + (1− αn)z3 − αn(λy)− (1− αn)z4∥
≤ αnλ∥x− y∥+ (1− αn)∥z3 − z4∥
≤ αnλ∥x− y∥+ (1− αn)d(z3, STrny), ∀z4 ∈ STrny.

Therefore,

sup
z1∈Snx

d(z1, Sny) ≤ αnλ∥x− y∥+ (1− αn) sup
z3∈STrnx

d(z3, STrny)

≤ αnλ∥x− y∥+ (1− αn)H(STrnx, STrny)

≤ αnλ∥x− y∥+ (1− αn)∥Trnx− Trny∥
≤ αnλ∥x− y∥+ (1− αn)∥x− y∥
≤ [1− (1− λ)αn]∥x− y∥.

Hence,

(3.2) sup
z1∈Snx

d(z1, Sny) ≤ [1− (1− λ)αn]∥x− y∥.

Similary, we have

(3.3) sup
z2∈Sny

d(z2, Snx) ≤ [1− (1− λ)αn]∥x− y∥.

Using (3.2) and (3.3), it follows that

H(Snx, Sny) ≤ [1− (1− λ)αn]∥x− y∥,
That implies that Sn is a contraction. Therefore, from the contraction
mapping principle,(see.eg, [3]), there exists zn ∈ K such that,

(3.4) zn ∈ αn(λzn) + (1− αn)STrnzn.

Using (3.4), there exists yn ∈ STrnzn such that

zn = αn(λzn) + (1− αn)yn.

We now prove the following results.
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Theorem 3.1. Let K be a nonempty, closed convex cone of a real Hilbert
space H. Let f be a bifunction from K×K → R satisfying (A1)-(A4), let
S : K → CB(K) be a multivalued nonexpansive mapping with convex-
values such that F := EP (f)∩F (S) ̸= ∅ and Sp={p}, for all p ∈ F. Let
λ be a constant in (0, 1) and {zn} and {un} be sequences defined by:{

zn = αn(λzn) + (1− αn)yn, yn ∈ Sun,
f(un, y) +

1
rn
⟨y − un, un − zn⟩ ≥ 0,

n ≥ 0,
∀y ∈ K,

(3.5)

where un = Trnzn, {rn} ⊂]0,∞[ and {αn} ⊂ (0, 1), satisfy:

lim
n→∞

αn = 0, lim
n→∞

inf rn > 0.

Then, {zn} and {un} defined by (3.5) converge strongly to x∗ ∈ F, where
x∗ is the minimum-norm element of F.

Proof. We split the proof into four steps.
Step 1. We prove that {zn} is bounded. Let p ∈ F. Then from un =
Trnzn, we have

∥un − p∥ = ∥Trnzn − Trnp∥ ≤ ∥zn − p∥, ∀n ≥ 0.

Using (3.5), the fact that Sp = {p} and S is nonexpansive, we have

∥zn − p∥ = ∥αn(λzn) + (1− αn)yn − p∥
≤ λαn∥zn − p∥+ (1− αn)∥yn − p∥+ αn(1− λ)∥p∥
≤ λαn∥xn − p∥+ (1− αn)H(Sun, Sp) + αn(1− λ)∥p∥
≤ [1− (1− λ)αn]∥zn − p∥+ αn(1− λ)∥p∥,

which implies that

∥zn − p∥ ≤ ∥p∥.
Hence, {zn} is bounded and so {yn}.
Step 2. We show that {zn} is relatively norm compact as n → ∞.
Using (3.5) and the boundeness of {zn}, we have

(3.6) ∥zn − yn∥ = αn∥λzn − yn∥ → 0, as n → ∞.

For p ∈ F, we have

∥un − p∥2 = ∥Trnzn − Trnp∥2

≤ ⟨Trnzn − Trnp, zn − p⟩
≤ ⟨un − p, zn − p⟩

=
1

2

(
∥un − p∥2 + ∥zn − p∥2 − ∥zn − un∥2

)
,

and hence

(3.7) ∥un − p∥2 ≤ ∥zn − p∥2 − ∥zn − un∥2.
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Therefore, from (3.5) and (3.7), we get that

∥zn − p∥2 = ∥αn(λzn) + (1− αn)yn − p∥2

≤ ∥αn((λzn)− p) + (1− αn)(yn − p)∥2

≤ (1− αn)
2∥yn − p∥2 + 2αn⟨(λzn)− p, zn − p⟩

≤ (1− αn)
2∥un − p∥2 + 2αnλ⟨zn − p, zn − p⟩

+ 2(1− λ)αn⟨p, p− zn⟩
≤ (1− αn)

2(∥zn − p∥2 − ∥zn − un∥2) + 2αnλ∥zn − p∥2

+ 2αn(1− λ)∥p∥∥zn − p∥
= (1− 2αn + α2

n)∥zn − p∥2 − (1− αn)
2∥zn − un∥2

+ 2αnλ∥zn − p∥2 + 2(1− λ)αn∥p∥∥zn − p∥
≤ ∥zn − p∥2 + αn∥zn − p∥2 − (1− αn)

2∥zn − un∥2

+ 2αnλ∥zn − p∥2 + 2(1− λ)αn∥p∥∥zn − p∥,
and hence

(1−αn)
2∥zn−un∥2 ≤ αn∥zn−p∥2+2αnλ∥zn−p∥2+2(1−λ)αn∥p∥∥zn−p∥.

So, we have ∥zn − un∥ → 0, as n → ∞. Since ∥yn − un∥ ≤ ∥zn − yn∥+
∥zn − un∥, it follows that ∥yn − un∥ → 0, as n → ∞. Hence,

(3.8) d(un, Sun) → 0, as n → ∞.

Let p ∈ F. From (3.5) and the fact that Sp = {p}, we have

∥zn − p∥2 = ⟨αn(λzn) + (1− αn)yn − p, zn − p⟩
= αnλ⟨zn − p, zn − p⟩+ (1− αn)⟨yn − p, zn − p⟩
− (1− λ)αn⟨p, zn − p⟩

≤ [1− (1− λ)αn]∥zn − p∥2 − (1− λ)αn⟨p, zn − p⟩.
So,

(3.9) ∥zn − p∥2 ≤ ⟨p, p− zn⟩.
Since H is reflexive and {unk

} is bounded, there exists a subsequence
{unkj

} of {unk
} which converges weakly to x∗ ∈ K. From (3.8) and

Lemma 2.2, we obtain x∗ ∈ F (S). Without loss of generality, we can
assume that unk

⇀ x∗. Let us show x∗ ∈ EP (f). It follows by (3.5) and
(A2) that

1

rn
⟨y − un, un − zn⟩ ≥ f(y, un),

and hence ⟨
y − unk

,
unk

− znk

rnk

⟩
≥ f(y, unk

).
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Since
unk

− znk

rnk

→ 0 and unk
⇀ x∗, it follows from (A4) that f(y, x∗) ≤

0 for all y ∈ K. For t with 0 < t < 1 and y ∈ K, let yt = ty + (1− t)x∗.
Since y ∈ K and x∗ ∈ K, we have yt ∈ K and hence f(yt, x

∗) ≤ 0. So,
from (A1) and (A4) we have

0 = f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, x
∗) ≤ tf(yt, y),

and hence 0 ≤ f(yt, y). From (A3), we have f(x∗, y) ≥ 0 for all y ∈ K
and hence x∗ ∈ EP (f). Therofore, x∗ ∈ F (S) ∩ EP (f) = F.

Since znk
⇀ x∗ as k → ∞, it follows from (3.9) that znk

→ x∗ as
k → ∞. This proves the relatively compactness of {zn}.
Step 3. We show that the sequence {zn} converges to x∗ ∈ F. We claim
that the net {zn} has a unique cluster point. From Step 2, the sequence
{zn} has a cluster point. Now suppose that x∗ ∈ K and x∗∗ ∈ E are
two cluster points of {zn}. Let {znk

} and {znp} be two subsequences of
{zn} such that znk

→ x∗, as k → ∞ and znp → x∗∗.
Following the same arguments as in Step 2, it follows that x∗, x∗∗ ∈ F ,

and the following estimates hold:

(3.10) ∥znk
− x∗∗∥2 ≤ ⟨x∗∗, x∗∗ − znk⟩,

and

(3.11) ∥znp − x∗∥2 ≤ ⟨x∗, x∗ − znp⟩.
Letting k → ∞ and p → ∞ in (3.10) and (3.11) gives

(3.12) ∥x∗ − x∗∗∥2 ≤ ⟨x∗∗, x∗∗ − x∗⟩
and

(3.13) ∥x∗∗ − x∗∥2 ≤ ⟨x∗, x∗ − x∗∗⟩.
Adding up (3.12) and (3.13) yields

2∥x∗ − x∗∗∥2 ≤ ∥x∗ − x∗∗∥2,
which implies that x∗ = x∗∗.
Step 4. Finally, we show that x∗ is the minimum-norm element of F.
Following the same arguments as in Step 3, it follows that

∥x∗ − p∥2 ≤ ⟨−p, x∗ − p⟩, p ∈ F.

Equivalently,
∥x∗∥2 ≤ ⟨p, x∗⟩, ∀p ∈ F.

This clear implies that

∥x∗∥ ≤ ∥p∥, ∀p ∈ F.

Therefore, x∗ is the minimum-norm element of F. This completes the
proof. □
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We now apply Theorem 3.1 for solving variational inequality prob-
lems.

Theorem 3.2. The sequence {zn} defined by (3.5) converges strongly
to a unique solution of the following variational inequality

(3.14) ⟨x∗, x∗ − p⟩ ≤ 0, ∀p ∈ F.

Proof. It follows from (3.5) that,

zn = − 1− αn

(1− λ)αn
(zn − yn).

Using Lemma 2.8, for any p ∈ F , we have

⟨zn, zn − p⟩ = − 1− αn

(1− λ)αn
⟨zn − yn, zn − p⟩ ≤ 0.

Letting n → ∞, noting the fact that zn → x∗, we obtain

(3.15) ⟨x∗, x∗ − p⟩ ≤ 0.

Finally, we show the uniqueness of the solution of the variational in-
equality (3.14). Suppose both x∗ ∈ F and x∗∗ ∈ F are solutions to
(3.14), then

(3.16) ⟨x∗, x∗ − x∗∗⟩ ≤ 0,

and

(3.17) ⟨x∗∗, x∗∗ − x∗⟩ ≤ 0.

Adding up (3.16) and (3.17) yields

(3.18) ⟨x∗∗ − x∗, x∗∗ − x∗⟩ ≤ 0,

which implies that x∗ = x∗∗ and the uniqueness is proved. □
We now apply Theorems 3.1 and 3.2 for finding a common element

of the set of fixed points of multivalued nonexpansive mappings and the
set of solutions of equilibrium problems.

In what follows, we use the following iteration scheme: let K be a
nompety, closed convex cone of a real Hilbert space H and S : K →
CB(K) be a multivalued nonexpansive mapping with convex-values.

Let {xn} and {un} be sequences defined iteratively from arbitrary
x0 ∈ K by:

(3.19)

{
f(un, y) +

1
rn
⟨y − un, un − xn⟩ ≥ 0,

xn+1 = αn(λnxn) + (1− αn)yn,
∀y ∈ K,
yn ∈ Sun, n ≥ 0,

(3.20) ∥yn − yn−1∥ ≤ H(Sun, Sun−1), ∀n ≥ 1,

where {αn} ⊂ (0, 1), {λn} ⊂ (0, 1) and {rn} ⊂]0,∞[ satisfy:

(i) lim
n→∞

αn = 0;
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(ii)

∞∑
n=0

|αn − αn−1| < ∞; lim
n→∞

λn = 1;

(iii) lim
n→∞

inf rn > 0 and

∞∑
n=0

|rn+1 − rn| < ∞;

(iv)

∞∑
n=0

|λn − λn−1| < ∞ and

∞∑
n=0

(1− λn)αn = ∞.

Remark 3.3. From yn−1, the existence of yn in (3.19) satisfying (3.20)
is guranteed by Lemma 2.5.

Theorem 3.4. Let K be a nonempty, closed convex cone of a real Hilbert
space H. Let f be a bifunction from K×K → R satisfying (A1)-(A4), let
S : K → CB(K) be a multivalued nonexpansive mapping with convex-
values such that F := EP (f) ∩ F (S) ̸= ∅ and Sp = {p}, for all p ∈ F.
Then, {xn} and {un} defined by (3.19) and (3.20) converge strongly to
x∗ ∈ F, where x∗ is the minimum-norm element of F.

Proof. First, we prove that the sequence {xn} is bounded. Let p ∈ F.
Then from un = Trnxn, we have

∥un − p∥ = ∥Trnxn − Trnp∥ ≤ ∥xn − p∥, ∀n ≥ 0.

From (3.19) and the fact that Sp = {p}, we have

∥xn+1 − p∥ = ∥αn(λnxn) + (1− αn)yn − p∥
≤ αnλn∥xn − p∥+ (1− λn)αn∥p∥+ (1− αn)∥yn − p∥
≤ αnλn∥xn − p∥+ (1− λn)αn∥p∥+ (1− αn)H(Sun, Sp)

≤ αnλn∥xn − p∥+ (1− λn)αn∥p∥+ (1− αn)∥xn − p∥
= [1− (1− λn)αn]∥xn − p∥+ (1− λn)αn∥p∥,

and so

(3.21) ∥xn+1 − p∥ ≤ max {∥xn − p∥, ∥p∥}.
Hence, {xn} is bounded and so {yn}.

From (3.19) and (3.20), it follows that

∥xn+1 − xn∥ = ∥αn(λnxn) + (1− αn)yn − αn−1(λn−1xn−1)

− (1− αn−1)yn−1∥
= ∥αnλn(xn − xn−1) + αn(λn − λn−1)xn−1

+ (αn − αn−1)(λn−1xn−1) + (1− αn)(yn − yn−1)

+ (αn−1 − αn)yn−1∥
≤ αnλn∥xn − xn−1∥+ (1− αn)∥yn − yn−1∥
+ |αn − αn−1|(λn−1∥xn−1∥+ ∥yn−1∥)
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+ αn|λn − λn−1|∥xn−1∥
≤ αnλn∥xn − xn−1∥+ (1− αn)H(Sun, Sun−1)

+ |αn − αn−1|(λn−1∥xn−1∥+ ∥yn−1∥)
+ αn|λn − λn−1|∥xn−1∥.

Hence,

∥xn+1 − xn∥ ≤ αnλn∥xn − xn−1∥+ (1− αn)∥un − un−1∥(3.22)

+ (|αn − αn−1|+ αn|λn − λn−1|)M1,

where M1 > 0 and supn{∥xn−1∥+ ∥yn−1∥} ≤ M1.
On other hand, we have

(3.23) f(un, y) +
1

rn
⟨y − un, un − xn⟩ ≥ 0,

and

(3.24) f(un+1, y) +
1

rn+1
⟨y − un+1, un+1 − xn+1⟩ ≥ 0,

Putting y = un+1 in (3.23) and y = un in (3.24), we have

f(un, un+1) +
1

rn
⟨un+1 − un, un − xn⟩ ≥ 0

and

f(un+1, un) +
1

rn+1
⟨un − un+1, un+1 − xn+1⟩ ≥ 0.

So, from (A2), we have⟨
un+1 − un,

un − xn
rn

− un+1 − xn+1

rn

⟩
≥ 0,

and hence⟨
un+1 − un, un − un+1 + un+1 − xn − rn

rn+1
(un+1 − xn+1)

⟩
≥ 0.

Without loss of generality, let assume that there exists a real number b
such that rn > b > 0 for all n ∈ N. Then, we have

∥un+1 − un∥2 ≤
⟨
un+1 − un, xn+1 − xn +

(
1− rn

rn+1

)
(un+1 − xn+1)

⟩
≤ ∥un+1 − un∥

{
∥xn+1 − xn∥+|1− rn

rn+1
|∥un+1 − xn+1∥

}
,

and hence

∥un+1 − un∥ ≤ ∥xn+1 − xn∥+
1

b
|rn+1 − rn|∥un+1 − xn+1∥.
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This implies that

(3.25) ∥un+1 − un∥ ≤ ∥xn+1 − xn∥+
1

b
|rn+1 − rn|L,

where L > 0 is such supn{∥un+1 − xn+1∥} ≤ L.
So, from (3.22) we have

∥xn+1 − xn∥ = αnλn∥xn − xn−1∥+ (1− αn)(∥xn − xn−1∥

+
1

b
|rn − rn−1|L) + (|αn − αn−1|+ αn|λn − λn−1|)M1

= [1− (1− λn)αn]∥xn − xn−1∥+ (1− αn)
1

b
|rn − rn−1|L

+ (|αn − αn−1|+ αn|λn − λn−1|)M1

= [1− (1− λn)αn]∥xn − xn−1∥+
1

b
|rn − rn−1|L

+ (|αn − αn−1|+ αn|λn − λn−1|)M1.

Using Lemma 2.4, we deduce lim
n→+∞

∥xn+1 − xn∥ → 0 and from (3.25)

and |rn − rn−1| → 0, we have

lim
n→+∞

∥un+1 − un∥ = 0.

Using (3.20) and the fact that xn = αn−1(λn−1xn−1) + (1− αn−1)yn−1,
we have

∥xn − yn∥ ≤ ∥xn − yn−1∥+ ∥yn−1 − yn∥
≤ αn−1∥λn−1xn−1 − yn−1∥+ ∥un−1 − un∥.

From αn → 0, we have ∥xn − yn∥ → 0. For p ∈ F, we have

∥un − p∥2 = ∥Trnxn − Trnp∥2

≤ ⟨Trnxn − Trnp, xn − p⟩
≤ ⟨un − p, xn − p⟩

=
1

2
(∥un − p∥2 + ∥xn − p∥2 − ∥xn − un∥2)

and hence
∥un − p∥2 ≤ ∥xn − p∥2 − ∥xn − un∥2.

Therefore, from (3.19) and Lemma 2.5, we get that

∥xn+1 − p∥2 = ∥αn(λnxn) + (1− αn)yn − p∥2

≤ ∥αn((λnxn)− p) + (1− αn)(yn − p)∥2

≤ (1− αn)
2∥yn − p∥2 + 2αn⟨(λnxn)− p, xn+1 − p⟩

≤ (1− αn)
2∥un − p∥2 + 2αnλn⟨xn − p, xn+1 − p⟩

+ 2(1− λn)αn⟨p, xn+1 − p⟩
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≤ (1− αn)
2(∥xn − p∥2 − ∥xn − un∥2)

+ 2αnλn∥xn − p∥∥xn+1 − p∥+ 2αn(1− λn)∥p∥∥xn+1 − p∥
≤ (1− 2αn + α2

n)∥xn − p∥2 − (1− αn)
2∥xn − un∥2

+ 2αnλn∥xn − p∥∥xn+1 − p∥+ 2αn(1− λn)∥p∥∥xn+1 − p∥
≤ ∥xn − p∥2 + αn∥xn − p∥2 − (1− αn)

2∥xn − un∥2

+ 2αnλn∥xn − p∥∥xn+1 − p∥+ 2αn(1− λn)∥p∥∥xn+1 − p∥,
and hence

(1− αn)
2∥xn − un∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αn∥xn − p∥2

+ 2αnλn∥xn − p∥∥xn+1 − p∥
+ 2αn(1− λn)∥p∥∥xn+1 − p∥

≤ ∥xn+1 − xn∥{∥xn − p∥+ ∥xn+1 − p∥}+ αn∥xn − p∥2

+ 2αnλn∥xn − p∥∥xn+1 − p∥
+ 2αn(1− λn)∥p∥∥xn+1 − p∥.

So, we have ∥xn − un∥ → 0 as, n → ∞. Since ∥yn − un∥ ≤ ∥xn − yn∥+
∥xn − un∥, it follows that ∥yn − un∥ → 0. Hence,

(3.26) lim
n→∞

d(un, Sun) = 0.

Next, we prove that lim sup
n→+∞

⟨x∗, x∗ − xn⟩ ≤ 0, where x∗ = lim
n→∞

zn.

We choose a subsequence {xnk
} of {xn} such that:

lim sup
n→+∞

⟨x∗, x∗ − xn⟩ = lim
k→+∞

⟨x∗, x∗ − xnk
⟩.

Since H is reflexive and {unk
} is bounded, there exists a subsequence

{unkj
} of {unk

} which converges weakly to a ∈ K. From (3.26) and

Lemma 2.2, we obtain a ∈ F (S). Without loss of generality, we can
assume that unk

⇀ a. By the same argument as in the proof of Theorem
3.1, we have a ∈ F (S) ∩ EP (f) = F. Hence,

lim sup
n→+∞

⟨x∗, x∗ − xn⟩ = lim
k→+∞

⟨x∗, x∗ − xnk
⟩

= ⟨x∗, x∗ − a)⟩ ≤ 0.

Finally, we show that xn → x∗. From (3.19) and Lemma 2.5, we get that

∥xn+1 − x∗∥2 = ⟨xn+1 − x∗, xn+1 − x∗⟩
= αnλn⟨xn − x∗, xn+1 − x∗⟩+ (1− λn)αn⟨x∗, x∗ − xn+1⟩
+ (1− αn)⟨yn − x∗, xn+1 − x∗⟩

≤ αnλn⟨xn − x∗, xn+1 − x∗⟩+ (1− λn)αn⟨x∗, x∗ − xn+1⟩
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+ (1− αn)∥yn − x∗∥∥xn+1 − x∗∥
≤ αnλn⟨xn − x∗, xn+1 − x∗⟩+ (1− λn)αn⟨x∗, x∗ − xn+1⟩
+ (1− αn)H(Sun, Sx

∗)∥xn+1 − x∗∥
≤ αnλn∥xn − x∗∥∥xn+1 − x∗∥+ (1− λn)αn⟨x∗, x∗ − xn+1⟩
+ (1− αn)∥un − x∗∥∥xn+1 − x∗∥

≤ [1− (1− λn)αn]∥xn − x∗∥∥xn+1 − x∗∥
+ (1− λn)αn⟨x∗, x∗ − xn+1⟩

≤ 1− (1− λn)αn

2
(∥xn − x∗∥2 + ∥xn+1 − x∗∥2)

+ (1− λn)αn⟨x∗, x∗ − xn+1⟩,

which implies that

∥xn+1 − x∗∥2 ≤ [1− (1− λn)αn]∥xn − x∗∥+2(1− λn)αn⟨x∗, x∗ − xn+1⟩.

We can check that all the assumptions of Lemma 2.4 are satisfied. There-
fore, we deduce xn → x∗. This completes the proof. □

Corollary 3.5. Let K be a nonempty, closed convex cone of a real
Hilbert space H, let S : K → CB(K) be a multivalued nonexpansive
mapping with convex-values such that F (S) ̸= ∅ and Sp = {p}, for
all p ∈ F (S) and {xn} be a sequence defined iteratively from arbitrary
x0 ∈ K by:

(3.27) xn+1 = αn(λnxn) + (1− αn)yn, yn ∈ Sxn, n ≥ 0,

(3.28) ∥yn − yn−1∥ ≤ H(Sxn, Sxn−1), ∀n ≥ 1,

where {αn} ⊂ (0, 1), and {λn} ⊂ (0, 1) satisfy:

(i) lim
n→∞

αn = 0;

(ii)

∞∑
n=0

|αn − αn−1| < ∞; lim
n→∞

λn = 1;

(iii)

∞∑
n=0

|λn − λn−1| < ∞ and

∞∑
n=0

(1− λn)αn = ∞.

Then, the sequence {xn} converges strongly to x∗ ∈ F (S).

Proof. Put f(x, y) = 0 for all x, y ∈ K and rn = 1, we get un = xn in
Theorem 3.4. The proof follows from Theorem 3.4. □

Corollary 3.6. Let K be a nonempty, closed convex cone of a real
Hilbert space H, f be a bifunction from K × K → R satisfying (A1)-
(A4) and S : K → K be a nonexpansive mapping with convex-values
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such that F := EP (f) ∩ F (S) ̸= ∅. Let {xn} and {un} be sequences
defined iteratively from arbitrary x0 ∈ K by:{

f(un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0,

xn+1 = αn(λnxn) + (1− αn)Sun,
∀y ∈ K,
n ≥ 0,

(3.29)

where {αn} ⊂ (0, 1), {λn} ⊂ (0, 1) and {rn} ⊂]0,∞[ satisfy:

(i) lim
n→∞

αn = 0;

(ii)

∞∑
n=0

|αn − αn−1| < ∞; lim
n→∞

λn = 1;

(iii) lim
n→∞

inf rn > 0 and

∞∑
n=0

|rn+1 − rn| < ∞;

(iv)

∞∑
n=0

|λn − λn−1| < ∞ and

∞∑
n=0

(1− λn)αn = ∞.

Then, {xn} defined by (3.29) converges strongly to x∗ ∈ F (S).

Proof. Since every single-valued mapping can be viewed as a multivalued
mapping, the proof follows from Theorem 3.4. □
Remark 3.7. In our theorems, we assume that K is a cone. But, in
some cases, for example, if K is the closed unit ball, we can weaken
this assumption to the following: λx ∈ K for all λ ∈ (0, 1) and x ∈
K. Therefore, our results can be used to approximate fixed points of
nonexpansive mappings from the closed unit ball to itself.

Corollary 3.8. Let H be a real Hilbert space, B be the closed unit
ball of H, f be a bifunction from B × B → R satisfying (A1)-(A4),
S : B → CB(B) be a multivalued nonexpansive mapping with convex-
values such that F := EP (f) ∩ F (S) ̸= ∅ and Sp = {p}, for all p ∈ F ,
and {xn} and {un} be sequences defined iteratively from arbitrary x0 ∈ B
by:

(3.30)

{
f(un, y) +

1
rn
⟨y − un, un − xn⟩ ≥ 0,

xn+1 = αn(λnxn) + (1− αn)yn,
∀y ∈ B,
yn ∈ Sun, n ≥ 0,

(3.31) ∥yn − yn−1∥ ≤ H(Sun, Sun−1), ∀n ≥ 1,

where {αn} ⊂ (0, 1), {λn} ⊂ (0, 1) and {rn} ⊂]0,∞[ satisfy:

(i) lim
n→∞

αn = 0;

(ii)
∞∑
n=0

|αn − αn−1| < ∞; lim
n→∞

λn = 1;

(iii) lim
n→∞

inf rn > 0 and

∞∑
n=0

|rn+1 − rn| < ∞;
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(iv)

∞∑
n=0

|λn − λn−1| < ∞ and

∞∑
n=0

(1− λn)αn = ∞.

Then {xn} and {un} defined by (3.30) and (3.31). converge strongly to
x∗ ∈ F.

4. Application to Optimization Problem with Constraint

In this section, we study the problem of finding a minimizer of a
proper convex function g defined in a real Hilbert space.

Proposition 4.1 ([24]). Let H be a real Hilbert space. Let A : H → H
be a monotone mapping such that K := D(A) is closed and convex.
Assume that A is bounded on bounbded subset and hemi-continuous on
K. Then, the bifunction f(x, y) := ⟨Ax, y−x⟩ satisfies conditions (A1)-
(A4).

The following basic results are well known.

Lemma 4.2. Let E be a normed linear space, g : E → R be a real valued
differentiable convex function, and dg : E → E∗ denote the differential
map associated to g. Then the following holds. If g is bounded, then g is
locally Lipschitzian, i.e., for every x0 ∈ K and r > 0, there exists γ > 0
such that g is γ-Lipschitzian on B(x0, r), i.e.,

|g(x)− g(y)| ≤ γ∥x− y∥, ∀x, y ∈ B(x0, r).

Lemma 4.3. Let K be a nonempty, closed and convex subset of E and
g : K → R be a real valued differentiable convex function. Then x∗ is a
minimizer of g over K if and only if x∗ solves the following variational
inequality ⟨dg(x∗), x− x∗⟩ ≥ 0 for all y ∈ K.

Remark 4.4. Let K be a nonempty, closed convex subset of H, and
g : K → R be a real valued differentiable convex function. It is well
know that the differential map associated to g is monotone.

Lemma 4.5. Let K be a nonempty, closed and convex subset of a real
Hilbert space H and g : K → R be a real valued differentiable convex
function. Assume that g is bounded. Then the differentiable map, dg :
K → H is bounded.

Proof. For x0 ∈ K and r > 0, let B := B(x0, r). We show that dg(B) is
bounded. By Lemm 4.2, there exists γ > 0 such that

(4.1) |g(x)− g(y)| ≤ γ∥x− y∥, ∀x, y ∈ B.

Let z∗ ∈ dg(B) and x∗ ∈ B such that z∗ = dg(x∗). For u ∈ E, since B
is open, then there exists t > 0 such that x∗ + tu ∈ B. Using the fact
that z∗ = dg(x∗), convexity of g and inequality (4.1), it follows

⟨z∗, tu⟩ ≤ g(x∗ + tu)− g(x∗)
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≤ tγ∥u∥.
So, ⟨z∗, u⟩ ≤ γ∥u∥, ∀u ∈ E. Therefore, ∥z∗∥ ≤ γ. Hence dg(B) is
bounded. □

Let K be a nonempty, closed convex cone of a real Hilbert space H,
S : K → CB(K) be a multivalued nonexpansive mapping with convex-
values such that F (S) ̸= ∅ and g : K → R be a real valued continuously
differentiable convex function.
We introduce the following optimization problem:

(P )

{
min g(x)
x ∈ F (S).

Finding an optimal point in the fixed points set of nonexpansive map-
pings is one that occurs frequently in various areas of mathematical
sciences and engineering.
We prove the following theorem.

Theorem 4.6. Let K be a nonempty, closed convex cone of a real Hilbert
space H, g : K → R be a real valued continuously differentiable convex
and bounded function, and S : K → CB(K) be a multivalued nonexpan-
sive mapping with convex-values such that F (S) ̸= ∅ and Sp = {p} for
all p ∈ F (S). Assume that (P ) has the solution. Let {xn} and {un} be
sequences generated iteratively from arbitrary x0 ∈ K by:
(4.2){

⟨dg(un), y − un⟩+ 1
rn
⟨y − un, un − xn⟩ ≥ 0,

xn+1 = αn(λnxn) + (1− αn)yn,
∀y ∈ C
yn ∈ Sunn ≥ 0,

(4.3) ∥yn − yn−1∥ ≤ H(Sun, Sun−1), ∀n ≥ 1,

where {αn} ⊂ (0, 1), {λn} ⊂ (0, 1) and {rn} ⊂]0,∞[ satisfy:

(i) lim
n→∞

αn = 0;

(ii)

∞∑
n=0

|αn − αn−1| < ∞; lim
n→∞

λn = 1;

(iii) lim
n→∞

inf rn > 0 and

∞∑
n=0

|rn+1 − rn| < ∞;

(iv)

∞∑
n=0

|λn − λn−1| < ∞ and

∞∑
n=0

(1− λn)αn = ∞.

Then, {xn} converges strongly to x∗ solution of (P ).

Proof. Let f(x, y) := ⟨dg(x), y−x⟩ for all x, y ∈ K. From the properties
of g, Proposition 4.1, Remark 4.4 and Lemma 4.5, it follows that dg
is monotone, continous and bounded on a bounbded subset on K. So,
f satisfies (A1)-(A4). Using the assumption that (P ) has the solution
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and Lemma 4.3, we have x∗ is a solution of (P ) if and only if x∗ ∈
F (S) ∩ EP (f). Then, the proof follows from Theorem 3.4. □

5. Application to the Split Feasibility Problem

In this section, we study the problem of finding a common element of
the set of solutions of equilibrium problems and the set of solutions of
the split feasibility problem.

The split feasibility problem (SFP) was first introdued by Censor and
Elfving [4] in 1994. The SFP is to find

(5.1) x ∈ K, such that Ax ∈ Q,

whereK is a nonempty, closed convex subset of a Hilbert spaceH1, Q is a
nonempty closed convex subset of a Hilbert space H2, and A : H1 → H2

is a bounded linear operator.
The split feasibility problem arises in many fields in the real world,

such as signal processing, image reconstruction, and medical care, for
details see, [1, 25, 27] and the references therein. Let Ω be the solution
set of the split feasibility problem.

The following lemma appears in [2].

Lemma 5.1. Given x∗ ∈ H, x∗ solves SFP (5.1) if and only if x∗ is the
solution of the fixed point equation x = PK(I − γA∗(I − PQ)A)x.

The following proposition was also given in [10].

Proposition 5.2 ([10]). Let K be a nonempty, closed and convex subset
of a Hilbert space H1 and Q be a nonempty, closed and convex subset of a
Hilbert space H2, and A : H1 → H2 be a bounded linear operator. Let PK

and PQ denote the orthogonal projections onto sets K, Q respectively.

Let 0 < γ < 2
ρ , ρ be the spectral raduis of A∗A, and A∗ be the adjoint of

A. Then, the operator T := PK(I − γA∗(I − PQ)A) is nonexpansive on
K.

Theorem 5.3. Let H1 and H2 be two real Hilbert spaces, A : H1 → H2

be a bounded linear operator, and A∗ : H2 → H1 be a adjoint operator of
A. Let K be a nonempty, closed convex cone of H1, Q be a nonempty,
closed and convex subset of H2 and f be a bifunction from K ×K → R
satisfying (A1)-(A4). Assume that F := EP (f) ∩Ω ̸= ∅. Let 0 < γ < 2

ρ ,

ρ be the spectral raduis of A∗A, and {xn} and {un} be sequences defined
iteratively from arbitrary x0 ∈ K by:{

f(un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0,

xn+1 = αn(λnxn) + (1− αn)PK(I − γA∗(I − PQ)A)un,
∀y ∈ K,
n ≥ 0,

where {αn} ⊂ (0, 1), {λn} ⊂ (0, 1) and {rn} ⊂]0,∞[ satisfy:
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(i) lim
n→∞

αn = 0;

(ii)
∞∑
n=0

|αn − αn−1| < ∞; lim
n→∞

λn = 1;

(iii) lim
n→∞

inf rn > 0 and
∞∑
n=0

|rn+1 − rn| < ∞;

(iv)

∞∑
n=0

|λn − λn−1| < ∞ and

∞∑
n=0

(1− λn)αn = ∞.

Then, {xn} and {un} converge strongly to x∗ ∈ F, where x∗ is the
minimum-norm element of a common element of the set of solutions
of equilibrium problems and the set of solutions of the split feasibility
problem.

Proof. From Lemma 5.1, we know x ∈ Ω if and only if x = PK(I −
γA∗(I − PQ)A)x. From Proposition 5.2, we have the operator T :=
PK(I − γA∗(I − PQ)A) is nonexpansive on K. Using, Corollary 3.6, we
can obtain the sequences {xn} and {un} converge strongly to x∗ ∈ F,
where x∗ is the minimum-norm element of a common element of the
set of solutions of equilibrium problems and the set of solutions of split
feasibility problem. □

6. Conclusion

In this work, we introduce and analyze a new iterative method for
finding a common element of the set of solutions of equilibrium prob-
lems and the set of fixed points of multivalued nonexpansive mappings.
This method can be applied in solving the relevant problem, such as
optimization problem, the split feasiblity problem (SFF), and so on.
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