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Common Fixed Point Results on Complex-Valued S-Metric

Spaces

Nihal Taş1∗ and Nihal Yılmaz Özgür2

Abstract. Banach’s contraction principle has been improved and
extensively studied on several generalized metric spaces. Recently,
complex-valued S-metric spaces have been introduced and studied
for this purpose. In this paper, we investigate some generalized
fixed point results on a complete complex valued S-metric space.
To do this, we prove some common fixed point (resp. fixed point)
theorems using different techniques by means of new generalized
contractive conditions and the notion of the closed ball. Our results
generalize and improve some known fixed point results. We provide
some illustrative examples to show the validity of our definitions
and fixed point theorems.

1. Introduction

During the last several decades, Banach’s contraction principle has
been improved and studied by some authors on metric and several gen-
eralized metric spaces. In 1977, Rhoades studied some comparisons of
known contractive mappings and proved new fixed point theorems [27].
Also he introduced a new contractive mapping called as a Rhoades’ map-
ping. In 1994, Dien proved a common fixed point theorem for the pair of
mappings satisfying both the Banach contraction principle and Caristi’s
condition in a complete metric space [6]. In 1998, Liu, Xu and Cho gave
necessary and sufficient conditions for the existence of fixed and com-
mon fixed points of self-mappings of metric spaces [12]. They defined
the notion of an L-mapping to give a fixed point theorem for a Rhoades’
mapping. The present authors defined Rhoades’ condition on S-metric
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spaces and proved some fixed point theorems [15]. Some new contrac-
tive mappings were studied on S-metric spaces and investigated their
relationships with the Rhoades’ condition [16]. It was generalized and
extended known fixed point theorems in the literature using S-metric
spaces [17]. New generalized fixed point resuılts have been obtained
on several generalized metric spaces such as ordered S-metric spaces,
C∗-algebra-valued S-metric spaces (see [3, 4, 10, 11, 26, 29, 30]).

In 2011, Azam, Fisher and Khan introduced complex-valued metric
spaces and obtained sufficient conditions for the existence of common
fixed points of a pair of mappings satisfying contractive type conditions
[5]. In 2014, Ahmad, Azam and Saejung improved the conditions of con-
tractive mappings from the whole space to a closed ball and established
common fixed point theorems [1]. In 2014, Öztürk established common
fixed point theorems for two pairs of weakly compatible self-mappings
of a complex-valued metric space [22]. Also, Öztürk and Kaplan proved
common fixed point theorems for two Banach pairs of mappings with
f -contraction [23]. In 2015, some coupled common fixed point theo-
rems were obtained on a complex-valued Gb-metric space [24]. In 2014,
Mlaiki introduced the notion of a complex-valued S-metric space and
showed the existence and the uniqueness of a common fixed point of two
self-mappings on a complex valued S-metric space [13]. In [2], some
fixed point theorems were studied for new type generalized contrac-
tive mappings involving C-class function in complex-valued Gb-metric
spaces. Similar studies have been extensively studied on various gener-
alized complex valued metric spaces (see [7–9, 25]).

In this paper, we investigate some common fixed point theorems on
complex valued S-metric spaces. In Section 2 we recall some definitions
and lemmas which are needed in the sequel. In Section 3 we obtain a new
generalization of the well known Banach’s contraction principle using the
notion of a complex-valued S-metric space. In Section 4 we introduce
new notions on complex-valued S-metric spaces. In Section 5 we give a
new common fixed point result on a complete complex-valued S-metric
space. In Section 6 we define the notions of an open ball and a closed
ball on a complex-valued S-metric space and give some applications of
common fixed point theory in view of the closed balls. In the whole
paper we give some examples to show the validity of our definitions and
fixed point theorems.

2. Preliminaries

Let C be the set of complex numbers and z1, z2 ∈ C. The partial
order ≾ is defined on C as follows:
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z1 ≾ z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2),

and

z1 ≺ z2 if and only if Re(z1) < Re(z2), Im(z1) < Im(z2).

Also we write z1 ≾ z2 if one of the following conditions hold:

(i) Re(z1) = Re(z2) and Im(z1) < Im(z2),
(ii) Re(z1) < Re(z2) and Im(z1) = Im(z2),
(iii) Re(z1) = Re(z2) and Im(z1) = Im(z2).

Note that
0 ≾ z1 ⋨ z2 ⇒ |z1| < |z2| ,

and
z1 ≾ z2, z2 ≺ z3 ⇒ z1 ≺ z3.

Now we recall some known definitions and lemmas as seen in the
references.

Definition 2.1 ([32]). The “max” function is defined for the partial
order relation ≾ as follow:

(i) max {z1, z2} = z2 ⇔ z1 ≾ z2.
(ii) z1 ≾ max {z2, z3} ⇒ z1 ≾ z2 or z1 ≾ z3.
(iii) max {z1, z2} = z2 ⇔ z1 ≾ z2 or |z1| < |z2|.

Lemma 2.2 ([32]). Let z1, z2, z3, . . . ∈ C and the partial order relation
≾ be defined on C. Then the following statements are satisfied:

(i) If z1 ≾ max {z2, z3} then z1 ≾ z2 if z3 ≾ z2,
(ii) If z1 ≾ max {z2, z3, z4} then z1 ≾ z2 if max {z3, z4} ≾ z2,
(iii) If z1 ≾ max {z2, z3, z4, z5} then z1 ≾ z2 if max {z3, z4, z5} ≾ z2,

and so on.

Definition 2.3 ([13]). Let X be a nonempty set. A complex-valued
S-metric on X is a function SC : X × X × X → C that satisfies the
following conditions for all x, y, z, t ∈ X:

(CS1) 0 ≾ SC(x, y, z),
(CS2) SC(x, y, z) = 0 if and only if x = y = z,
(CS3) SC(x, y, z) ≾ SC(x, x, t) + SC(y, y, t) + SC(z, z, t).
The pair (X,SC) is called a complex-valued S-metric space.

Example 2.4. Let X = C and the function SC : C × C × C → C be
defined by:

SC(z1, z2, z3) = |Re(z1)− Re(z3)|+ |Re(z2)− Re(z3)|
+ i(|Im(z1)− Im(z3)|+ |Im(z2)− Im(z3)| ,

for all z1, z2, z3 ∈ C. Then, it is easy to see that the function SC is a
complex-valued S-metric on C.
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We use the following definitions and lemmas in the next sections.

Definition 2.5 ([13]). Let (X,SC) be a complex-valued S -metric space.
Then

(i) A sequence {xn} in X converges to x if and only if for all ε
such that 0 ≺ ε ∈ C there exists a natural number n0 such that
for all n ≥ n0, we have SC(xn, xn, x) ≺ ε and it is denoted by
lim
n→∞

xn = x.

(ii) A sequence {xn} in X is called a Cauchy sequence if for all ε
such that 0 ≺ ε ∈ C there exists a natural number n0 such that
for all n,m ≥ n0, we have SC(xn, xn, xm) ≺ ε.

(iii) A complex-valued S-metric space (X,SC) is called complete, if
every Cauchy sequence is convergent.

Definition 2.6 ([13]). Two families of self-mappings {fi}mi=1 and {gi}ni=1
are said to be pairwise commuting if the following three conditions hold:

(i) fifj = fjfi for all i, j ∈ {1, 2, . . . ,m},
(ii) gkgl = glgk for all k, l ∈ {1, 2, . . . , n},
(iii) figk = gkfi for all i ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . . , n}.

Lemma 2.7 ([13]). Let (X,SC) be a complex-valued S-metric space
and {xn} be a sequence in X. Then {xn} converges to x if and only if
|SC(xn, xn, x)| → 0 as n→ ∞.

Lemma 2.8 ([13]). Let (X,SC) be a complex-valued S -metric space
and {xn} be a sequence in X. Then {xn} is a Cauchy sequence if and
only if |SC(xn, xn, xn+m)| → 0 as n→ ∞ .

Lemma 2.9 ([13]). If (X,SC) be a complex-valued S -metric space then

SC(x, x, y) = SC(y, y, x),

for all x, y ∈ X.

Corollary 2.10 ([13]). If f is a self-mapping on a complete complex
valued S-metric space (X,SC) that satisfies

SC(f
nx, fnx, fny) ≾ hSC(x, x, y),

for all x, y ∈ X and h a nonnegative real number such that h < 1 , then
f has a unique fixed point in X.

If we take n = 1 in Corollary 2.10, then we have the Banach’s con-
traction principle on a complex-valued S-metric space as seen in the
following theorem:

Theorem 2.11. Let (X,SC) be a complete complex-valued S -metric
space and f be a self-mapping of X satisfying

(2.1) SC(fx, fx, fy) ≾ hSC(x, x, y),
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for some h ∈ [0, 1) and all x, y ∈ X. Then f has a unique fixed point in
X.

Notice that there exists a self-mapping f which has a fixed point, but
it does not satisfy Banach’s contraction principle on complex-valued S-
metric spaces as we have seen in the following example:

Example 2.12. Let X = C and the function S : C × C × C → C be
defined

SC(z1, z2, z3) = |z1 − z3|+ |z1 + z3 − 2z2| ,
for all z1, z2, z3 ∈ C. Then the function S is a complex-valued S-metric
on C. Let us consider

fz = 1− z.

Then f is a self-mapping on the complete complex-valued S-metric space

[0, 1]. f has a fixed point z =
1

2
, but f does not satisfy the Banach’s

contraction principle.

Hence it is important to study some new fixed point theorems.

3. A New Generalized Fixed Point Theorem

In this section, we prove a new generalization of the well known Ba-
nach’s contraction principle using the notion of a complex-valued S -
metric space.

Let (X,SC) be a complex-valued S-metric space and f be a self-
mapping of X. There exist real numbers a, b satisfying a+ 3b < 1 with
a, b ≥ 0 such that

(3.1) SC(fx, fx, fy) ≾ aSC(x, x, y) + bmax

{
SC(fx, fx, x),SC(fx, fx, y),
SC(fy, fy, y),SC(fy, fy, x)

}
,

for all x, y ∈ X.

Theorem 3.1. Let (X,SC) be a complete complex valued S-metric space
and f be a self-mapping of X. If f satisfies the inequality (3.1), then f
has a unique fixed point in X.

Proof. Let x0 ∈ X and the sequence {xn} be defined as follows:

fnx0 = xn.

Suppose that xn ̸= xn+1 for all n. From the inequality (3.1), we get

SC(xn, xn, xn+1) = SC(fxn−1, fxn−1, fxn) ≾ aSC(xn−1, xn−1, xn)

+ bmax

{
SC(xn, xn, xn−1),SC(xn, xn, xn),

SC(xn+1, xn+1, xn),SC(xn+1, xn+1, xn−1)

}
= aSC(xn−1, xn−1, xn)
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+ bmax

 SC(xn, xn, xn−1),
SC(xn+1, xn+1, xn),
SC(xn+1, xn+1, xn−1)


= aSC(xn−1, xn−1, xn) + bα.

Then using the condition (CS3), we get

|SC(xn, xn, xn+1)| ≤ a |SC(xn−1, xn−1, xn)|+ b |α|
≤ a |SC(xn−1, xn−1, xn)|+ 2b |SC(xn+1, xn+1, xn)|
+ b |SC(xn−1, xn−1, xn)| ,

and so using Lemma 2.9, we have

(1− 2b) |SC(xn, xn, xn+1)| ≤ (a+ b) |SC(xn−1, xn−1, xn)| ,
which implies

(3.2) |SC(xn, xn, xn+1)| ≤
a+ b

1− 2b
|SC(xn−1, xn−1, xn)| .

Let β = a+b
1−2b . Since a + 3b < 1, β < 1. Using the inequality (3.2), we

obtain

(3.3) |SC(xn, xn, xn+1)| ≤ βn |SC(x0, x0, x1)| .
Now we prove that the sequence {xn} is Cauchy. For all n,m ∈ N,
n < m, using the inequality (3.3), we find

|SC(xn, xn, xm)| ≤ βn

1− β
|SC(x0, x0, x1)| .

Therefore |SC(xn, xn, xm)| → 0 as n,m → ∞. Consequently, {xn} is
a Cauchy sequence. Using the completeness hypothesis, there exists
x ∈ X such that {xn} → x. Now, we show that x is a fixed point of f .
Suppose that fx ̸= x. Then using the inequality (3.1), we have

SC(xn, xn, fx) = SC(fxn−1, fxn−1, fx) ≾ aSC(xn−1, xn−1, x)

+ bmax

{
SC(xn, xn, xn−1),SC(xn, xn, x),
SC(fx, fx, x),SC(fx, fx, xn−1)

}
,

and so taking limit for n→ ∞, we get

SC(x, x, fx) ≾ bSC(fx, fx, x),

and by Lemma 2.9, we obtain

|SC(fx, fx, x)| ≤ b |SC(fx, fx, x)| ,
which implies fx = x, that is, x is a fixed point of f . Now, we prove
that the fixed point x is unique. Suppose that y is another fixed point
of f such that x ̸= y. Using the inequality (3.1) and Lemma 2.9, we get

SC(fx, fx, fy) = SC(x, x, y) ≾ aSC(x, x, y)
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+ bmax

{
SC(x, x, x),SC(x, x, y),
SC(y, y, y),SC(y, y, x)

}
= (a+ b)SC(x, x, y),

and so
|SC(x, x, y)| ≤ (a+ b) |SC(x, x, y)| ,

which implies x = y since a+ b < 1. Consequently, x is the unique fixed
point of f . □
Remark 3.2. 1. Theorem 3.1 is a generalization of the Banach’s

contraction principle on a complete complex-valued S-metric
space.

2. If we take the function SC : X×X×X → [0,∞) in Theorem 3.1
then we get Theorem 1 given in [17] on page 233 on a complete
S-metric space.

3. If we consider Example 1 given in [17] on page 236, then we see
an example of a function that satisfies the inequality (3.1) but
not satisfy the Banach’s contraction principle.

4. Some Notions on Complex-Valued S-Metric Spaces

In this section, we introduce new concepts on a complex-valued S-
metric space. We give the definitions of CS-weakly computing and CS
-compatible mappings and investigate the relationships between them.

We begin the following definitions.

Definition 4.1. Let (X,SC) be a complex-valued S-metric space and
f, g : X → X be two mappings. Then f and g are called CS -weakly
commuting if and only if

SC(fgx, fgx, gfx) ≾ SC(fx, fx, gx),

for all x ∈ X.

Definition 4.2. Let f and g be self-mappings of a complex-valued S-
metric space (X,SC). The mappings f and g are called CS -compatible
if

lim
n→∞

SC(fgxn, fgxn, gfxn) = 0,

whenever {xn}∞n=1 is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t,

for some x ∈ X.

Notice that every CS-weakly commuting mappings are CS-compatible.
If f and g are two mappings of X into X such that

lim
n→∞

SC(fxn, fxn, gxn) = 0,
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this implies
lim
n→∞

SC(fgxn, fgxn, gfxn) = 0,

and so the mappings f and g are CS-compatible. But every CS -
compatible mappings are not always CS-weakly commuting as seen in
the following example:

Example 4.3. Let X = C and f, g be two self-mappings of C such that

fz = z2,

and
gz = eitz2,

for some fixed t ∈ R, t ̸= 2kπ, k ∈ Z, respectively.
Let us consider the function SC : C× C× C → C defined by

SC(z1, z2, z3) = |z1 − z3|+ |z2 − z3| ,
for all z1, z2, z3 ∈ C. Then SC is a complex-valued S-metric which
is called complex valued usual S-metric. It can be easily seen that
the functions f and g are CS-compatible but they are not CS-weakly
commuting.

Definition 4.4. Let (X,S) be a complex-valued S-metric space and
f : X → X be a mapping. f is called CS-orbitally continuous if x0 ∈ X
such that x0 = lim

i→∞
fnix for some x ∈ X, then fx0 = lim

i→∞
ffnix.

Now, we define the concept of CS-weakly compatibility.

Definition 4.5. Let (X,S) be a complex-valued S-metric space and f ,
g be two self-mappings of X. Then the pair (f, g) is called CS-weakly
compatible if fgx = gfx whenever fx = gx for all x ∈ X.

5. A Common Fixed Point Theorem

In this section, we obtain a new common fixed point theorem using
the notions of CS-weakly compatibility and commuting pair for six self-
mappings on a complete complex-valued S-metric space.

Theorem 5.1. Let (X,SC) be a complete complex-valued S-metric space
and f, g, h, k, l,m be six self-mappings of X satisfying the following con-
ditions:

(5.1) fg(X) ⊂ h(X), kl(X) ⊂ m(X)

and

SC(klx, klx, fgy) ≾ aSC(hx, hx,my)(5.2)

+ b[SC(hx, hx, klx) + SC(my,my, fgy)]

+ c[SC(hx, hx, fgy) + SC(my,my, klx)],
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for all x, y ∈ X, where a, b, c ≥ 0 and a + 2b + 3c < 1. Assume that
(fg,m) , (kl, h) are CS-weakly compatible and the pairs (f, g), (f,m),
(f, h) , (g,m), (g, h), (k, l), (k, h), (k, f), (k, g), (l, h), (l, f), (l, g),
(m, k) and (m, l) are commuting pairs of mappings. Then f, g, h, k, l,m
have a unique common fixed point in X.

Proof. Let x0 ∈ X and a sequence {yn} in X be defined as follows:

(5.3) y2n = klx2n = mx2n+1 and y2n+1 = fgx2n+1 = hx2n+2,

for all n = 1, 2, 3... by the condition (5.1). Using the inequality (5.2) we
have

SC(y2n, y2n, y2n+1)
(5.4)

= SC(klx2n, klx2n, fgx2n+1) ≾ aSC(hx2n, hx2n,mx2n+1)

+ b[SC(hx2n, hx2n, klx2n) + SC(mx2n+1,mx2n+1, fgx2n+1)]

+ c[SC(hx2n, hx2n, fgx2n+1) + SC(mx2n+1,mx2n+1, klx2n)]

= aSC(y2n−1, y2n−1, y2n)

+ b[SC(y2n−1, y2n−1, y2n) + SC(y2n, y2n, y2n+1)]

+ c[SC(y2n−1, y2n−1, y2n+1) + SC(y2n, y2n, y2n)].

Using the condition (CS3) and Lemma 2.9, we obtain

(5.5) SC(y2n−1, y2n−1, y2n+1) ≾ 2SC(y2n−1, y2n−1, y2n) + SC(y2n, y2n, y2n+1).

By the inequalities (5.4) and (5.5) we get

SC(y2n, y2n, y2n+1) ≾ (a+ b+ 2c)SC(y2n−1, y2n−1, y2n)

+ (b+ c)SC(y2n, y2n, y2n+1),

which implies

SC(y2n, y2n, y2n+1) ≾
a+ b+ 2c

1− b− c
SC(y2n−1, y2n−1, y2n),

and so
|SC(y2n, y2n, y2n+1)| ≤ t |SC(y2n−1, y2n−1, y2n)| ,

where t =
a+ b+ 2c

1− b− c
< 1.

By a similar way as above we obtain

|SC(y2n+1, y2n+1, y2n+2)| ≤ t |SC(y2n, y2n, y2n+1)| .
Hence we get

|SC(y2n+1, y2n+1, y2n+2)| ≤ t |SC(y2n, y2n, y2n+1)|
...

≤ tn+1 |SC(y0, y0, y1)| ,
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for n = 1, 2, 3, . . ..
Now for all m > n we have

SC(yn, yn, yn+m) ≾ 2tn

1− t
SC(y0, y0, y1) + tn+m−1SC(y0, y0, y1),

and so

|SC(yn, yn, yn+m)| ≤ 2tn

1− t
|SC(y0, y0, y1)|+ tn+m−1 |SC(y0, y0, y1)| ,

which implies |SC(yn, yn, yn+m)| → 0 as n,m→ ∞. Hence the sequence
{yn} is a Cauchy sequence. Since (X,SC) is a complete complex-valued
S-metric space, there exists a point w in X such that

lim
n→∞

klx2n = lim
n→∞

mx2n+1 = lim
n→∞

fgx2n+1 = lim
n→∞

hx2n+2 = w.

Also there exists a point u ∈ X such that hu = w since fg(X) ⊂ h(X).
Using the inequality (5.2) we have

SC(klu, klu, w) ≾ 2SC(klu, klu, fgx2n−1) + SC(w,w, fgx2n−1)

≾ 2(aSC(hu, hu,mx2n−1)

+ b[SC(hu, hu, klu) + SC(mx2n−1,mx2n−1, fgx2n−1)]

+ c[SC(hu, hu, fgx2n−1) + SC(mx2n−1,mx2n−1, klu)])

+ SC(w,w, fgx2n−1).

Hence taking limit for n→ ∞ we obtain

SC(klu, klu, w) ≾ 2(b+ c)SC(klu, klu, w),

and so

|SC(klu, klu, w)| ≤ 2(b+ c) |SC(klu, klu, w)| ,
which is a contradiction since 2b+ 2c < 1. Therefore klu = hu = w.

There exists a point v in X such that mv = w since kl(X) ⊂ m(X).
Using the inequality (5.2) we have

SC(w,w, fgv) = SC(klu, klu, fgv) ≾ aSC(hu, hu,mv)

+ b[SC(hu, hu, klu) + SC(mv,mv, fgv)]

+ c[SC(hu, hu, fgv) + SC(mv,mv, klu)]

= aSC(w,w,w)

+ b[SC(w,w,w) + SC(w,w, fgv)]

+ c[SC(w,w, fgv) + SC(w,w,w)]

= (b+ c)SC(w,w, fgv),

and so

|SC(w,w, fgv)| ≤ (b+ c) |SC(w,w, fgv)| ,
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which is a contradiction since b+ c < 1. Then fgv = mv = w = klu =
hu.

Since h and kl are CS-weakly compatible mappings of X, we have
klhu = hklu and so klw = hw. Now we prove that w is a fixed point of
kl. Using the inequality (5.2), we have

SC(klw, klw,w) = SC(klw, klw, fgv) ≾ aSC(hw, hw,mv)

+ b[SC(hw, hw, klw) + SC(mv,mv, fgv)]

+ c[SC(hw, hw, fgv) + SC(mv,mv, klw)]

= aSC(w,w, klw)

+ b[SC(klw, klw, klw) + SC(w,w,w)]

+ c[SC(klw, klw,w) + SC(w,w, klw)]

= (a+ 2c)SC(klw, klw,w),

and so
|SC(klw, klw,w)| ≤ (a+ 2c) |SC(klw, klw,w)| ,

which is a contradiction since a + 2c < 1. Therefore klw = w and
klw = hw = w.

Similarly, m and fg are CS-weakly compatible mappings of X and
we have fgw = mw. Now we show that w is a fixed point of fg. Using
the inequality (5.2) we get

SC(w,w, fgw) = SC(klw, klw, fgw) ≾ aSC(hw, hw,mw)

+ b[SC(hw, hw, klw) + SC(mw,mw, fgw)]

+ c[SC(hw, hw, fgw) + SC(mw,mw, klw)]

= aSC(hw, hw, fgw)

+ b[SC(w,w,w) + SC(fgw, fgw, fgw)]

+ c[SC(w,w, fgw) + SC(fgw, fgw,w)]

= (a+ 2c)SC(w,w, fgw),

and so
|SC(w,w, fgw)| ≤ (a+ 2c) |SC(w,w, fgw)| ,

which is a contradiction since a + 2c < 1. Therefore fgw = w and
fgw = mw = w. Hence we obtain

klw = fgw = hw = mw = w.

Consequently, w is a common fixed point of the mappings kl, fg, h
and m. Now, we prove that w is a unique common fixed point of the
mappings kl, fg, h and m. Let w∗ be also a common fixed point of kl,
fg, h and m. Using the inequality (5.2)

SC(w,w,w
∗) = SC(klw, klw, fgw

∗)
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≾ aSC(hw, hw,mw
∗)

+ b[SC(hw, hw, klw) + SC(mw
∗,mw∗, fgw∗)]

+ c[SC(hw, hw, fgw
∗) + SC(mw

∗,mw∗, klw)]

= (a+ 2c)SC(w,w,w
∗),

and so

|SC(w,w,w
∗)| ≤ (a+ 2c) |SC(w,w,w

∗)| ,
which is a contradiction since a+ 2c < 1. Hence we obtain w = w∗.

Now, we show that w is the unique common fixed point of the six
mappings f , g, k, l, h and m. Using the commuting conditions of the
pair (f, g) we have

fw = f(fgw) = f(gfw) = fg(fw),

and

gw = g(fgw) = gf(gw) = fg(gw),

which implies that fw and gw are fixed points of the mapping fg.
Similarly, fw and gw are common fixed points of the mappings kl, h

and m using the hypothesis. Using the hypothesis, also by a similar way
we obtain kw and lw are common fixed points of the mappings kl, fg,
h and m. Consequently, by the uniqueness of the common fixed point,
we get

hw = mw = fw = gw = kw = lw = w,

that is, f , g, k, l, h and m have a unique common fixed point w in
X. □

6. Some Applications of Common Fixed Point Theory in
View of Closed Ball

Let (X,SC) be a complex-valued S-metric space. For 0 ≺ r and x ∈ X
the open ball BC

S (x, r) and closed ball BC
S [x, r] with center x and radius

r are defined as follows, respectively:

BC
S (x, r) = {y ∈ X : SC(y, y, x) ≺ r},
BC

S [x, r] = {y ∈ X : SC(y, y, x) ≾ r}.

A point x ∈ X is called an interior point of a set A ⊆ X, if there
exists 0 ≺ r ∈ C such that

BC
S (x, r) ⊆ A.

A point x ∈ X is called a limit point of A whenever we have

BC
S (x, r) ∩ (A− {x}) ̸= ∅,

for every 0 ≺ r ∈ C.
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A subset A ⊆ X is said to be open if each element of A is an interior
point of A.

Example 6.1. Let X = C and the complex-valued S-metric be defined
by

(6.1) SC(z1, z2, z3) = |z1 − z2|+ |z2 − z3|+ |z3 − z1| ,

for all z1, z2, z3 ∈ C (using the definition of S-metric generated by S-
norm given in [? ]). If we choose z = x+ iy, z0 = 3 + 2i and r = 30 in
C then we obtain

BC
S [z0, r] = {z ∈ C :

√
(x− 3)2 + (y − 2)2 ≤ 15}.

Now we recall the notion of a complex-valued metric space.
Let X be a non-empty set and dC : X ×X → C be a mapping. Then

dc is called a complex-valued metric if

(i) 0 ≾ dC(x, y) for all x, y ∈ X,
(ii) dC(x, y) = 0 if and only if x = y,
(iii) dC(x, y) = dC(y, x) for all x, y ∈ X,
(iv) dC(x, y) ≾ dC(x, z) + dC(z, y) for all x, y, z ∈ X,

and (X, dC) is called a complex-valued metric space [5].
Now, we give relationships between complex-valued metric and complex-

valued S-metric.
Let (X, dC) be a complex-valued metric. Then the function SCd

:
X ×X ×X → C defined by

SCd
(x, y, z) = dC(x, z) + dC(y, z),

for all x, y, z ∈ X is a complex-valued S-metric. We call this complex
valued metric SCd

as the complex-valued S-metric generated by dC .

Example 6.2. Let X = C and

dC(z1, z2) =

√
(x1 − x2)

2

9
+ 4(y1 − y2)2,

for all z1, z2 ∈ C where z1 = (x1, y1) and z2 = (x2, y2). Then (X, dC) is
a complex-valued metric space. Therefore the complex-valued S-metric
generated by dC is defined by

(6.2) SCd
(z1, z2, z3) = dC(z1, z3) + dC(z2, z3),

for all z1, z2, z3 ∈ C where z3 = (x3, y3).
The closed ball BC

S [z0, r] in C is an ellipse given by

BC
S [z0, r] = {z ∈ C : SCd

(z, z, z0) ≾ r}
= {z ∈ C : 2dC(z, z0) ≾ r}.
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If we choose z = x+ iy, z0 = 2 + 3i and r = 10 then we obtain

BC
S [z0, r] =

{
z ∈ C :

√
(x− 2)2

9
+ 4(y − 3)2 ≾ 5

}
.

We give the following theorem on the closed ball BC
S [x, r].

Theorem 6.3. Let (X,SC) be a complete complex-valued S-metric space,
x0 ∈ X, 0 ≺ r ∈ C and a, b, c, d, e be five real numbers such that
a, b, c, d, e ≥ 0 and a + b + c + 3d + 3e < 1. Let f, g : X → X be
two mappings satisfying

SC(fx, fx, gy) ≾ aSC(x, x, y) + b
SC(fx, fx, x)SC(gy, gy, y)

1 + SC(x, x, y)
(6.3)

+ c
SC(fx, fx, y)SC(gy, gy, x)

1 + SC(x, x, y)

+ d
SC(fx, fx, x)SC(gy, gy, x)

1 + SC(x, x, y)

+ e
SC(fx, fx, y)SC(gy, gy, y)

1 + SC(x, x, y)
,

for all x, y ∈ BC
S [x0, r]. If

(6.4) |SC(fx0, fx0, x0)| ≤
1− h

2
|r| ,

where h = max

{
a+ 2d

1− b− d
,
a+ 2e

1− b− e

}
, then there exists a unique com-

mon fixed point w ∈ BC
S [x0, r] of the self-mappings f and g.

Proof. Let x0 ∈ X and the sequence {xn} be defined as follows:

x2k+1 = fx2k and x2k+2 = gx2k+1,

where k = 0, 1, 2, . . .. We show that xn ∈ BC
S [x0, r] for all n ∈ N by

mathematical induction. Using the inequality (6.4) and h < 1 we get

|SC(fx0, fx0, x0)| ≤ |r| ,
which implies that x1 ∈ BC

S [x0, r].
Let x2, . . . , xi ∈ BC

S [x0, r] for some i ∈ N. If i = 2k + 1 where

k = 0, 1, 2, . . . ,
i− 1

2
or i = 2k + 2 where k = 0, 1, . . . ,

i− 2

2
, using the

inequality (6.3) we have

SC(x2k+1, x2k+1, x2k+2)

= SC(fx2k, fx2k, gx2k+1) ≾ aSC(x2k, x2k, x2k+1)

+ b
SC(fx2k, fx2k, x2k)SC(gx2k+1, gx2k+1, x2k+1)

1 + SC(x2k, x2k, x2k+1)



COMMON FIXED POINT RESULTS 97

+ c
SC(fx2k, fx2k, x2k+1)SC(gx2k+1, gx2k+1, x2k)

1 + SC(x2k, x2k, x2k+1)

+ d
SC(fx2k, fx2k, x2k)SC(gx2k+1, gx2k+1, x2k)

1 + SC(x2k, x2k, x2k+1)

+ e
SC(fx2k, fx2k, x2k+1)SC(gx2k+1, gx2k+1, x2k+1)

1 + SC(x2k, x2k, x2k+1)
,

and so

SC(x2k+1, x2k+1, x2k+2)

≾ aSC(x2k, x2k, x2k+1)

+ b
SC(fx2k, fx2k, x2k)SC(gx2k+1, gx2k+1, x2k+1)

1 + SC(x2k, x2k, x2k+1)

+ d
SC(fx2k, fx2k, x2k)SC(gx2k+1, gx2k+1, x2k)

1 + SC(x2k, x2k, x2k+1)
,

which implies

|SC(x2k+1, x2k+1, x2k+2)|
≤ a |SC(x2k, x2k, x2k+1)|

+ b
|SC(fx2k, fx2k, x2k)| |SC(gx2k+1, gx2k+1, x2k+1)|

|1 + SC(x2k, x2k, x2k+1)|

+ d
|SC(fx2k, fx2k, x2k)| |SC(gx2k+1, gx2k+1, x2k)|

|1 + SC(x2k, x2k, x2k+1)|
≤ a |SC(x2k, x2k, x2k+1)|

+ b
|SC(x2k+1, x2k+1, x2k)| |SC(x2k+2, x2k+2, x2k+1)|

|SC(x2k, x2k, x2k+1)|

+ d
|SC(x2k+1, x2k+1, x2k)| |SC(x2k+2, x2k+2, x2k)|

|SC(x2k, x2k, x2k+1)|
.

Using Lemma 2.9 we have

|SC(x2k+1, x2k+1, x2k+2)|
≤ a |SC(x2k, x2k, x2k+1)|+ b |SC(x2k+2, x2k+2, x2k+1)|
+ d |SC(x2k+2, x2k+2, x2k)| .

Using the condition (CS3) and Lemma 2.9 we get

SC(x2k+2, x2k+2, x2k) ≾ 2SC(x2k, x2k, x2k+1) + SC(x2k+2, x2k+2, x2k+1),

and

(6.5) |SC(x2k+1, x2k+1, x2k+2)| ≤
a+ 2d

1− b− d
|SC(x2k, x2k, x2k+1)| .
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By a similar way as above we obtain

(6.6) |SC(x2k+2, x2k+2, x2k+3)| ≤
a+ 2e

1− b− e
|SC(x2k+1, x2k+1, x2k+2)| .

If we put h = max

{
a+ 2d

1− b− d
,
a+ 2e

1− b− e

}
we have

|SC(xi, xi, xi+1)| ≤ hi |SC(x0, x0, x1)| ,

for all i ∈ N. Let us consider

|SC(x0, x0, xi+1)|
≤ 2 |SC(x0, x0, x1)|+ 2 |SC(x1, x1, x2)|+ · · ·+ |SC(xi, xi, xi+1)|
≤ 2 |SC(x0, x0, x1)| (1 + h+ · · ·+ hi−1) + hi |SC(x0, x0, x1)|

≤ 2
1− h

2
|r| (1 + h+ · · ·+ hi−1) + hi

1− h

2

≤ |r| (1− h)(1 + h+ · · ·+ hi) ≤ |r| ,

which implies xi+1 ∈ BC
S [x0, r]. Hence xn ∈ BC

S [x0, r] and

|SC(xn, xn, xn+1)| ≤ hn |SC(x0, x0, x1)| ,

for all n ∈ N.
If we take m > n then we have

|SC(xn, xn, xm)| ≤ 2 |SC(xn, xn, xn+1)|+ 2 |SC(xn+1, xn+1, xn+2)|
+ · · ·+ |SC(xm−1, xm−1, xm)| → 0,

asm,n→ ∞, which implies that the sequence {xn} is a Cauchy sequence
in BC

S [x0, r]. Hence there exists a point w ∈ BC
S [x0, r] with lim

n→∞
xn = w.

Now we prove fw = w. Using the inequality (6.3) we have

|SC(fw, fw,w)| ≤ 2 |SC(w,w, x2k+2)|+ |SC(x2k+2, x2k+2, fw)|
= 2 |SC(w,w, x2k+2)|+ |SC(fw, fw, gx2k+1)|
≾ 2 |SC(w,w, x2k+2)|+ a |SC(w,w, x2k+1)|

+ b
|SC(fw, fw,w)| |SC(gx2k+1, gx2k+1, x2k+1)|

|1 + SC(w,w, x2k+1)|

+ c
|SC(fw, fw, x2k+1)| |SC(gx2k+1, gx2k+1, w)|

|1 + SC(w,w, x2k+1)|

+ d
|SC(fw, fw,w)| |SC(gx2k+1, gx2k+1, w)|

|1 + SC(w,w, x2k+1)|

+ e
|SC(fw, fw, x2k+1)| |SC(gx2k+1, gx2k+1, x2k+1)|

|1 + SC(w,w, x2k+1)|
,
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which implies that this inequality converges 0 as n→ ∞. Therefore we
obtain |SC(fw, fw,w)| = 0, that is, fw = w. By a similar way as above
we show that gw = w.

Now we prove that the fixed point w is unique. Assume that w∗ ∈
BC

S [x0, r] is also a common fixed point of f and g. Then we have

|SC(w,w,w
∗)| = |SC(fw, fw, gw

∗)|
≤ a |SC(w,w,w

∗)|

+ b
|SC(fw, fw,w)| |SC(gw

∗, gw∗, w∗)|
|1 + SC(w,w,w∗)|

+ c
|SC(fw, fw,w

∗)| |SC(gw
∗, gw∗, w)|

|1 + SC(w,w,w∗)|

+ d
|SC(fw, fw,w)| |SC(gw

∗, gw∗, w)|
|1 + SC(w,w,w∗)|

+ e
|SC(fw, fw,w

∗)| |SC(gw
∗, gw∗, w∗)|

|1 + SC(w,w,w∗)|
.

Hence we get

|SC(w,w,w
∗)| ≤ (a+ c) |SC(w,w,w

∗)| ,
since |1 + SC(w,w,w

∗)| > |SC(w,w,w
∗)|. Therefore w = w∗ as a+ c <

1. Consequently, w is the unique common fixed point of f and g. Then
the proof is completed. □

Notice that if we put f = g in Theorem 6.3, then we have the following
corollary.

Corollary 6.4. Let (X,SC) be a complete complex-valued S-metric space,
x0 ∈ X, 0 ≺ r ∈ C and a, b, c, d, e be five real numbers such that
a, b, c, d, e ≥ 0 and a + b + c + 3d + 3e < 1. Let f : X → X be a
mapping satisfying

SC(fx, fx, fy) ≾ aSC(x, x, y) + b
SC(fx, fx, x)SC(fy, fy, y)

1 + SC(x, x, y)
(6.7)

+ c
SC(fx, fx, y)SC(fy, fy, x)

1 + SC(x, x, y)

+ d
SC(fx, fx, x)SC(fy, fy, x)

1 + SC(x, x, y)

+ e
SC(fx, fx, y)SC(fy, fy, y)

1 + SC(x, x, y)
,

for all x, y ∈ BC
S [x0, r]. If

|SC(fx0, fx0, x0)| ≤
1− h

2
|r| ,
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where h = max

{
a+ 2d

1− b− d
,
a+ 2e

1− b− e

}
, then there exists a unique fixed

point w ∈ BC
S [x0, r] of the self-mapping f .

Remark 6.5. If we choose c = 0, d = 0, c = d = 0 and c = d = e = 0
in Theorem 6.3, then we have similar corollaries. Also if we take b =
c = d = e = 0 in Corollary 6.4, then we obtain a new generalization
of the classical Banach’s contraction principle on the closed ball in a
complex-valued S-metric space.

In the following example, we see that there exist a self-mapping sat-
isfying the conditions of Corollary 6.4 on C.

Example 6.6. Let X = C and the complex-valued S-metric on C be
defined

SC(z1, z2, z3) =

√
(x1 − x3)

2

9
+ 4(y1 − y3)2+

√
(x2 − x3)

2

9
+ 4(y2 − y3)2,

for all z1, z2, z3 ∈ C where z1 = (x1, y1), z2 = (x2, y2) and z3 = (x3, y3).
Let f : C → C be given by

fz = z0,

for all z ∈ C where z0 is the center of the closed ball BC
S [z0, r]. If we

put a =
1

2
, b = c = d = e = 0 we obtain

SC(fz1, fz1, fz2) = SC(z0, z0, z0) = 0 ≾ 1

2
SC(z1, z1, z2),

for all z1, z2 ∈ BC
S [z0, r]. Then the inequality (6.7) is satisfied. Hence

we have

h = max

{
a+ 2d

1− b− d
,
a+ 2e

1− b− e

}
= a =

1

2

and

|SC(fz0, fz0, z0)| = 0 ≤ 1

4
|r| .

Consequently, Corollary 6.4 is satisfied and there exists a unique fixed
point z0 ∈ BC

S [z0, r] of the self-mapping f .

Now we give the following theorem using finitely many functions on
the closed ball BC

S [x, r].

Theorem 6.7. Let (X,SC) be a complete complex-valued S-metric space,
{fi}1≤i≤m and {gj}1≤j≤n are two finite pairwise commuting finite fami-
lies of self-mappings of X. If the mapping f and g, where f = f1f2...fm
and g = g1g2...gn satisfy the inequalities (6.3) and (6.4) in Theorem 6.3
then the component mappings of the families {fi}1≤i≤m and {gj}1≤j≤n

have a unique common fixed point.
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Proof. Using Theorem 6.3, we see that the mappings f and g have a
unique common fixed point w. Now we show that w is a common
fixed point of all the component mappings of the families {fi}1≤i≤m and
{gj}1≤j≤n. In view of pairwise commutativity of the families {fi}1≤i≤m

and {gj}1≤j≤n we get

fkw = fkfw = ffkw and fkw = fkgw = gfkw,

for all 1 ≤ k ≤ m, which implies that fkw is also a common fixed point
of f and g. Using the uniqueness of the common fixed point we have
fkw = w for all k. Hence w is a common fixed point of the family
{fi}1≤i≤m.

Similarly, it can be seen that w is also common fixed point of the
family {gj}1≤j≤n. □

Notice that if we take f1 = f2 = ... = fm = f and g1 = g2 = ... =
gn = g in Theorem 6.3 we obtain the following corollary.

Corollary 6.8. Let (X,SC) be a complete complex-valued S-metric space,
x0 ∈ X, 0 ≺ r ∈ C and a, b, c, d, e be five real numbers such that
a, b, c, d, e ≥ 0 and a + b + c + 3d + 3e < 1. Let f, g : X → X be
two mappings satisfying

SC(f
mx, fmx, gny) ≾ aSC(x, x, y) + b

SC(f
mx, fmx, x)SC(g

ny, gny, y)

1 + SC(x, x, y)

+ c
SC(f

mx, fmx, y)SC(g
ny, gny, x)

1 + SC(x, x, y)

+ d
SC(f

mx, fmx, x)SC(g
ny, gny, x)

1 + SC(x, x, y)

+ e
SC(f

mx, fmx, y)SC(g
ny, gny, y)

1 + SC(x, x, y)
,

for all x, y ∈ BC
S [x0, r] and

|SC(g
nx0, g

nx0, x0)| ≤
1− h

2
|r| ,

where h = max

{
a+ 2d

1− b− d
,
a+ 2e

1− b− e

}
, then there exists a unique com-

mon fixed point w ∈ BC
S [x0, r] of the self-mappings f and g.

Also by setting m = n and f = g = h in Corollary 6.8 we obtain the
following corollary:

Corollary 6.9. Let (X,SC) be a complete complex-valued S-metric space,
x0 ∈ X, 0 ≺ r ∈ C and a, b, c, d, e be five real numbers such that



102 N. TAŞ AND N. Y. ÖZGÜR

a, b, c, d, e ≥ 0 and a + b + c + 3d + 3e < 1. Let h : X → X be a
mapping satisfying

SC(h
nx, hnx, hny) ≾ aSC(x, x, y) + b

SC(h
nx, hnx, x)SC(h

ny, hny, y)

1 + SC(x, x, y)

+ c
SC(h

nx, hnx, y)SC(h
ny, hny, x)

1 + SC(x, x, y)

+ d
SC(h

nx, hnx, x)SC(h
ny, hny, x)

1 + SC(x, x, y)

+ e
SC(h

nx, hnx, y)SC(h
ny, hny, y)

1 + SC(x, x, y)
,

for all x, y ∈ BC
S [x0, r] and

|SC(h
nx0, h

nx0, x0)| ≤
1− λ

2
|r| ,

where λ = max

{
a+ 2d

1− b− d
,
a+ 2e

1− b− e

}
, then there exists a unique fixed

point w ∈ BC
S [x0, r] of the self-mapping h.

7. Conclusions and Future Works

Recently, complex-valued S-metric spaces have been introduced and
studied to improve the Banach’s contraction principle and to generalize
some metric spaces such as metric and S-metric spaces. In this pa-
per, we have given some generalized common fixed point (resp. fixed
point) results on a complete complex-valued S-metric space using dif-
ferent techniques by means of new generalized contractive conditions
and the notion of the closed ball. Our results generalize and improve
some known fixed point results. More recently, the fixed circle prob-
lem has been introduced and studied as a new direction of extensions
(see [14, 18–21, 31]). As a future work, new fixed circle results can be
investigated on a complex-valued S-metric space.
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104 N. TAŞ AND N. Y. ÖZGÜR
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22. M. Öztürk, Common fixed point theorems satisfying contractive
type conditions in complex-valued metric spaces, Abstr. Appl.
Anal., 2014 (2014), 7 pp.
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