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Some Fixed Point Theorems in Generalized Metric Spaces

Endowed with Vector-valued Metrics and Application in

Linear and Nonlinear Matrix Equations

Hasan Hosseinzadeh

Abstract. Let X be a partially ordered set and d be a generalized
metric on X . We obtain some results in coupled and coupled coin-
cidence of g-monotone functions on X , where g is a function from
X into itself. Moreover, we show that a nonexpansive mapping on
a partially ordered Hilbert space has a fixed point lying in the unit
ball of the Hilbert space. Some applications for linear and nonlinear
matrix equations are given.

1. Introduction

Let (V,⪯) be an ordered Banach space. The cone V+ = {v ∈ V : θ ⪯
v}, where θ is the zero-vector of V, satisfies the usual properties

(i) V+ ∩ −V+ = {θ};
(ii) V+ + V+ ⊂ V+;
(iii) αV+ ⊂ V+, for α ≥ 0.

Let X be a nonempty set. A mapping d : X × X → V is called a
vector-valued metric on X, if the following properties are satisfied:

(i) d (x, y) ⪰ θ for each x, y ∈ X , if d (x, y) = θ, then x = y;
(ii) d (x, y) = d (y, x) for all x, y ∈ X ;
(iii) d (x, y) ⪯ d (x, z) + d (z, y) for all x, y, z ∈ X .

The pair (X , d) is called the vector-valued metric space. Similarly, we
can define a generalized normed space.
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A set X equipped with a vector-valued metric d is called a generalized
metric space and denoted by (X , d). By Mm,m (R+), we mean the set of
all m×m matrixes with positive elements. We denote by I the identity
m×m matrix. Let A ∈ Mm,m (R+), A is said to be convergent to zero
if and only if An → 0 as n → ∞ (for more details see [10]).

Let α, β ∈ Rm, where α = (α1, α2, . . . , αm), β = (β1, β2, . . . , βm) and
c ∈ R. Note that α ≤ β (resp. α < β) means αi ≤ βi (resp. αi < βi)
for each 1 ≤ i ≤ m, and also α ≤ c (resp. α < c) means αi ≤ c
(resp. αi < c) for 1 ≤ i ≤ m, respectively. We can define addition and
multiplication on Rm as follows:

α+ β = (α1 + β1, α2 + β2, . . . , αm + βm) ,

and
α · β = (α1β1, α2β2, . . . , αmβm) .

In this paper, we need the following equivalent statements:

(i) A is convergent towards zero;
(ii) An → 0 as n → ∞;
(iii) The eigenvalues of A are located in the open unit disc, that is,

|λ| < 1, for each λ ∈ C with det (A− λI) = 0;
(iv) The matrix I −A is nonsingular and

(I −A)−1 = I +A+ · · ·+An + · · · ;
(v) AnqT → 0 and qAn → 0 as n → ∞, for each q ∈ Rm, where qT

is the transpose of q.

The above statements are the classical results in matrix analysis (for
more details see [1, 5, 9]). Denote , by ZM the set of all matrices A ∈
Mm,m (R+) such that An converges to zero. Let (X , d) be a generalized
metric space and let T : X → X be a mapping. For a given A ∈ ZM, we
call the function mapping T is an A-nonexpansive if d (T (x) , T (y)) ≤
Ad (x, y) for all x, y ∈ X and T to be said to be ZM-nonexpansive if
for any B in ZM, T is a B-nonexpansive function.

Clearly, if A ∈ ZM, then there exists a norm ||.|| such that ∥A∥ < 1,
so every ZM-nonexpansive operator is nonexpansive, but the converse
is not true, in general.

Fixed point theorems on spaces endowed with vector-valued metrics
considered by Filip and Petruşel in [3] and some new results around this
notion are obtained in [4].

Definition 1.1 ([2]). Let (X ,⪯) be a partially ordered set and let F :
X × X → X . The mapping F is said to be has the mixed monotone
property if F (x, y) is monotone nondecreasing in x and is monotone
nonincreasing in y, that is, for every x, y ∈ X ,

(i) for each x1, x2 ∈ X , if x1 ⪯ x2, then F (x1, y) ⪯ F (x2, y);
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(ii) for each y1, y2 ∈ X , if y1 ⪯ y2, then F (x, y1) ⪰ F (x, y2).

Let (X ,⪯) be a partially ordered set and d be a metric on X such
that (X , d) is a complete metric space. The product space X × X is
endowed with the following partial order:

for, (x, y) , (u, v) ∈ X × X , (u, v) ≤ (x, y) ⇔ x ≥ u, y ≤ v.

Definition 1.2 ([2]). Let (X ,⪯) be a partially ordered set and let F :
X × X → X be a mapping. An element (x, y) ∈ X × X is said to be a
coupled fixed point of the mapping F , if F (x, y) = x and F (y, x) = y.

Definition 1.3. An element (x, y) ∈ X × X is called

(i) a coupled coincidence point of mappings F : X × X → X and
g : X → X if g (x) = F (x, y) and g (y) = F (y, x), and (gx, gy)
is called a coupled point of coincidence.

(ii) a common coupled fixed point of mappings F : X ×X → X and
g : X → X if x = g (x) = F (x, y) and y = g (y) = F (y, x).

Definition 1.4. Let (X ,⪯) be a partially ordered set and F : X ×
X → X and g : X → X be two self mappings. We say F has the
mixed g-monotone property if F is monotone g-non-decreasing in its
first argument and is monotone g-non-increasing in its second argument,
that is, for all x1, x2 ∈ X , gx1 ⪯ gx2 implies F (x1, y) ⪯ F (x2, y) for
any y ∈ X , and for all y1, y2 ∈ X , gy1 ⪰ gy2 implies F (x, y1) ⪯ F (x, y2)
for all x ∈ X .

Definition 1.5. Let X be a non-empty set. We say that the mappings
F : X × X → X and g : X → X are commutative if g (F (x, y)) =
F (gx, gy), for all x, y ∈ X .

Bhaskar and Lakshmikantham in [2], studied the existence of coupled
fixed points for continuous mapping with the mixed monotone property
F : X × X → X , where (X ,⪯) is a partially ordered set. The existence
of coupled fixed point for a mapping with the mixed monotone property
F : X ×X → X , where (X , d) is a complete generalized metric space, is
considered in [7].

In this paper, we consider the existence and uniqueness of coupled
fixed points for mappings F : X × X → X , under some contractive
conditions, where (X , d) is a complete generalized metric space.

2. Main Results

We say that X satisfies in condition (NDI) if X has the following
properties:

(i) if a non-decreasing sequence xn → x, then xn ⪯ x for all n.
(ii) if a non-increasing sequence xn → x, then x ⪯ xn for all n.
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Theorem 2.1. Let (X ,⪯) be a partially ordered set, (X , d) be a complete
generalized metric space which satisfies the condition (NDI), and for all
x, y, u, v ∈ X , and let g : X → X with gx ⪯ gu and gv ⪯ gy. Suppose
that F : X × X → X satisfies the following condition

(2.1) d (F (x, y) , F (u, v)) ≤ Ad (gx, gu) +Bd (gy, gv) ,

where A = (aij) , B = (bij) are in Mm×m (R+) , (A+B) ∈ ZM, A and
B are nonzero matrices in ZM. Furthermore, assume that F and g
satisfy the following conditions

(i) F (X × X ) ⊂ g (X ),
(ii) g (X ) is a complete subspace of X ,
(iii) F satisfies the mixed g-monotone property.

If there exist x0, y0 ∈ X such that g (x0) ⪯ F (x0, y0) and F (y0, x0) ⪯
g (y0), then F and g has a unique coupled coincidence fixed point.

Proof. Let x0, y0 ∈ X be such that gx0 ⪯ F (x0, y0) and F (y0, x0) ⪯
gy0. Since F (X × X ) ⊂ g (X ), we can choose x2, y2 ∈ X such that
gx2 = F (x1, y1) and gy2 = F (y1, x1). Since F satisfying the mixed
g-monotone property, we have gx0 ⪯ gx1 ⪯ gx2 and gy2 ⪯ gy1 ⪯ gy0.
By continuing this process, we can construct two sequences (xn) and
(yn) in X such that gxn = F (xn−1, yn−1) ⪯ gxn+1 = F (xn, yn) and
gyn+1 = F (yn, xn) ⪯ gyn = F (yn−1, xn−1). Further, for n = 1, 2, ..., by
(2.1), we have

d (gxn, gxn+1) = d (F (xn−1, yn−1) , F (xn, yn))

≤ Ad (gxn−1, gxn) +Bd (gyn−1, gyn) ,

and similarly,

d (gyn, gyn+1) = d (F (yn−1, xn−1) , F (yn, xn))

≤ Ad (gyn−1, gyn) +Bd (gxn−1, gxn) .

Therefore, by letting dn = d (gxn, gxn+1) + d (gyn, gyn+1) , we have

dn = d

≤ f (gxn, gxn+1) + d (gyn, gyn+1)

≤ Ad (gxn−1, gxn) +Bd (gyn−1, gyn)

+Ad (gyn−1, gyn) +Bd (gxn−1, gxn)

≤ (A+B) (d (gxn−1, gxn) + d (gyn−1, gyn))

≤ (A+B) dn−1.

If we set C = A+B, then for all n ∈ N , we have

(2.2) 0 ≤ dn ≤ Cdn−1 ≤ C2dn−2 ≤ · · · ≤ Cnd0.
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If d0 = 0 then (x0, y0) is a coupled fixed point of F . Now, let d0 > θ.
For each n ≥ m, we have

d (gxn, gxm) ≤ d (gxn, gxn−1)

+ d (gxn−1, gxn−2) + · · ·+ d (gxm−1, gxm) ,

and

d (gyn, gym) ≤ d (gyn, gyn−1)

+ d (gyn−1, gyn−2) + · · ·+ d (gym−1, gym) .

We have

d (gxn, gxm) + d (gyn, gym) ≤ dn−1 + dn−2 + dn−3 + · · ·+ dm

≤
(
Cn−1 + Cn−2 + · · ·+ Cm

)
d0

≤
(
Cn−1 + Cn−2 + · · ·+ Cm + · · ·

)
d0

≤ Cm (I − C)−1 d0.

So

d (gxn, gxn+1) ≤ (A+B)n (d (gx0, gx1) + d (gy0, gy1)) ,

and

d (gyn, gyn+1) ≤ (A+B)n (d (gx0, gx1) + d (gy0, gy1)) .

Let m,n ∈ N with m > n. Since

d (gxn, gxm) ≤
m−1∑
i=n

d (gxi, gxi+1) ,

thus,

d (gxn, gxm) ≤ (I −A−B)−1(A+B)n (d (gx0, gx1) + d (gy0, gy1)) ,

which implies that {gxn} is a Cauchy sequence in g (X ), and similarly
{gyn} is a Cauchy sequence in g (X ). Since g (X ) is a complete met-
ric space, there exist gx, gy ∈ g (X ) such that limn→∞ gxn = gx and
limn→∞ gyn = gy. Also

d (F (x, y) , gx) ≤ d (F (x, y) , gxn+1) + d (gxn+1, gx)

= d (F (x, y) , F (xn, yn) + d (gxn+1, gx))

≤ Ad (gxn, gx) +Bd (gyn, gy) + d (gxn+1, gx) .

Therefore, d (F (x, y) , gx) = θ, and so F (x, y) = gx. Similarly, F (y, x) =
gy, that is (gx, gy) is a coupled coincidence fixed point of F and g. Now,
if (gx′, gy′) is another coupled coincidence fixed point of F and g, then

d
(
gx′, gx

)
= d

(
F
(
x′, y′

)
, F (x, y)

)
≤ Ad

(
gx′, gx

)
+Bd

(
gy′, gy

)
,
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and

d
(
gy′, gy

)
= d

(
F
(
y′, x′

)
, F (y, x)

)
≤ Ad

(
gy′, gy

)
+Bd

(
gx′, gx

)
.

Then

d
(
gx′, gx

)
+ d

(
gy′, gy

)
≤ (A+B) d

(
gx′, gx

)
+ d

(
gy′, gy

)
.

It follows that d (gx′, gx) + d (gy′, gy) (I − C) ≤ θ. Since C ̸= I,(2.8)
implies that d (gx′, gx) + d (gy′, gy) = θ. Hence, we have (gx′, gy′) =
(gx, gy) . □

It is a worth notice that when the matrices A and B in Theorem 2.1 are
equal, we have the following result.

Corollary 2.2. Let (X ,⪯) be a partially ordered set and (X , d) be a
complete generalized metric space which satisfies condition (NDI), and
for all x, y, u, v ∈ X , F : X ×X → X and g : X → X with gx ⪯ gu, gv ⪯
gy the following condition is satisfied:

(2.3) d (F (x, y) , F (u, v)) ≤ A

2
[d (gx, gu) + d (gy, gv)] ,

such that A = (aij) ∈ Mm×m (R+) , is a nonzero matrix in ZM con-
vergese to zero. Let F and g satisfy the following conditions

(i) F (X × X ) ⊂ g (X ),
(ii) g (X ) is a complete subspace of X , and
(iii) F has the mixed g-monotone property.

If there exist x0, y0 ∈ X such that g (x0) ⪯ F (x0, y0) and F (y0, x0) ⪯
g (y0), then F and g have a unique coupled coincidence fixed point.

Proof. In Theorem 2.1, take A = B = A
2 . □

Corollary 2.3. Let (X ,⪯) be a partially ordered set and (X , d) be a
complete generalized metric space that satisfies the condition (NDI), and
for all x, y, u, v ∈ X , F : X × X → X with the following condition:

(2.4) d (F (x, y) , F (u, v)) ≤ A

2
[d (x, u) + d (y, v)] ,

where A = (aij) ∈ Mm×m (R+) , is a nonzero matrix in ZM. Also,it is
satisfied for some comparable pairs x ⪯ u, v ⪯ y and F has the mixed
monotone property, If there exist x0, y0 ∈ X such that x0 ⪯ F (x0, y0)
and F (y0, x0) ⪯ y0, then there exist x, y ∈ X such that x = F (x, y) and
y = F (y, x).

Proof. It follows from Corollary 2.2 by taking g = identity map. □
Example 2.4. Let X = [0, 1]× [0, 1]. Define d : X × X → R2 with

d ((x1, y1) , (x2, y2)) = (|x1 − x2|, |y1 − y2|) .
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Then (X , d) is a complete generalized metric space. Consider the
mapping F : X × X → X with F (U, V ) =

(
x+u
3 , y+v

3

)
, where U =

(x, y) , V = (u, v). Then F satisfies the contractive condition (2.4), for

A =

(
1
3 0
0 1

3

)
, that is,

(2.5) d (F (x, y) , F (u, v)) ≤ A

2
[d (x, u) + d (y, v)] .

Therefore, by Corollary 2.3, F has a unique coupled fixed point, which
in this case is (0, 0).

Let (X , ⟨·, ·⟩) be a real Hilbert space, and let T : X → X be a nonex-
pansive potential operator such that there is a functional J : X → R with
J (0) = 0 and J ′ = T . Consider the measure space (Ω, µ) (Ω = [0, 1])
such that µ (Ω) = 1, and consider L2 (Ω, X) that is consists of all µ-
strongly measurable functions u : Ω → X such that

∫
Ω ∥u (t) ∥2dµ < ∞

with L2-norm. For r > 0, define Br = {x ∈ X : ∥x∥ ≤ r} and
Sr = {x ∈ X : ∥x∥ = r}. An interesting question that arises here is:
when a fixed point of T lies in the interior of Br? Ricceri answered this
question in [8].

Corollary 2.5. Let (X , ⟨·, ·⟩) be a partially ordered real Hilbert space
with (NDI) property and with generalized norm, let T : X → X be an
A/2-nonexpansive potential operator and F : X × X → X such that
F (x, y) = T (x). If there exist x0, y0 ∈ X such that x0 ⪯ F (x0, y0) and
F (y0, x0) ⪯ y0, then T has a fixed point x lying in the interior of Br

and (x, x) is a coupled fixed point of F .

Proof. Since T is A/2-nonexpansive, so F satisfies (2.4) and T has a
unique fixed point x lying in Br (see [5] or [3, Theorem 1.3]). Thus
Corollary 2.3 implies that F has a coupled fixed point x, y ∈ X such
that x = F (x, y) and y = F (y, x). The uniqueness of fixed point for T
caused that x = y. □

Theorem 2.6. Let (X ,⪯) be a partially ordered set, (X , d) be a complete
generalized metric space, and for all x, y, u, v ∈ X , F : X ×X → X and
g : X → X with gx ⪯ gu and gv ⪯ gy, satisfy the following condition

(2.6) d (F (x, y) , F (u, v)) ≤ Ad (gx, gu) +Bd (gy, gv) ,

where A = (aij) , B = (bij) ∈ Mm×m (R+) , ∥A+B∥ < 1 where A and B
are nonzero matrices in ZM. Suppose that F has the mixed g-monotone
property, F (X × X ) ⊂ g (X ), g is continuous and g commutes with F .
Also assume that F is continuous or X satisfies in condition (NDI). If
there exist x0, y0 ∈ X such that gx0 ⪯ F (x0, y0) and F (y0, x0) ⪯ gy0,
then F and g have a coupled coincidence point.
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Proof. As in the proof of Theorem 2.1, we can construct two Cauchy
sequences (gxn) and (gyn) in X . Since (X , d) is complete, there exist
x, y ∈ X such that (gxn+1) converges to x and (gyn+1) converges to y.
Since g is continuous, we have (ggxn+1) converges to gx and (ggyn+1)
converges to gy. But

ggxn+1 = g (F (xn, yn)) = F (gxn, gyn) ,

and

ggyn+1 = g (F (yn, xn)) = F (gyn, gxn) .

We complete the proof in two cases: (1) Suppose that F is continu-
ous, then we have (F (gxn, gyn)) converges to F (x, y) and (F (gyn, gxn))
converges to F (y, x). Thus (ggxn+1) converges to F (x, y) and (ggyn+1)
converges to F (y, x). Therefore,

d (ggxn+1, gx) → θ, d (ggxn+1, F (x, y)) → θ.

It follows that

d (gx, F (x, y)) ≤ d (gx, ggxn+1) + d (ggxn+1, F (x, y)) .

Therefore, d (gx, F (x, y)) = θ and gx = F (x, y). Similarly, gy =
F (y, x). Hence, (x, y) is a coincidence coupled point of F and g.

(2) Suppose that X satisfies the condition (NDI). Then gxn ⪯ x and
y ⪯ gyn for all n ∈ N . Hence

d (ggxn+1, F (x, y)) = d (F (gxn, gyn) , F (x, y))

≤ Ad (ggxn, gx) +Bd (ggyn, gy) .

Since (ggxn) converges to gx and (ggyn) converges to y, we get (ggxn)
converges to F (x, y). Similarly, (ggyn) converges to F (y, x). By similar
arguments as above, one can show that gx = F (x, y) and gy = F (y, x).
Thus, the pair (x, y) is a coupled coincidence point of F and g. □
Corollary 2.7. Let (X ,⪯) be a partially ordered set, (X , d) be a com-
plete generalized metric space, and, for all x, y, u, v ∈ X , F : X×X → X
and g : X → X with gx ⪯ gu and gv ⪯ gy satisfy the following condition

(2.7) d (F (x, y) , F (u, v)) ≤ A [d (gx, gu) + d (gy, gv)] ,

such that A = (aij) ∈ Mm×m (R+), where A is a nonzero matrix in ZM.
Suppose that F has the mixed g-monotone property, F (X × X ) ⊂ g (X ),
g is continuous and g commutes with F . Also, assume that either F is
continuous or X has the condition (NDI).

If there exist x0, y0 ∈ X such that gx0 ⪯ F (x0, y0) and F (y0, x0) ⪯
gy0, then F and g have a coupled coincidence point.

Proof. In Theorem 2.6, take A = B = A
2 . □
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Theorem 2.8. In addition to the hypothesis of Theorem 2.1, suppose
that for every (x, y) , (x∗, y∗) ∈ X × X , there exists (u, v) ∈ X × X
such that (F (u, v) , F (v, u)) is comparable to (F (x, y) , F (y, x)) and
(F (x∗, y∗) , F (y∗, x∗)).

If (x, y) and (x∗, y∗) are coupled coincidence points of F and g, then
F (x, y) = gx = gx∗ = F (x∗, y∗) and F (y, x) = gy = gy∗ = F (y∗, x∗).
Moreover, if F and g commutes, then F and g have a unique common
fixed point, that is, there exists a unique pair (x, y) ∈ X × X such that
x = gx = F (x, y) and y = gy = F (y, x).

Proof. Following the proof of Theorem 2.1, there exists (x, y) ∈ X ×
X such that F (x, y) = gx = p and F (y, x) = gy = q. Thus the
existence of a coupled coincidence point is confirmed. Now, let (x∗, y∗)
be another coincidence point of F and g; that is, F (x∗, y∗) = gx∗ and
F (y∗, x∗) = gy∗. By the additional assumption, there is (u, v) ∈ X ×X
such that (F (u, v) , F (v, u)) is comparable to (F (x, y) , F (y, x)) and
(F (x∗, y∗) , F (y∗, x∗)).

Let u0 = u, v0 = v, x0 = x, y0 = y, x∗0 = x∗ and y∗0 = y∗. Since
F (X × X ) ⊆ gX, we can construct the sequences (gun), (gvn), (gxn),
(gyn), (gx

∗
n), and (gy∗n), such that gun+1 = F (un, vn), gvn+1 = F (vn, un),

gxn+1 = F (xn, yn), gyn+1 = F (yn, xn), gx
∗
n+1 = F (x∗n, y

∗
n) and gy∗n+1 =

F (y∗n, x
∗
n). Since

(gx, gy) = (F (x, y) , F (y, x)) = (gx1, gy1) ,

and

(F (u, v) , F (v, u)) = (gu1, gv1) ,

are comparable, then gx ⪯ gu1 and gv1 ⪯ gy. One can show that
gx ⪯ gun, and gvn ⪯ gy for all n ∈ N . From

d (gx, gun+1) = d (F (x, y) , F (un, vn)) ≤ Ad (gx, gun) +Bd (gy, gvn) ,

and

d (gy, gvn+1) = d (F (vn, un) , F (y, x)) ≤ Ad (gvn, gy) +Bd (gun, gx) ,

we have

d (gx, gun+1) + d (gy, gvn+1) ≤ (A+B) (d (gx, gun) + d (gy, gvn)) .

Since

d (gx, gun+1) ≤ d (gx, gun+1) + d (gy, gvn+1) ,

we have

d (gun+1, gx) ≤ (A+B) (d (gx, gun) + d (gy, gvn))

≤ (A+B)2 (d (gx, gun−1) + d (gy, gvn−1))
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...

≤ (A+B)n+1 (d (gx, gu) + d (gy, gv)) .

Thus, gun+1 converges to gx in (X , d). Similarly, we may show that
gvn+1 converges to gy in (X , d). Analogously, we can show that gun+1

converges to gx∗ and gvn+1 converges to gy∗ in (X , d). Since (gun+1)
converges to gx and gx∗, we get gx = gx∗. Also, since (gvn+1) converges
to gy and gy∗, we get gy = gy∗. Thus, if (x, y) and (x∗, y∗) are coupled
coincidence points of F and g, then

F (x, y) = gx = gx∗ = F (x∗, y∗) ,

and

F (y, x) = gy = gy∗ = F (y∗, x∗) .

Assume that F and g commute, then

gp = g (gx) = g (F (x, y)) = F (gx, gy) = F (p, q) ,

and

gq = g (gy) = g (F (y, x)) = F (gy, gx) = F (q, p) .

Hence, the pair (p, q) is also a coupled coincidence point of F and
g. Thus, we have gp = gx and gq = gy. Hence gp = p and gq = q.
Therefore p = gp = F (p, q) and q = gq = F (q, p).

Thus (p, q) is a coupled common fixed point of F and g. To prove
the uniqueness, let (s, t) be any coupled common fixed point of F and
g. Then s = gs = F (s, t) and t = gt = F (t, s).

Since the pair (s, t) is a coupled coincidence point of F and g, we have
gs = gx and gt = gy. Thus s = gs = gp = p and t = gt = gq = q. This
shows that the coupled fixed point is unique. □

3. Application in Linear Matrix Equations

Consider the linear matrix equations of the type

(3.1) X −A∗
1XA1 − · · · −A∗

mXAm = Q,

and

(3.2) X +A∗
1XA1 + · · ·+A∗

mXAm = Q,

where Q is a positive definite matrix and A1, . . . , Am are arbitrary n×n
matrices. We denote the set of all n× n matrices, n× n Hermitian ma-
trices and n×n positive definite matrices by M (n), H (n) and P (n), re-
spectively. Clearly, we have the chain P (n) ⊆ H (n) ⊆ M (n). Consider
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the spectral norm, ∥A∥ =
√
λ+ (A∗A) where λ+ (A∗A) is the largest

eigenvalue of A∗A. Define maps G and K on H (n) by

(3.3) G (X) = Q+
m∑
i=1

A∗
iXAi , K (X) = Q−

m∑
i=1

A∗
iXAi.

The fixed points of G are solutions of (3.1) and the fixed points of
K are solutions of (3.2). Fixed point theorems for these functions are
studied in [6]. Now, we extend the above equations as follows:

(3.4)

 X −A∗
1XA1 − · · · −A∗

mXAm = Q,

Y −B∗
1Y B1 − · · · −B∗

t Y Bt = Q′,

and

(3.5)

 X +A∗
1XA1 + · · ·+A∗

mXAm = Q,

Y +B∗
1Y B1 + · · ·+B∗

t Y Bt = Q′,

whereQ andQ′ are positive definite matrices, A1, . . . , Am andB1, . . . , Bm

are arbitrary n× n matrices. Define maps F1 : H (n)×H (n)×H (n)×
H (n) = H (n)4 → H (n) × H (n) and F2 : H (n) × H (n) × H (n) ×
H (n) → H (n)×H (n) as follows
(3.6)

F1 (U, V ) =

(
Q+

m∑
i=1

A∗
i

(
X +X ′)Ai, Q

′ +

t∑
i=1

B∗
i

(
Y + Y ′)Bi

)
,

and
(3.7)

F2 (U, V ) =

(
Q−

m∑
i=1

A∗
i

(
X +X ′)Ai, Q

′ −
t∑

i=1

B∗
i

(
Y + Y ′)Bi

)
,

where U = (X,Y ) and V = (X ′, Y ′). We consider the trace norm ∥ · ∥1
on H (n) as ∥A∥1 =

∑n
i=1 si (A), where si (A)’s are singular values of A.

For Q ∈ P (n) we define ∥A∥1,Q = ∥Q
1
2AQ

1
2 ∥1. Then H (n) by this norm

becomes a complete metric space for any positive definite Q. Let � be
a partially order on H (n), as defined in [6] (we use � and � instead
of ≤ and <, respectively, on H (n)). We consider the partial order on
H (n)×H (n) as follows

(3.8) (X,Y ) ⪯
(
X ′, Y ′) ⇔ X �X ′ and Y � Y ′.

Similarly, we can extend this for H (n)4 as follows

(3.9) (U, V ) ⪯̃
(
U ′, V ′) ⇔ U ⪯ U ′ and V ⪯ V ′.
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We define ∥ · ∥(1,1),(Q,Q′) : H (n)×H (n) → R2 by

∥(A,B)∥(1,1),(Q,Q′) =
(
∥A∥1,Q, ∥B∥1,Q′

)
=
(∥∥∥Q 1

2AQ
1
2

∥∥∥
1
,
∥∥∥Q′ 1

2BQ′ 1
2

∥∥∥
1

)
.

Clearly, H (n)×H (n) equipped with the above metric is a complete
metric space for any positive definite Q and Q′.

Theorem 3.1. Let Q,Q′ ∈ P (n) such that

m∑
i=1

A∗
iQAi �Q,

t∑
i=1

B∗
i Q

′Bi �Q′,∥∥∥∥∥
m∑
i=1

Q− 1
2A∗

iQAiQ
− 1

2

∥∥∥∥∥ <
1

2

and ∥∥∥∥∥
t∑

i=1

Q′− 1
2B∗

i Q
′BiQ

′− 1
2

∥∥∥∥∥ <
1

2
.

Then F2 has a unique coupled fixed point in H (n).

Proof. Let (U, V ) , (U ′, V ′) ∈ H (n)4 such that (U, V ) ⪯̃ (U ′, V ′), where

U = (X1, Y1) , V =
(
X ′

1, Y
′
1

)
, U ′ = (X2, Y2) ,

and V ′ = (X ′
2, Y

′
2). Take U0 = (0, 0) and V0 = (Q,Q′). Then

F2 (U0, V0) ⪯ V0, U0 ⪯ F2 (U0, V0) .

Furthermore, for given U = (X1, Y1) , V = (X ′
1, Y

′
1) , U

′ = (X2, Y2) and
V ′ = (X ′

2, Y
′
2), we have∥∥F2

(
U ′, V ′)− F2 (U, V )

∥∥
(1,1),(Q,Q′)

=

∥∥∥∥∥
(

m∑
i=1

A∗
i

(
X2 +X ′

2 −X1 −X ′
1

)
Ai,

t∑
i=1

B∗
i

(
Y2 + Y ′

2 − Y1 − Y ′
1

)
Bi

)∥∥∥∥∥
(1,1),(Q,Q′)

=

(
tr

(
m∑
i=1

Q
1
2A∗

i

(
X2 +X ′

2 −X1 −X ′
1

)
AiQ

1
2

)
,

tr

(
t∑

i=1

Q′ 1
2B∗

i

(
Y2 + Y ′

2 − Y1 − Y ′
1

)
BiQ

′ 1
2

))

=

(
tr

(
m∑
i=1

Q− 1
2A∗

iQAiQ
− 1

2Q
1
2
(
X2 +X ′

2 −X1 −X ′
1

)
Q

1
2

)
,

tr

(
t∑

i=1

Q′− 1
2B∗

i Q
′BiQ

′− 1
2Q′ 1

2
(
Y2 + Y ′

2 − Y1 − Y ′
1

)
Q′ 1

2

))

=

(
tr

((
m∑
i=1

(
Q− 1

2A∗
iQAiQ

− 1
2

)(
Q

1
2
(
X2 +X ′

2 −X1 −X ′
1

)
Q

1
2

)))
,
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tr

((
t∑

i=1

Q′− 1
2B∗

i Q
′BiQ

′− 1
2

)(
Q′ 1

2
(
Y2 + Y ′

2 − Y1 − Y ′
1

)
Q′ 1

2

)))

≤

(∥∥∥∥∥
m∑
i=1

Q− 1
2A∗

iQAiQ
− 1

2

∥∥∥∥∥ ∥∥X2 +X ′
2 −X1 −X ′

1

∥∥
1,Q

,∥∥∥∥∥
t∑

i=1

Q′− 1
2B∗

i Q
′BiQ

′− 1
2

∥∥∥∥∥∥∥Y2 + Y ′
2 − Y1 − Y ′

1

∥∥
1,′Q

)

=


∥∥∥∥ m∑
i=1

Q− 1
2A∗

iQAiQ
− 1

2

∥∥∥∥ 0

0

∥∥∥∥ t∑
i=1

Q′− 1
2B∗

i Q
′BiQ

′− 1
2

∥∥∥∥


×
(
∥X2 +X ′

2 −X1 −X ′
1∥1,Q, ∥Y2 + Y ′

2 − Y1 − Y ′
1∥1,′Q

)
.

In the above statements, we used Lemma 3.1 of [6]. Set

α =

∥∥∥∥∥
m∑
i=1

Q− 1
2A∗

iQAiQ
− 1

2

∥∥∥∥∥ ,
and

β =

∥∥∥∥∥
t∑

i=1

Q′− 1
2B∗

i Q
′BiQ

′− 1
2

∥∥∥∥∥ .
Then

∥F2 (U
′, V ′)− F2 (U, V ) ∥(1,1),(Q,Q′),

≤
[

α 0
0 β

]
(∥X2 −X1∥1,Q + ∥X ′

2 −X ′
1∥1,Q, ∥Y2 − Y1∥1,Q′ + ∥Y ′

2 − Y ′
1∥1,Q′)

=

[
α 0
0 β

]
((∥X2 −X1∥1,Q, ∥Y2 − Y1∥1,Q′) + (∥X ′

2 −X ′
1∥1,Q, ∥Y ′

2 − Y ′
1∥1,Q′))

=

[
α 0
0 β

] (
∥U ′ − U∥(1,1),(Q,Q′), ∥V − V ′∥(1,1),(Q,Q′)

)
.

Now apply Theorem 2.1. □

The above theorem says that, under the conditions of this theorem,
the equation system (3.5) has a unique solution.

4. Application in nonlinear matrix equations

In this section, we study the following class of nonlinear matrix equa-
tions system:

(4.1)

 X +A∗
1F (X)A1 + · · ·+A∗

mF (X)Am = Q,

Y +B∗
1G (Y )B1 + · · ·+B∗

t G (Y )Bt = Q′,
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whereQ andQ′ are positive definite matrices, A1, . . . , Am and B1, . . . , Bt

are arbitrary n × n matrices and F and G are continuous maps, from
P (n) × P (n) into P (n), where n ≥ 3. We define F : H (n) ×H (n) ×
H (n)×H (n) = H (n)4 → H (n)×H (n) as follows
(4.2)

F (U, V ) =

(
Q−

m∑
i=1

A∗
iF ((X,Y ))Ai, Q

′ −
t∑

i=1

B∗
i G
((
X ′, Y ′))Bi

)
,

for every U = (X,Y ) , V = (X ′, Y ′) ∈ H (n)×H (n). Clearly, if F has a
unique coupled fixed point then (4.1) has a unique solution. We consider
the norm ∥ · ∥ : H (n)×H (n) → R2 such that

(4.3) ∥ (A,B) ∥1,1 = (∥A∥1, ∥B∥1) , A,B ∈ H (n) .

Before considering the system (4.1), we take into account the result
obtained in [6] for the following nonlinear matrix equation:

(4.4) X +A∗
1F (X)A1 + · · ·+A∗

mF (X)Am = Q,

where Q and A1, . . . , Am are as above. By reviewing the proof of The-
orem 4.1, we reach to a gap in the assumption. At first, note that the
space of all n×n, M (n) is a unital Banach algebra with of unit In, where
In is identity the matrix n×n . Authors in [6] considered the Banach al-

gebraM (n) with two norms ∥A∥ =
√

λ+ (A∗A) and ∥A∥1 =
∑n

i=1 si (A)
for A ∈ M (n). It is known that all norms on a finite dimensional Ba-
nach algebra are equivalent. It is rutin in the Banach algebra theory
that we assume the norm of identity element is equale to 1 (this holds
when we use the spectral norm). Now, we use the other norm i.e.,
∥In∥1 =

∑n
i=1 si (In) = n. We rewrite Theorem 4.1 and investigate it.

Let Q ∈ P (n). Assume that there exists a positive number M for
which

∑m
j=1AjA

∗
j < M · In and such that for X ≤ Y we have

(4.5) |tr (F (Y )−F (X)) | ≤ 1

M
|tr (Y −X) |.

Then (4.4) has a unique solution in P (n).
In the proof of the above stated result, authors proved the following

∥G (Y )− G (X)∥1 ≤

∥∥∥∥∥
m∑
i=1

AjA
∗
j

∥∥∥∥∥ ∥F (Y )−F (X)∥1 .

We consider the proof with two norms ∥ · ∥ (spectral norm) and ∥ · ∥1.
For ∥ · ∥1, by using of (4.5) the condition (1) of Theorem 2.1 does not
hold. Because

∥G (Y )− G (X)∥1 ≤

∥∥∥∥∥
m∑
i=1

AjA
∗
j

∥∥∥∥∥ ∥F (Y )−F (X)∥1
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≤ M∥In∥1|tr (F (Y )−F (X)) |
≤ ∥In∥1|tr (Y −X) |
= n|tr (Y −X) |.

Thus, the above statement does not satisfy condition (1) of Theorem
2.1 of [6]. If we use the spectral norm, then we obtain ∥G (Y )−G (X) ∥1 ≤
|tr (Y −X) |, again it dose not satisfy in condition (1), note that in
condition (1), there is a 0 < c < 1. Now consider the following conditions
on M and (4.5):

(i) M > 1 and |tr (F (Y )−F (X)) | ≤ 1
(n+1)M |tr (Y −X) |.

(ii) M > n and |tr (F (Y )−F (X)) | ≤ 1
M2 |tr (Y −X) |.

We write the correction of Theorem 4.1 of [6] with our paper notations
for partial orders as follows:

Theorem 4.1. Let Q ∈ P (n). Assume that there exists a positive
number M for which

∑m
j=1AjA

∗
j �M · In and such that for X � Y we

have one of the condtions (i) or (ii) holds. Then (4.4) has a unique
solution in P (n).

Now, we consider the nonlinear matrix equation system (4.1) as fol-
lows:

Theorem 4.2. Let Q,Q′ ∈ P (n) and the following statements hold.

(i)
∑m

i=1A
∗
iF ((X,Y ))Ai �Q and

∑t
i=1B

∗
i G ((X ′, Y ′))Bi �Q′.

(ii) There exist positive numbers M,M ′ such that

m∑
i=1

A∗
iAi �M · In,

t∑
i=1

B∗
i Bi �M ′ · It,

and satisfy in one of the following conditions:
1. M,M ′ > 1 and for every (U, V ) , (U ′, V ′) ∈ H (n)4,(

|tr
(
F (U)−F

(
U ′)) |, |tr (G (V )− G

(
V ′)) |)

≤
(

1

(n+ 1)M
|tr
(
U − U ′) |, 1

(t+ 1)M ′ |tr
(
V − V ′) |) .

2. M > n, M ′ > t and for every (U, V ) , (U ′, V ′) ∈ H (n)4,(
|tr
(
F (U)−F

(
U ′)) |, |tr (G (V )− G

(
V ′)) |)

≤
(

1

M2
|tr
(
U − U ′) |, 1

M ′2 |tr
(
V − V ′) |) .

Then F has a unique coupled fixed point in H (n).
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Proof. Let (U, V ) , (U ′, V ′) ∈ H (n)4 such that (U, V ) ⪯̃ (U ′, V ′), where
U = (X1, Y1) , V = (X ′

1, Y
′
1) , U

′ = (X2, Y2) and V ′ = (X ′
2, Y

′
2). Take

U0 = (0, 0) and V0 = (Q,Q′). Then F (U0, V0) ⪯ V0 and U0 ⪯ F (U0, V0).
Furthermore, for given U = (X1, Y1) , V = (X ′

1, Y
′
1) , U

′ = (X2, Y2) and
V ′ = (X ′

2, Y
′
2) we have∥∥F (U ′, V ′)− F (U, V )

∥∥
(1,1)

=

∥∥∥∥∥
(

m∑
i=1

A∗
i (F (X2, Y2)−F (X1, Y1))Ai,

t∑
i=1

B∗
i

(
G
(
X ′

2, Y
′
2

)
− G

(
X ′

1, Y
′
1

))
Bi

)∥∥∥∥∥
(1,1)

=

(
m∑
i=1

tr (AiA
∗
i (F (X2, Y2)−F (X1, Y1))) ,

t∑
i=1

tr
(
B∗

i Bi

(
G
(
X ′

2, Y
′
2

)
− G

(
X ′

1, Y
′
1

))))

=

(
tr

(
m∑
i=1

A∗
iAi (F (X2, Y2)−F (X1, Y1))

)
,

tr

(
t∑

i=1

B∗
i Bi

(
G
(
X ′

2, Y
′
2

)
− G

(
X ′

1, Y
′
1

))))

=

(
tr

(
m∑
i=1

(A∗
iAi) (F (X2, Y2)−F (X1, Y1))

)
,

tr

((
t∑

i=1

B∗
i Bi

)(
G
(
X ′

2, Y
′
2

)
− G

(
X ′

1, Y
′
1

))))

≤

(∥∥∥∥∥
m∑
i=1

A∗
iAi

∥∥∥∥∥ ∥ (F (X2, Y2)−F (X1, Y1) ∥1) ,∥∥∥∥∥
t∑

i=1

B∗
i Bi

∥∥∥∥∥ ∥ (G (X ′
2, Y

′
2

)
− G

(
X ′

1, Y
′
1

)
∥1
))

=


∥∥∥∥ m∑
i=1

A∗
iAi

∥∥∥∥ 0

0

∥∥∥∥ t∑
i=1

B∗
i Bi

∥∥∥∥


×
(
∥F (X2, Y2)−F (X1, Y1) ∥1, ∥G

(
X ′

2, Y
′
2

)
− G

(
X ′

1, Y
′
1

)
∥1
)
.

In the above statements, we used Lemma 3.1 of [6]. Suppose that (1)
holds. Then,

∥F
(
U ′, V ′)− F (U, V ) ∥(1,1)

≤
[
M∥In∥1 0

0 M ′∥It∥1

](
1

(n+ 1)M
(∥X2 −X1∥1 + ∥Y2 − Y1∥1) ,

1

(t+ 1)M ′
(
∥X ′

2 −X ′
1∥1 + ∥Y ′

2 − Y ′
1∥1
))

=

[
1

(n+1) 0

0 1
(t+1)

] ((
∥X2 −X1∥1 + ∥Y ′

2 − Y ′
1∥1
)
,
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∥Y2 − Y1∥1 + ∥X ′

2 −X ′
1∥1
))

=

[
1

(n+1) 0

0 1
(t+1)

] (
∥U ′ − U∥(1,1), ∥V − V ′∥(1,1)

)
.

We obtain similar results for case (2), that provide the required con-
ditions in Theorem 2.1. This completes the proof. □
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