Sahand Communications in Mathematical Analysis (SCMA) Vol. 17 No. 2 (2020), 37-53 http://scma.maragheh.ac.ir DOI: 10.22130/scma.2018.86797.440

Some Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations

Hasan Hosseinzadeh

ABSTRACT. Let \mathcal{X} be a partially ordered set and d be a generalized metric on \mathcal{X} . We obtain some results in coupled and coupled coincidence of g-monotone functions on \mathcal{X} , where g is a function from \mathcal{X} into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in the unit ball of the Hilbert space. Some applications for linear and nonlinear matrix equations are given.

1. INTRODUCTION

Let (\mathcal{V}, \preceq) be an ordered Banach space. The cone $\mathcal{V}_+ = \{v \in \mathcal{V} : \theta \preceq v\}$, where θ is the zero-vector of \mathcal{V} , satisfies the usual properties

- (i) $\mathcal{V}_+ \cap -\mathcal{V}_+ = \{\theta\};$
- (ii) $\mathcal{V}_+ + \mathcal{V}_+ \subset \mathcal{V}_+;$
- (iii) $\alpha \mathcal{V}_+ \subset \mathcal{V}_+$, for $\alpha \geq 0$.

Let \mathcal{X} be a nonempty set. A mapping $d : \mathcal{X} \times \mathcal{X} \to \mathcal{V}$ is called a vector-valued metric on X, if the following properties are satisfied:

- (i) $d(x,y) \succeq \theta$ for each $x, y \in \mathcal{X}$, if $d(x,y) = \theta$, then x = y;
- (ii) d(x,y) = d(y,x) for all $x, y \in \mathcal{X}$;
- (iii) $d(x,y) \preceq d(x,z) + d(z,y)$ for all $x, y, z \in \mathcal{X}$.

The pair (\mathcal{X}, d) is called the vector-valued metric space. Similarly, we can define a generalized normed space.

²⁰¹⁰ Mathematics Subject Classification. 34B24, 34B27.

Key words and phrases. Fixed points, Coupled fixed point, Coupled coincidence fixed Point, Generalized metric.

Received: 24 May 2018, Accepted: 30 July 2018.

Corresponding author.

H. HOSSEINZADEH

A set \mathcal{X} equipped with a vector-valued metric d is called a generalized metric space and denoted by (\mathcal{X}, d) . By $M_{m,m}(\mathbb{R}^+)$, we mean the set of all $m \times m$ matrixes with positive elements. We denote by I the identity $m \times m$ matrix. Let $A \in M_{m,m}(\mathbb{R}^+)$, A is said to be convergent to zero if and only if $A^n \to 0$ as $n \to \infty$ (for more details see [10]).

Let $\alpha, \beta \in \mathbb{R}^m$, where $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_m)$, $\beta = (\beta_1, \beta_2, \ldots, \beta_m)$ and $c \in \mathbb{R}$. Note that $\alpha \leq \beta$ (resp. $\alpha < \beta$) means $\alpha_i \leq \beta_i$ (resp. $\alpha_i < \beta_i$) for each $1 \leq i \leq m$, and also $\alpha \leq c$ (resp. $\alpha < c$) means $\alpha_i \leq c$ (resp. $\alpha_i < c$) for $1 \leq i \leq m$, respectively. We can define addition and multiplication on \mathbb{R}^m as follows:

$$\alpha + \beta = (\alpha_1 + \beta_1, \alpha_2 + \beta_2, \dots, \alpha_m + \beta_m),$$

and

$$\alpha \cdot \beta = (\alpha_1 \beta_1, \alpha_2 \beta_2, \dots, \alpha_m \beta_m).$$

In this paper, we need the following equivalent statements:

- (i) A is convergent towards zero;
- (ii) $A^n \to 0$ as $n \to \infty$;
- (iii) The eigenvalues of A are located in the open unit disc, that is, $|\lambda| < 1$, for each $\lambda \in \mathbb{C}$ with $det(A - \lambda I) = 0$;
- (iv) The matrix I A is nonsingular and

$$(I - A)^{-1} = I + A + \dots + A^n + \dots;$$

(v) $A^n q^T \to 0$ and $qA^n \to 0$ as $n \to \infty$, for each $q \in \mathbb{R}^m$, where q^T is the transpose of q.

The above statements are the classical results in matrix analysis (for more details see [1, 5, 9]). Denote , by \mathcal{ZM} the set of all matrices $A \in M_{m,m}(\mathbb{R}^+)$ such that A^n converges to zero. Let (\mathcal{X}, d) be a generalized metric space and let $T : \mathcal{X} \to \mathcal{X}$ be a mapping. For a given $A \in \mathcal{ZM}$, we call the function mapping T is an A-nonexpansive if $d(T(x), T(y)) \leq Ad(x, y)$ for all $x, y \in X$ and T to be said to be \mathcal{ZM} -nonexpansive if for any B in \mathcal{ZM} , T is a B-nonexpansive function.

Clearly, if $A \in \mathcal{ZM}$, then there exists a norm ||.|| such that ||A|| < 1, so every \mathcal{ZM} -nonexpansive operator is nonexpansive, but the converse is not true, in general.

Fixed point theorems on spaces endowed with vector-valued metrics considered by Filip and Petruşel in [3] and some new results around this notion are obtained in [4].

Definition 1.1 ([2]). Let (\mathcal{X}, \preceq) be a partially ordered set and let F: $\mathcal{X} \times \mathcal{X} \to \mathcal{X}$. The mapping F is said to be has the *mixed monotone property* if F(x, y) is monotone nondecreasing in x and is monotone nonincreasing in y, that is, for every $x, y \in \mathcal{X}$,

(i) for each $x_1, x_2 \in \mathcal{X}$, if $x_1 \preceq x_2$, then $F(x_1, y) \preceq F(x_2, y)$;

(ii) for each $y_1, y_2 \in \mathcal{X}$, if $y_1 \leq y_2$, then $F(x, y_1) \succeq F(x, y_2)$.

Let (\mathcal{X}, \preceq) be a partially ordered set and d be a metric on \mathcal{X} such that (\mathcal{X}, d) is a complete metric space. The product space $\mathcal{X} \times \mathcal{X}$ is endowed with the following partial order:

 $\text{for}, \qquad \left(x,y\right), \left(u,v\right) \in \mathcal{X} \times \mathcal{X}, \qquad \left(u,v\right) \leq \left(x,y\right) \quad \Leftrightarrow \quad x \geq u, y \leq v.$

Definition 1.2 ([2]). Let (\mathcal{X}, \preceq) be a partially ordered set and let $F : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ be a mapping. An element $(x, y) \in \mathcal{X} \times \mathcal{X}$ is said to be a coupled fixed point of the mapping F, if F(x, y) = x and F(y, x) = y.

Definition 1.3. An element $(x, y) \in \mathcal{X} \times \mathcal{X}$ is called

- (i) a coupled coincidence point of mappings $F : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ and $g : \mathcal{X} \to \mathcal{X}$ if g(x) = F(x, y) and g(y) = F(y, x), and (gx, gy) is called a coupled point of coincidence.
- (ii) a common coupled fixed point of mappings $F : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ and $g : \mathcal{X} \to \mathcal{X}$ if x = g(x) = F(x, y) and y = g(y) = F(y, x).

Definition 1.4. Let (\mathcal{X}, \preceq) be a partially ordered set and $F : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ and $g : \mathcal{X} \to \mathcal{X}$ be two self mappings. We say F has the mixed g-monotone property if F is monotone g-non-decreasing in its first argument and is monotone g-non-increasing in its second argument, that is, for all $x_1, x_2 \in \mathcal{X}$, $gx_1 \preceq gx_2$ implies $F(x_1, y) \preceq F(x_2, y)$ for any $y \in \mathcal{X}$, and for all $y_1, y_2 \in \mathcal{X}$, $gy_1 \succeq gy_2$ implies $F(x, y_1) \preceq F(x, y_2)$ for all $x \in \mathcal{X}$.

Definition 1.5. Let \mathcal{X} be a non-empty set. We say that the mappings $F : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ and $g : \mathcal{X} \to \mathcal{X}$ are commutative if g(F(x,y)) = F(gx,gy), for all $x, y \in \mathcal{X}$.

Bhaskar and Lakshmikantham in [2], studied the existence of coupled fixed points for continuous mapping with the mixed monotone property $F: \mathcal{X} \times \mathcal{X} \to \mathcal{X}$, where (\mathcal{X}, \preceq) is a partially ordered set. The existence of coupled fixed point for a mapping with the mixed monotone property $F: \mathcal{X} \times \mathcal{X} \to \mathcal{X}$, where (\mathcal{X}, d) is a complete generalized metric space, is considered in [7].

In this paper, we consider the existence and uniqueness of coupled fixed points for mappings $F : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$, under some contractive conditions, where (\mathcal{X}, d) is a complete generalized metric space.

2. Main Results

We say that \mathcal{X} satisfies in condition (NDI) if \mathcal{X} has the following properties:

(i) if a non-decreasing sequence $x_n \to x$, then $x_n \preceq x$ for all n.

(ii) if a non-increasing sequence $x_n \to x$, then $x \preceq x_n$ for all n.

Theorem 2.1. Let (\mathcal{X}, \preceq) be a partially ordered set, (\mathcal{X}, d) be a complete generalized metric space which satisfies the condition (NDI), and for all $x, y, u, v \in \mathcal{X}$, and let $g : \mathcal{X} \to \mathcal{X}$ with $gx \preceq gu$ and $gv \preceq gy$. Suppose that $F : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ satisfies the following condition

$$(2.1) d(F(x,y),F(u,v)) \le Ad(gx,gu) + Bd(gy,gv),$$

where $A = (a_{ij}), B = (b_{ij})$ are in $M_{m \times m}(\mathbb{R}^+), (A + B) \in \mathcal{ZM}, A$ and B are nonzero matrices in \mathcal{ZM} . Furthermore, assume that F and g satisfy the following conditions

- (i) $F(\mathcal{X} \times \mathcal{X}) \subset g(\mathcal{X}),$
- (ii) $g(\mathcal{X})$ is a complete subspace of \mathcal{X} ,
- (iii) F satisfies the mixed g-monotone property.

If there exist $x_0, y_0 \in \mathcal{X}$ such that $g(x_0) \preceq F(x_0, y_0)$ and $F(y_0, x_0) \preceq g(y_0)$, then F and g has a unique coupled coincidence fixed point.

Proof. Let $x_0, y_0 \in \mathcal{X}$ be such that $gx_0 \leq F(x_0, y_0)$ and $F(y_0, x_0) \leq gy_0$. Since $F(\mathcal{X} \times \mathcal{X}) \subset g(\mathcal{X})$, we can choose $x_2, y_2 \in \mathcal{X}$ such that $gx_2 = F(x_1, y_1)$ and $gy_2 = F(y_1, x_1)$. Since F satisfying the mixed g-monotone property, we have $gx_0 \leq gx_1 \leq gx_2$ and $gy_2 \leq gy_1 \leq gy_0$. By continuing this process, we can construct two sequences (x_n) and (y_n) in \mathcal{X} such that $gx_n = F(x_{n-1}, y_{n-1}) \leq gx_{n+1} = F(x_n, y_n)$ and $gy_{n+1} = F(y_n, x_n) \leq gy_n = F(y_{n-1}, x_{n-1})$. Further, for n = 1, 2, ..., by (2.1), we have

$$d(gx_{n}, gx_{n+1}) = d(F(x_{n-1}, y_{n-1}), F(x_{n}, y_{n}))$$

$$\leq Ad(gx_{n-1}, gx_{n}) + Bd(gy_{n-1}, gy_{n}),$$

and similarly,

$$d(gy_n, gy_{n+1}) = d(F(y_{n-1}, x_{n-1}), F(y_n, x_n))$$

$$\leq Ad(gy_{n-1}, gy_n) + Bd(gx_{n-1}, gx_n).$$

Therefore, by letting $d_n = d(gx_n, gx_{n+1}) + d(gy_n, gy_{n+1})$, we have

$$d_{n} = d$$

$$\leq f(gx_{n}, gx_{n+1}) + d(gy_{n}, gy_{n+1})$$

$$\leq Ad(gx_{n-1}, gx_{n}) + Bd(gy_{n-1}, gy_{n})$$

$$+ Ad(gy_{n-1}, gy_{n}) + Bd(gx_{n-1}, gx_{n})$$

$$\leq (A + B) (d(gx_{n-1}, gx_{n}) + d(gy_{n-1}, gy_{n}))$$

$$\leq (A + B) d_{n-1}.$$

If we set C = A + B, then for all $n \in N$, we have

(2.2)
$$0 \le d_n \le Cd_{n-1} \le C^2 d_{n-2} \le \dots \le C^n d_0.$$

If $d_0 = 0$ then (x_0, y_0) is a coupled fixed point of F. Now, let $d_0 > \theta$. For each $n \ge m$, we have

$$d(gx_n, gx_m) \le d(gx_n, gx_{n-1}) + d(gx_{n-1}, gx_{n-2}) + \dots + d(gx_{m-1}, gx_m),$$

and

$$d(gy_n, gy_m) \le d(gy_n, gy_{n-1}) + d(gy_{n-1}, gy_{n-2}) + \dots + d(gy_{m-1}, gy_m).$$

We have

$$d(gx_n, gx_m) + d(gy_n, gy_m) \le d_{n-1} + d_{n-2} + d_{n-3} + \dots + d_m$$

$$\le (C^{n-1} + C^{n-2} + \dots + C^m) d_0$$

$$\le (C^{n-1} + C^{n-2} + \dots + C^m + \dots) d_0$$

$$\le C^m (I - C)^{-1} d_0.$$

 So

$$d(gx_n, gx_{n+1}) \le (A+B)^n (d(gx_0, gx_1) + d(gy_0, gy_1))$$

and

$$d(gy_n, gy_{n+1}) \le (A+B)^n \left(d(gx_0, gx_1) + d(gy_0, gy_1) \right)$$

Let $m, n \in N$ with m > n. Since

$$d\left(gx_n, gx_m\right) \le \sum_{i=n}^{m-1} d\left(gx_i, gx_{i+1}\right),$$

thus,

$$d(gx_n, gx_m) \le (I - A - B)^{-1} (A + B)^n \left(d(gx_0, gx_1) + d(gy_0, gy_1) \right),$$

which implies that $\{gx_n\}$ is a Cauchy sequence in $g(\mathcal{X})$, and similarly $\{gy_n\}$ is a Cauchy sequence in $g(\mathcal{X})$. Since $g(\mathcal{X})$ is a complete metric space, there exist $gx, gy \in g(\mathcal{X})$ such that $\lim_{n\to\infty} gx_n = gx$ and $\lim_{n\to\infty} gy_n = gy$. Also

$$d(F(x,y),gx) \le d(F(x,y),gx_{n+1}) + d(gx_{n+1},gx) = d(F(x,y),F(x_n,y_n) + d(gx_{n+1},gx)) \le Ad(gx_n,gx) + Bd(gy_n,gy) + d(gx_{n+1},gx).$$

Therefore, $d(F(x, y), gx) = \theta$, and so F(x, y) = gx. Similarly, F(y, x) = gy, that is (gx, gy) is a coupled coincidence fixed point of F and g. Now, if (gx', gy') is another coupled coincidence fixed point of F and g, then

$$d(gx',gx) = d(F(x',y'),F(x,y)) \le Ad(gx',gx) + Bd(gy',gy)$$

and

$$d(gy',gy) = d(F(y',x'),F(y,x)) \le Ad(gy',gy) + Bd(gx',gx).$$

Then

$$d(gx',gx) + d(gy',gy) \le (A+B)d(gx',gx) + d(gy',gy).$$

It follows that $d(gx', gx) + d(gy', gy)(I - C) \le \theta$. Since $C \ne I$,(2.8) implies that $d(gx', gx) + d(gy', gy) = \theta$. Hence, we have (gx', gy') = (gx, gy).

It is a worth notice that when the matrices A and B in Theorem 2.1 are equal, we have the following result.

Corollary 2.2. Let (\mathcal{X}, \preceq) be a partially ordered set and (\mathcal{X}, d) be a complete generalized metric space which satisfies condition (NDI), and for all $x, y, u, v \in \mathcal{X}, F : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ and $g : \mathcal{X} \to \mathcal{X}$ with $gx \preceq gu, gv \preceq gy$ the following condition is satisfied:

(2.3)
$$d\left(F\left(x,y\right),F\left(u,v\right)\right) \leq \frac{A}{2}\left[d\left(gx,gu\right) + d\left(gy,gv\right)\right],$$

such that $A = (a_{ij}) \in M_{m \times m}(\mathbb{R}^+)$, is a nonzero matrix in \mathcal{ZM} convergese to zero. Let F and g satisfy the following conditions

- (i) $F(\mathcal{X} \times \mathcal{X}) \subset g(\mathcal{X}),$
- (ii) $g(\mathcal{X})$ is a complete subspace of \mathcal{X} , and
- (iii) F has the mixed g-monotone property.

If there exist $x_0, y_0 \in \mathcal{X}$ such that $g(x_0) \preceq F(x_0, y_0)$ and $F(y_0, x_0) \preceq g(y_0)$, then F and g have a unique coupled coincidence fixed point.

Proof. In Theorem 2.1, take $A = B = \frac{A}{2}$.

Corollary 2.3. Let (\mathcal{X}, \preceq) be a partially ordered set and (\mathcal{X}, d) be a complete generalized metric space that satisfies the condition (NDI), and for all $x, y, u, v \in \mathcal{X}$, $F : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ with the following condition:

(2.4)
$$d(F(x,y),F(u,v)) \le \frac{A}{2} [d(x,u) + d(y,v)],$$

where $A = (a_{ij}) \in M_{m \times m} (\mathbb{R}^+)$, is a nonzero matrix in \mathbb{ZM} . Also, it is satisfied for some comparable pairs $x \leq u, v \leq y$ and F has the mixed monotone property, If there exist $x_0, y_0 \in \mathcal{X}$ such that $x_0 \leq F(x_0, y_0)$ and $F(y_0, x_0) \leq y_0$, then there exist $x, y \in \mathcal{X}$ such that x = F(x, y) and y = F(y, x).

Proof. It follows from Corollary 2.2 by taking g = identity map.

Example 2.4. Let $\mathcal{X} = [0,1] \times [0,1]$. Define $d : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^2$ with

$$d((x_1, y_1), (x_2, y_2)) = (|x_1 - x_2|, |y_1 - y_2|).$$

Then (\mathcal{X}, d) is a complete generalized metric space. Consider the mapping $F : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ with $F(U, V) = \left(\frac{x+u}{3}, \frac{y+v}{3}\right)$, where U = (x, y), V = (u, v). Then F satisfies the contractive condition (2.4), for $A = \begin{pmatrix} \frac{1}{3} & 0\\ 0 & \frac{1}{3} \end{pmatrix}$, that is,

(2.5)
$$d(F(x,y),F(u,v)) \le \frac{A}{2} [d(x,u) + d(y,v)].$$

Therefore, by Corollary 2.3, F has a unique coupled fixed point, which in this case is (0, 0).

Let $(\mathcal{X}, \langle \cdot, \cdot \rangle)$ be a real Hilbert space, and let $T : \mathcal{X} \to \mathcal{X}$ be a nonexpansive potential operator such that there is a functional $J : \mathcal{X} \to \mathbb{R}$ with J(0) = 0 and J' = T. Consider the measure space (Ω, μ) $(\Omega = [0, 1])$ such that $\mu(\Omega) = 1$, and consider $L^2(\Omega, X)$ that is consists of all μ strongly measurable functions $u : \Omega \to \mathcal{X}$ such that $\int_{\Omega} \|u(t)\|^2 d\mu < \infty$ with L^2 -norm. For r > 0, define $B_r = \{x \in \mathcal{X} : \|x\| \leq r\}$ and $S_r = \{x \in \mathcal{X} : \|x\| = r\}$. An interesting question that arises here is: when a fixed point of T lies in the interior of B_r ? Ricceri answered this question in [8].

Corollary 2.5. Let $(\mathcal{X}, \langle \cdot, \cdot \rangle)$ be a partially ordered real Hilbert space with (NDI) property and with generalized norm, let $T : \mathcal{X} \to \mathcal{X}$ be an A/2-nonexpansive potential operator and $F : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ such that F(x,y) = T(x). If there exist $x_0, y_0 \in \mathcal{X}$ such that $x_0 \preceq F(x_0, y_0)$ and $F(y_0, x_0) \preceq y_0$, then T has a fixed point x lying in the interior of B_r and (x, x) is a coupled fixed point of F.

Proof. Since T is A/2-nonexpansive, so F satisfies (2.4) and T has a unique fixed point x lying in B_r (see [5] or [3, Theorem 1.3]). Thus Corollary 2.3 implies that F has a coupled fixed point $x, y \in \mathcal{X}$ such that x = F(x, y) and y = F(y, x). The uniqueness of fixed point for T caused that x = y.

Theorem 2.6. Let (\mathcal{X}, \preceq) be a partially ordered set, (\mathcal{X}, d) be a complete generalized metric space, and for all $x, y, u, v \in \mathcal{X}$, $F : \mathcal{X} \times \mathcal{X} \to X$ and $g : \mathcal{X} \to \mathcal{X}$ with $gx \preceq gu$ and $gv \preceq gy$, satisfy the following condition

$$(2.6) d(F(x,y),F(u,v)) \le Ad(gx,gu) + Bd(gy,gv),$$

where $A = (a_{ij}), B = (b_{ij}) \in M_{m \times m} (\mathbb{R}^+), ||A+B|| < 1$ where A and B are nonzero matrices in \mathcal{ZM} . Suppose that F has the mixed g-monotone property, $F(\mathcal{X} \times \mathcal{X}) \subset g(\mathcal{X}), g$ is continuous and g commutes with F. Also assume that F is continuous or \mathcal{X} satisfies in condition (NDI). If there exist $x_0, y_0 \in \mathcal{X}$ such that $gx_0 \preceq F(x_0, y_0)$ and $F(y_0, x_0) \preceq gy_0$, then F and g have a coupled coincidence point. *Proof.* As in the proof of Theorem 2.1, we can construct two Cauchy sequences (gx_n) and (gy_n) in \mathcal{X} . Since (\mathcal{X}, d) is complete, there exist $x, y \in \mathcal{X}$ such that (gx_{n+1}) converges to x and (gy_{n+1}) converges to y. Since g is continuous, we have (ggx_{n+1}) converges to gx and (ggy_{n+1}) converges to gy. But

$$ggx_{n+1} = g\left(F\left(x_n, y_n\right)\right) = F\left(gx_n, gy_n\right),$$

and

$$ggy_{n+1} = g\left(F\left(y_n, x_n\right)\right) = F\left(gy_n, gx_n\right).$$

We complete the proof in two cases: (1) Suppose that F is continuous, then we have $(F(gx_n, gy_n))$ converges to F(x, y) and $(F(gy_n, gx_n))$ converges to F(y, x). Thus (ggx_{n+1}) converges to F(x, y) and (ggy_{n+1}) converges to F(y, x). Therefore,

$$d(ggx_{n+1}, gx) \to \theta, \qquad d(ggx_{n+1}, F(x, y)) \to \theta.$$

It follows that

$$d\left(gx,F\left(x,y\right)\right) \leq d\left(gx,ggx_{n+1}\right) + d\left(ggx_{n+1},F\left(x,y\right)\right).$$

Therefore, $d(gx, F(x, y)) = \theta$ and gx = F(x, y). Similarly, gy = F(y, x). Hence, (x, y) is a coincidence coupled point of F and g.

(2) Suppose that \mathcal{X} satisfies the condition (NDI). Then $gx_n \preceq x$ and $y \preceq gy_n$ for all $n \in N$. Hence

$$d(ggx_{n+1}, F(x, y)) = d(F(gx_n, gy_n), F(x, y))$$

$$\leq Ad(ggx_n, gx) + Bd(ggy_n, gy).$$

Since (ggx_n) converges to gx and (ggy_n) converges to y, we get (ggx_n) converges to F(x, y). Similarly, (ggy_n) converges to F(y, x). By similar arguments as above, one can show that gx = F(x, y) and gy = F(y, x). Thus, the pair (x, y) is a coupled coincidence point of F and g.

Corollary 2.7. Let (\mathcal{X}, \preceq) be a partially ordered set, (\mathcal{X}, d) be a complete generalized metric space, and, for all $x, y, u, v \in \mathcal{X}, F : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ and $g : \mathcal{X} \to \mathcal{X}$ with $gx \preceq gu$ and $gv \preceq gy$ satisfy the following condition

$$(2.7) d\left(F\left(x,y\right),F\left(u,v\right)\right) \le A\left[d\left(gx,gu\right) + d\left(gy,gv\right)\right],$$

such that $A = (a_{ij}) \in M_{m \times m}(\mathbb{R}^+)$, where A is a nonzero matrix in \mathcal{ZM} . Suppose that F has the mixed g-monotone property, $F(\mathcal{X} \times \mathcal{X}) \subset g(\mathcal{X})$, g is continuous and g commutes with F. Also, assume that either F is continuous or \mathcal{X} has the condition (NDI).

If there exist $x_0, y_0 \in \mathcal{X}$ such that $gx_0 \preceq F(x_0, y_0)$ and $F(y_0, x_0) \preceq gy_0$, then F and g have a coupled coincidence point.

Proof. In Theorem 2.6, take
$$A = B = \frac{A}{2}$$
.

Theorem 2.8. In addition to the hypothesis of Theorem 2.1, suppose that for every $(x, y), (x^*, y^*) \in \mathcal{X} \times \mathcal{X}$, there exists $(u, v) \in \mathcal{X} \times \mathcal{X}$ such that (F(u, v), F(v, u)) is comparable to (F(x, y), F(y, x)) and $(F(x^*, y^*), F(y^*, x^*))$.

If (x, y) and (x^*, y^*) are coupled coincidence points of F and g, then $F(x, y) = gx = gx^* = F(x^*, y^*)$ and $F(y, x) = gy = gy^* = F(y^*, x^*)$. Moreover, if F and g commutes, then F and g have a unique common fixed point, that is, there exists a unique pair $(x, y) \in \mathcal{X} \times \mathcal{X}$ such that x = gx = F(x, y) and y = gy = F(y, x).

Proof. Following the proof of Theorem 2.1, there exists $(x, y) \in \mathcal{X} \times \mathcal{X}$ such that F(x, y) = gx = p and F(y, x) = gy = q. Thus the existence of a coupled coincidence point is confirmed. Now, let (x^*, y^*) be another coincidence point of F and g; that is, $F(x^*, y^*) = gx^*$ and $F(y^*, x^*) = gy^*$. By the additional assumption, there is $(u, v) \in \mathcal{X} \times \mathcal{X}$ such that (F(u, v), F(v, u)) is comparable to (F(x, y), F(y, x)) and $(F(x^*, y^*), F(y^*, x^*))$.

Let $u_0 = u, v_0 = v, x_0 = x, y_0 = y, x_0^* = x^*$ and $y_0^* = y^*$. Since $F(\mathcal{X} \times \mathcal{X}) \subseteq gX$, we can construct the sequences $(gu_n), (gv_n), (gx_n), (gy_n), (gx_n^*)$, and (gy_n^*) , such that $gu_{n+1} = F(u_n, v_n), gv_{n+1} = F(v_n, u_n), gx_{n+1} = F(x_n, y_n), gy_{n+1} = F(y_n, x_n), gx_{n+1}^* = F(x_n^*, y_n^*)$ and $gy_{n+1}^* = F(y_n^*, x_n^*)$. Since

$$(gx, gy) = (F(x, y), F(y, x)) = (gx_1, gy_1),$$

and

$$(F(u,v), F(v,u)) = (gu_1, gv_1),$$

are comparable, then $gx \leq gu_1$ and $gv_1 \leq gy$. One can show that $gx \leq gu_n$, and $gv_n \leq gy$ for all $n \in N$. From

 $d\left(gx,gu_{n+1}\right)=d\left(F\left(x,y\right),F\left(u_{n},v_{n}\right)\right)\leq Ad\left(gx,gu_{n}\right)+Bd\left(gy,gv_{n}\right),$ and

$$d(gy, gv_{n+1}) = d(F(v_n, u_n), F(y, x)) \le Ad(gv_n, gy) + Bd(gu_n, gx),$$

we have

$$d(gx, gu_{n+1}) + d(gy, gv_{n+1}) \le (A+B) (d(gx, gu_n) + d(gy, gv_n)).$$

Since

$$d(gx, gu_{n+1}) \le d(gx, gu_{n+1}) + d(gy, gv_{n+1}),$$

we have

$$d(gu_{n+1}, gx) \le (A+B) (d(gx, gu_n) + d(gy, gv_n))$$

$$\le (A+B)^2 (d(gx, gu_{n-1}) + d(gy, gv_{n-1}))$$

$$\leq \left(A+B\right)^{n+1} \left(d\left(gx,gu\right)+d\left(gy,gv\right)\right).$$

Thus, gu_{n+1} converges to gx in (\mathcal{X}, d) . Similarly, we may show that gv_{n+1} converges to gy in (\mathcal{X}, d) . Analogously, we can show that gu_{n+1} converges to gx^* and gv_{n+1} converges to gy^* in (\mathcal{X}, d) . Since (gu_{n+1}) converges to gx and gx^* , we get $gx = gx^*$. Also, since (gv_{n+1}) converges to gy and gy^* , we get $gy = gy^*$. Thus, if (x, y) and (x^*, y^*) are coupled coincidence points of F and g, then

$$F(x, y) = gx = gx^* = F(x^*, y^*)$$

and

$$F(y,x) = gy = gy^* = F(y^*,x^*).$$

Assume that F and g commute, then

:

$$gp = g\left(gx\right) = g\left(F\left(x,y\right)\right) = F\left(gx,gy\right) = F\left(p,q\right),$$

and

$$gq = g(gy) = g(F(y, x)) = F(gy, gx) = F(q, p)$$

Hence, the pair (p,q) is also a coupled coincidence point of F and g. Thus, we have gp = gx and gq = gy. Hence gp = p and gq = q. Therefore p = gp = F(p,q) and q = gq = F(q,p).

Thus (p,q) is a coupled common fixed point of F and g. To prove the uniqueness, let (s,t) be any coupled common fixed point of F and g. Then s = gs = F(s,t) and t = gt = F(t,s).

Since the pair (s, t) is a coupled coincidence point of F and g, we have gs = gx and gt = gy. Thus s = gs = gp = p and t = gt = gq = q. This shows that the coupled fixed point is unique.

3. Application in Linear Matrix Equations

Consider the linear matrix equations of the type

(3.1)
$$X - A_1^* X A_1 - \dots - A_m^* X A_m = Q,$$

and

(3.2)
$$X + A_1^* X A_1 + \dots + A_m^* X A_m = Q,$$

where Q is a positive definite matrix and A_1, \ldots, A_m are arbitrary $n \times n$ matrices. We denote the set of all $n \times n$ matrices, $n \times n$ Hermitian matrices and $n \times n$ positive definite matrices by M(n), H(n) and P(n), respectively. Clearly, we have the chain $P(n) \subseteq H(n) \subseteq M(n)$. Consider the spectral norm, $||A|| = \sqrt{\lambda^+ (A^*A)}$ where $\lambda^+ (A^*A)$ is the largest eigenvalue of A^*A . Define maps G and K on H(n) by

(3.3)
$$G(X) = Q + \sum_{i=1}^{m} A_i^* X A_i$$
, $K(X) = Q - \sum_{i=1}^{m} A_i^* X A_i$.

The fixed points of G are solutions of (3.1) and the fixed points of K are solutions of (3.2). Fixed point theorems for these functions are studied in [6]. Now, we extend the above equations as follows:

(3.4)
$$\begin{cases} X - A_1^* X A_1 - \dots - A_m^* X A_m = Q, \\ Y - B_1^* Y B_1 - \dots - B_t^* Y B_t = Q', \end{cases}$$

and

(3.5)
$$\begin{cases} X + A_1^* X A_1 + \dots + A_m^* X A_m = Q, \\ Y + B_1^* Y B_1 + \dots + B_t^* Y B_t = Q', \end{cases}$$

where Q and Q' are positive definite matrices, A_1, \ldots, A_m and B_1, \ldots, B_m are arbitrary $n \times n$ matrices. Define maps $F_1 : H(n) \times H(n) \times$

$$F_1(U,V) = \left(Q + \sum_{i=1}^m A_i^* (X + X') A_i, Q' + \sum_{i=1}^t B_i^* (Y + Y') B_i\right),$$

and

$$F_2(U,V) = \left(Q - \sum_{i=1}^m A_i^* (X + X') A_i, Q' - \sum_{i=1}^t B_i^* (Y + Y') B_i\right),$$

where U = (X, Y) and V = (X', Y'). We consider the trace norm $\|\cdot\|_1$ on H(n) as $\|A\|_1 = \sum_{i=1}^n s_i(A)$, where $s_i(A)$'s are singular values of A. For $Q \in P(n)$ we define $\|A\|_{1,Q} = \|Q^{\frac{1}{2}}AQ^{\frac{1}{2}}\|_1$. Then H(n) by this norm becomes a complete metric space for any positive definite Q. Let \trianglelefteq be a partially order on H(n), as defined in [6] (we use \trianglelefteq and \lhd instead of \leq and <, respectively, on H(n)). We consider the partial order on $H(n) \times H(n)$ as follows

(3.8)
$$(X,Y) \preceq (X',Y') \Leftrightarrow X \trianglelefteq X' \text{ and } Y \trianglelefteq Y'.$$

Similarly, we can extend this for $H(n)^4$ as follows

(3.9)
$$(U,V) \stackrel{\sim}{\preceq} (U',V') \Leftrightarrow U \preceq U' \text{ and } V \preceq V'.$$

We define $\|\cdot\|_{(1,1),(Q,Q')}: H(n) \times H(n) \to \mathbb{R}^2$ by

$$\begin{aligned} \|(A,B)\|_{(1,1),(Q,Q')} &= \left(\|A\|_{1,Q}, \|B\|_{1,Q'}\right) \\ &= \left(\left\|Q^{\frac{1}{2}}AQ^{\frac{1}{2}}\right\|_{1}, \left\|Q'^{\frac{1}{2}}BQ'^{\frac{1}{2}}\right\|_{1}\right). \end{aligned}$$

Clearly, $H(n) \times H(n)$ equipped with the above metric is a complete metric space for any positive definite Q and Q'.

Theorem 3.1. Let $Q, Q' \in P(n)$ such that

$$\sum_{i=1}^{m} A_{i}^{*}QA_{i} \leq Q, \qquad \sum_{i=1}^{t} B_{i}^{*}Q'B_{i} \leq Q',$$
$$\left\| \sum_{i=1}^{m} Q^{-\frac{1}{2}}A_{i}^{*}QA_{i}Q^{-\frac{1}{2}} \right\| < \frac{1}{2}$$

and

$$\left\|\sum_{i=1}^{t} Q'^{-\frac{1}{2}} B_i^* Q' B_i Q'^{-\frac{1}{2}}\right\| < \frac{1}{2}.$$

Then F_2 has a unique coupled fixed point in H(n).

Proof. Let (U, V), $(U', V') \in H(n)^4$ such that $(U, V) \cong (U', V')$, where $U = (X_1, Y_1)$, $V = (X'_1, Y'_1)$, $U' = (X_2, Y_2)$,

and $V' = (X'_2, Y'_2)$. Take $U_0 = (0, 0)$ and $V_0 = (Q, Q')$. Then

$$F_2(U_0, V_0) \preceq V_0, \qquad U_0 \preceq F_2(U_0, V_0).$$

Furthermore, for given $U = (X_1, Y_1), V = (X'_1, Y'_1), U' = (X_2, Y_2)$ and $V' = (X'_2, Y'_2)$, we have $\|F_2(U', V') - F_2(U, V)\|$

$$\begin{split} \|F_{2}\left(U',V'\right) - F_{2}\left(U,V\right)\|_{(1,1),(Q,Q')} \\ &= \left\| \left(\sum_{i=1}^{m} A_{i}^{*}\left(X_{2} + X_{2}' - X_{1} - X_{1}'\right)A_{i}, \sum_{i=1}^{t} B_{i}^{*}\left(Y_{2} + Y_{2}' - Y_{1} - Y_{1}'\right)B_{i} \right) \right\|_{(1,1),(Q,Q')} \\ &= \left(tr\left(\sum_{i=1}^{m} Q^{\frac{1}{2}}A_{i}^{*}\left(X_{2} + X_{2}' - X_{1} - X_{1}'\right)A_{i}Q^{\frac{1}{2}} \right), \\ tr\left(\sum_{i=1}^{t} Q^{\prime\frac{1}{2}}B_{i}^{*}\left(Y_{2} + Y_{2}' - Y_{1} - Y_{1}'\right)B_{i}Q^{\prime\frac{1}{2}} \right) \right) \\ &= \left(tr\left(\sum_{i=1}^{m} Q^{-\frac{1}{2}}A_{i}^{*}QA_{i}Q^{-\frac{1}{2}}Q^{\frac{1}{2}}\left(X_{2} + X_{2}' - X_{1} - X_{1}'\right)Q^{\frac{1}{2}} \right), \\ tr\left(\sum_{i=1}^{t} Q^{\prime-\frac{1}{2}}B_{i}^{*}Q^{\prime}B_{i}Q^{\prime-\frac{1}{2}}Q^{\prime\frac{1}{2}}\left(Y_{2} + Y_{2}' - Y_{1} - Y_{1}'\right)Q^{\prime\frac{1}{2}} \right) \right) \\ &= \left(tr\left(\left(\sum_{i=1}^{m} \left(Q^{-\frac{1}{2}}A_{i}^{*}QA_{i}Q^{-\frac{1}{2}}\right)\left(Q^{\frac{1}{2}}\left(X_{2} + X_{2}' - X_{1} - X_{1}'\right)Q^{\frac{1}{2}} \right) \right) \right), \end{split}$$

SOME FIXED POINT THEOREMS ...

$$tr\left(\left(\sum_{i=1}^{t} Q'^{-\frac{1}{2}} B_{i}^{*} Q' B_{i} Q'^{-\frac{1}{2}}\right) \left(Q'^{\frac{1}{2}} \left(Y_{2} + Y_{2}' - Y_{1} - Y_{1}'\right) Q'^{\frac{1}{2}}\right)\right)\right)$$

$$\leq \left(\left\|\sum_{i=1}^{m} Q^{-\frac{1}{2}} A_{i}^{*} Q A_{i} Q^{-\frac{1}{2}}\right\| \left\|X_{2} + X_{2}' - X_{1} - X_{1}'\right\|_{1,Q}, \\\left\|\sum_{i=1}^{t} Q'^{-\frac{1}{2}} B_{i}^{*} Q' B_{i} Q'^{-\frac{1}{2}}\right\| \left\|Y_{2} + Y_{2}' - Y_{1} - Y_{1}'\right\|_{1,Q}\right)$$

$$= \left[\begin{array}{c}\left\|\sum_{i=1}^{m} Q^{-\frac{1}{2}} A_{i}^{*} Q A_{i} Q^{-\frac{1}{2}}\right\| \\ 0 \\\left\|\sum_{i=1}^{t} Q'^{-\frac{1}{2}} B_{i}^{*} Q' B_{i} Q'^{-\frac{1}{2}}\right\| \\\right] \\\times \left(\left\|X_{2} + X_{2}' - X_{1} - X_{1}'\right\|_{1,Q}, \left\|Y_{2} + Y_{2}' - Y_{1} - Y_{1}'\right\|_{1,Q}\right).$$

In the above statements, we used Lemma 3.1 of [6]. Set

$$\alpha = \left\| \sum_{i=1}^{m} Q^{-\frac{1}{2}} A_i^* Q A_i Q^{-\frac{1}{2}} \right\|,$$

and

$$\beta = \left\| \sum_{i=1}^{t} Q'^{-\frac{1}{2}} B_i^* Q' B_i Q'^{-\frac{1}{2}} \right\|.$$

Then

$$\begin{aligned} \|F_{2}(U',V') - F_{2}(U,V)\|_{(1,1),(Q,Q')}, \\ &\leq \begin{bmatrix} \alpha & 0\\ 0 & \beta \end{bmatrix} (\|X_{2} - X_{1}\|_{1,Q} + \|X_{2}' - X_{1}'\|_{1,Q}, \|Y_{2} - Y_{1}\|_{1,Q'} + \|Y_{2}' - Y_{1}'\|_{1,Q'}) \\ &= \begin{bmatrix} \alpha & 0\\ 0 & \beta \end{bmatrix} ((\|X_{2} - X_{1}\|_{1,Q}, \|Y_{2} - Y_{1}\|_{1,Q'}) + (\|X_{2}' - X_{1}'\|_{1,Q}, \|Y_{2}' - Y_{1}'\|_{1,Q'})) \\ &= \begin{bmatrix} \alpha & 0\\ 0 & \beta \end{bmatrix} (\|U' - U\|_{(1,1),(Q,Q')}, \|V - V'\|_{(1,1),(Q,Q')}). \end{aligned}$$

Now apply Theorem 2.1.

The above theorem says that, under the conditions of this theorem, the equation system (3.5) has a unique solution.

4. Application in nonlinear matrix equations

In this section, we study the following class of nonlinear matrix equations system:

(4.1)
$$\begin{cases} X + A_1^* \mathcal{F}(X) A_1 + \dots + A_m^* \mathcal{F}(X) A_m = Q, \\ Y + B_1^* \mathcal{G}(Y) B_1 + \dots + B_t^* \mathcal{G}(Y) B_t = Q', \end{cases}$$

H. HOSSEINZADEH

where Q and Q' are positive definite matrices, A_1, \ldots, A_m and B_1, \ldots, B_t are arbitrary $n \times n$ matrices and \mathcal{F} and \mathcal{G} are continuous maps, from $P(n) \times P(n)$ into P(n), where $n \geq 3$. We define $\mathfrak{F} : H(n) \times H(n) \times$ $H(n) \times H(n) = H(n)^4 \to H(n) \times H(n)$ as follows (4.2)

$$\mathfrak{F}(U,V) = \left(Q - \sum_{i=1}^{m} A_i^* \mathcal{F}((X,Y)) A_i, Q' - \sum_{i=1}^{t} B_i^* \mathcal{G}\left(\left(X',Y'\right)\right) B_i\right),$$

for every U = (X, Y), $V = (X', Y') \in H(n) \times H(n)$. Clearly, if \mathfrak{F} has a unique coupled fixed point then (4.1) has a unique solution. We consider the norm $\|\cdot\| : H(n) \times H(n) \to \mathbb{R}^2$ such that

(4.3)
$$\|(A,B)\|_{1,1} = (\|A\|_1, \|B\|_1), \quad A, B \in H(n).$$

Before considering the system (4.1), we take into account the result obtained in [6] for the following nonlinear matrix equation:

(4.4)
$$X + A_1^* \mathcal{F}(X) A_1 + \dots + A_m^* \mathcal{F}(X) A_m = Q,$$

where Q and A_1, \ldots, A_m are as above. By reviewing the proof of Theorem 4.1, we reach to a gap in the assumption. At first, note that the space of all $n \times n$, M(n) is a unital Banach algebra with of unit I_n , where I_n is identity the matrix $n \times n$. Authors in [6] considered the Banach algebra M(n) with two norms $||A|| = \sqrt{\lambda^+ (A^*A)}$ and $||A||_1 = \sum_{i=1}^n s_i(A)$ for $A \in M(n)$. It is known that all norms on a finite dimensional Banach algebra are equivalent. It is rutin in the Banach algebra theory that we assume the norm of identity element is equale to 1 (this holds when we use the spectral norm). Now, we use the other norm i.e., $||I_n||_1 = \sum_{i=1}^n s_i(I_n) = n$. We rewrite Theorem 4.1 and investigate it.

Let $Q \in P(n)$. Assume that there exists a positive number M for which $\sum_{j=1}^{m} A_j A_j^* < M \cdot I_n$ and such that for $X \leq Y$ we have

(4.5)
$$|tr\left(\mathcal{F}\left(Y\right) - \mathcal{F}\left(X\right)\right)| \leq \frac{1}{M} |tr\left(Y - X\right)|.$$

Then (4.4) has a unique solution in P(n).

In the proof of the above stated result, authors proved the following

$$\left\|\mathcal{G}\left(Y\right) - \mathcal{G}\left(X\right)\right\|_{1} \leq \left\|\sum_{i=1}^{m} A_{j} A_{j}^{*}\right\| \left\|\mathcal{F}\left(Y\right) - \mathcal{F}\left(X\right)\right\|_{1}.$$

We consider the proof with two norms $\|\cdot\|$ (spectral norm) and $\|\cdot\|_1$. For $\|\cdot\|_1$, by using of (4.5) the condition (1) of Theorem 2.1 does not hold. Because

$$\left\|\mathcal{G}\left(Y\right) - \mathcal{G}\left(X\right)\right\|_{1} \leq \left\|\sum_{i=1}^{m} A_{j} A_{j}^{*}\right\| \left\|\mathcal{F}\left(Y\right) - \mathcal{F}\left(X\right)\right\|_{1}$$

$$\leq M \|I_n\|_1 |tr\left(\mathcal{F}\left(Y\right) - \mathcal{F}\left(X\right)\right)|$$

$$\leq \|I_n\|_1 |tr\left(Y - X\right)|$$

$$= n |tr\left(Y - X\right)|.$$

Thus, the above statement does not satisfy condition (1) of Theorem 2.1 of [6]. If we use the spectral norm, then we obtain $\|\mathcal{G}(Y) - \mathcal{G}(X)\|_1 \leq |tr(Y - X)|$, again it dose not satisfy in condition (1), note that in condition (1), there is a 0 < c < 1. Now consider the following conditions on M and (4.5):

(i)
$$M > 1$$
 and $|tr\left(\mathcal{F}\left(Y\right) - \mathcal{F}\left(X\right)\right)| \leq \frac{1}{(n+1)M} |tr\left(Y - X\right)|.$
ii) $M > n$ and $|tr\left(\mathcal{F}\left(Y\right) - \mathcal{F}\left(X\right)\right)| \leq \frac{1}{M^2} |tr\left(Y - X\right)|.$

(

We write the correction of Theorem 4.1 of [6] with our paper notations for partial orders as follows:

Theorem 4.1. Let $Q \in P(n)$. Assume that there exists a positive number M for which $\sum_{j=1}^{m} A_j A_j^* \triangleleft M \cdot I_n$ and such that for $X \trianglelefteq Y$ we have one of the conditions (i) or (ii) holds. Then (4.4) has a unique solution in P(n).

Now, we consider the nonlinear matrix equation system (4.1) as follows:

Theorem 4.2. Let $Q, Q' \in P(n)$ and the following statements hold.

(i) $\sum_{i=1}^{m} A_i^* \mathcal{F}((X,Y)) A_i \leq Q$ and $\sum_{i=1}^{t} B_i^* \mathcal{G}((X',Y')) B_i \leq Q'$. (ii) There exist positive numbers M, M' such that

$$\sum_{i=1}^{m} A_i^* A_i \triangleleft M \cdot I_n, \qquad \sum_{i=1}^{t} B_i^* B_i \triangleleft M' \cdot I_t,$$

and satisfy in one of the following conditions: 1. M, M' > 1 and for every $(U, V), (U', V') \in H(n)^4$,

$$\left(\left|tr\left(\mathcal{F}\left(U\right)-\mathcal{F}\left(U'\right)\right)\right|,\left|tr\left(\mathcal{G}\left(V\right)-\mathcal{G}\left(V'\right)\right)\right|\right)\right)$$
$$\leq \left(\frac{1}{(n+1)M}\left|tr\left(U-U'\right)\right|,\frac{1}{(t+1)M'}\left|tr\left(V-V'\right)\right|\right)$$

2. M > n, M' > t and for every (U, V), $(U', V') \in H(n)^4$,

$$\left(\left| tr\left(\mathcal{F}\left(U\right) - \mathcal{F}\left(U'\right)\right) \right|, \left| tr\left(\mathcal{G}\left(V\right) - \mathcal{G}\left(V'\right)\right) \right| \right) \\ \leq \left(\frac{1}{M^2} \left| tr\left(U - U'\right) \right|, \frac{1}{M'^2} \left| tr\left(V - V'\right) \right| \right).$$

Then \mathfrak{F} has a unique coupled fixed point in H(n).

Proof. Let (U, V), $(U', V') \in H(n)^4$ such that $(U, V) \stackrel{\sim}{\preceq} (U', V')$, where $U = (X_1, Y_1)$, $V = (X'_1, Y'_1)$, $U' = (X_2, Y_2)$ and $V' = (X'_2, Y'_2)$. Take $U_0 = (0, 0)$ and $V_0 = (Q, Q')$. Then $\mathfrak{F}(U_0, V_0) \stackrel{\sim}{\preceq} V_0$ and $U_0 \stackrel{\sim}{\preceq} \mathfrak{F}(U_0, V_0)$. Furthermore, for given $U = (X_1, Y_1)$, $V = (X'_1, Y'_1)$, $U' = (X_2, Y_2)$ and $V' = (X'_2, Y'_2)$ we have

$$\begin{split} \|\mathfrak{F}(U',V') - \mathfrak{F}(U,V)\|_{(1,1)} \\ &= \left\| \left(\sum_{i=1}^{m} A_{i}^{*} \left(\mathcal{F}\left(X_{2},Y_{2}\right) - \mathcal{F}\left(X_{1},Y_{1}\right)\right) A_{i}, \sum_{i=1}^{t} B_{i}^{*} \left(\mathcal{G}\left(X_{2}',Y_{2}'\right) - \mathcal{G}\left(X_{1}',Y_{1}'\right)\right) B_{i} \right) \right\|_{(1,1)} \\ &= \left(\sum_{i=1}^{m} tr \left(A_{i}A_{i}^{*} \left(\mathcal{F}\left(X_{2},Y_{2}\right) - \mathcal{F}\left(X_{1},Y_{1}\right)\right)\right), \sum_{i=1}^{t} tr \left(B_{i}^{*}B_{i}\left(\mathcal{G}\left(X_{2}',Y_{2}'\right) - \mathcal{G}\left(X_{1}',Y_{1}'\right)\right)\right) \right) \\ &= \left(tr \left(\sum_{i=1}^{m} A_{i}^{*}A_{i}\left(\mathcal{F}\left(X_{2},Y_{2}\right) - \mathcal{F}\left(X_{1},Y_{1}\right)\right) \right), tr \left(\sum_{i=1}^{t} B_{i}^{*}B_{i}\left(\mathcal{G}\left(X_{2}',Y_{2}'\right) - \mathcal{G}\left(X_{1}',Y_{1}'\right)\right) \right) \right) \\ &= \left(tr \left(\sum_{i=1}^{m} A_{i}^{*}A_{i} \right) \left(\mathcal{F}\left(X_{2},Y_{2}\right) - \mathcal{F}\left(X_{1},Y_{1}\right)\right) \right), tr \left(\left(\sum_{i=1}^{t} B_{i}^{*}B_{i} \right) \left(\mathcal{G}\left(X_{2}',Y_{2}'\right) - \mathcal{G}\left(X_{1}',Y_{1}'\right)\right) \right) \right) \\ &\leq \left(\left\| \sum_{i=1}^{m} A_{i}^{*}A_{i} \right\| \| \left(\mathcal{F}\left(X_{2},Y_{2}\right) - \mathcal{F}\left(X_{1},Y_{1}\right)\right) \|_{1} \right), \\ &\left\| \sum_{i=1}^{t} B_{i}^{*}B_{i} \right\| \| \left(\mathcal{G}\left(X_{2}',Y_{2}'\right) - \mathcal{G}\left(X_{1}',Y_{1}'\right)\right) \right) \right) \\ &= \left[\left\| \left\| \sum_{i=1}^{m} A_{i}^{*}A_{i} \right\| \right\| \left(\mathcal{G}\left(X_{2}',Y_{2}'\right) - \mathcal{G}\left(X_{1}',Y_{1}'\right)\right) \right) \\ &= \left[\left\| \left\| \sum_{i=1}^{m} A_{i}^{*}A_{i} \right\| \right. 0 \\ \left\| \left\| \sum_{i=1}^{t} B_{i}^{*}B_{i} \right\| \right\| \\ &\times \left(\| \mathcal{F}\left(X_{2},Y_{2}\right) - \mathcal{F}\left(X_{1},Y_{1}\right) \|_{1} \right) \| \mathcal{G}\left(X_{2}',Y_{2}'\right) - \mathcal{G}\left(X_{1}',Y_{1}'\right) \|_{1} \right). \end{split} \right\}$$

In the above statements, we used Lemma 3.1 of [6]. Suppose that (1) holds. Then,

$$\begin{aligned} \|\mathfrak{F}(U',V') &-\mathfrak{F}(U,V)\|_{(1,1)} \\ &\leq \begin{bmatrix} M\|I_n\|_1 & 0\\ 0 & M'\|I_t\|_1 \end{bmatrix} \left(\frac{1}{(n+1)M} (\|X_2 - X_1\|_1 + \|Y_2 - Y_1\|_1), \\ &\frac{1}{(t+1)M'} (\|X_2' - X_1'\|_1 + \|Y_2' - Y_1'\|_1) \right) \\ &= \begin{bmatrix} \frac{1}{(n+1)} & 0\\ 0 & \frac{1}{(t+1)} \end{bmatrix} ((\|X_2 - X_1\|_1 + \|Y_2' - Y_1'\|_1), \end{aligned}$$

$$\begin{pmatrix} \|Y_2 - Y_1\|_1 + \|X'_2 - X'_1\|_1 \end{pmatrix} \\ = \begin{bmatrix} \frac{1}{(n+1)} & 0\\ 0 & \frac{1}{(t+1)} \end{bmatrix} \left(\|U' - U\|_{(1,1)}, \|V - V'\|_{(1,1)} \right).$$

We obtain similar results for case (2), that provide the required conditions in Theorem 2.1. This completes the proof. \Box

Acknowledgment. The author wish to thank gratitude to the reviewers for their valuable comments and suggestions for the improvement of this paper.

References

- G. Allaire and S. M. Kaber, *Numerical linear algebra*, Vol. 55 of Texts in Applied Mathematics, Springer-New York, 2008.
- T. Gnana Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65(2006), pp. 1379-1393.
- 3. A. D. Filip and Petruşel, Fixed point theorems on spaces endowed with vectorvalued metrics, Fixed Point Theory and Applications, 20 (2010).
- H. Hosseinzadeh, A. Jabbari and A. Razani, Fixed point and common fixed point theorems on spaces which endowed vector-valued metrics, Ukrainian J. Math., 65 (50)(2013), pp. 814-822.
- R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems, Mathematical and Computer Modelling, 49(3-4) (2009), pp. 703-708.
- A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132(5) (2003), pp.1435-1443.
- A. Razani, H. Hosseinzadeh and A. Jabbari, Coupled fixed point theorems in partially ordered metric spaces which endowed vector-valued metrics, Aust. J. Basic and App. Sci., 6(2)(2012), pp. 124-129.
- B. Ricceri, Another fixed point theorem for nonexpansive potential operators, Studia Math., 211(2)(2012), pp. 147-151.
- I. A. Rus, Principles and applications of the fixed point theory, Dacia, Cluj-Napoca, Romania, 1979.
- R. S. Varga, *Matrix iterative analysis*, Vol. 27 of Springer Series in Computational Mathematics, Springer-Berlin, 2000.

DEPARTMENT OF MATHEMATICS, ARDABIL BRANCH, ISLAMIC AZAD UNIVERSITY, ARDABIL, IRAN.

E-mail address: hasan_hz2003@yahoo.com & h.hosseinzadeh@iauardabil.ac.ir