Document Type: Research Paper

Authors

Department of Mathematics, Sahand University of Technology, Tabriz, Iran.

10.22130/scma.2018.85895.433

Abstract

In this paper, some properties of  pseudoinvex functions, defined by means of  limiting subdifferential, are discussed. Furthermore, the Minty vector variational-like inequality,  the Stampacchia vector variational-like inequality, and the  weak formulations of these two inequalities  defined by means of limiting subdifferential are studied. Moreover, some relationships  between the vector variational-like inequalities and vector optimization problems are established.

Keywords

[1] S. Al-Homidan and Q.H. Ansari, Generalized Minty vector variational-like inequalities and vector optimization problems, J. Optim. Theory Appl., 144 (2010), pp. 1-11.

[2] Q.H. Ansari and M. Rezaei, Generalized vector variational-like inequalities and vector optimization in Asplund spaces, Optimization, 62 (2013), pp. 721-734.

[3] Q.H. Ansari, S. Schaible, and J.-C. Yao, it $eta$-Pseudolinearity, Riviste Mat. Sci. Econ. Soc., 22 (1999), pp. 31-39.

[4] Q.H. Ansari and J.-C. Yao (eds.), Recent Developments in Vector Optimization, Springer-Verlag, Berlin, New York, Heidelberg, 2012.

[5] B. Chen and N.-J. Huang, Vector variational-like inequalities and vector optimization problems in Asplund spaces, Optim. Lett., 6 (2012), pp. 1513-1525 .

[6] A. Chinchuluun, P.M. Pardalos, A. Migdalas, and L. Pitsoulis, Pareto Optimality, Game Theory and Equilibria, Springer-Verlag, New York, 2008.

[7] F. Giannessi, On Minty variational principle, in New Trends in Mathematical Programming, F. Giannessi, S. Komloski, and T. Tapcsack, eds., Kluwer Academic Publisher, Dordrecht, Holland, 1998, pp. 93-99.

[8] F. Giannessi, Theorems of alternative, quadratic programs and complementarity problems, In: R. W. Cottle, F. Giannessi, and J.-L. Lions, (eds.) Variational Inequalities and Complementarity Problems, Wiley, New York, 1980, pp. 151-186.

[9] F. Giannessi, A. Maugeri, and P.M. Pardalos (eds.), Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, Series: Nonconvex Optimizatin and Its Applications, Vo1. 58, Springer-Verlag, New York, 2002.

[10] T. Jabarootian and J. Zafarani, Generalized invariant monotonicity and invexity of nondifferentiable functions, J. Global Optim., 36 (2006), pp. 537-564.

[11] J. Jahn, Vector Optimization: Theory, Applications and Extensions, Springer-Verlage, Berlin, Heidelberg, New York, 2004.

[12] S.R. Mohan and S.K. Neogy, On Invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), pp. 901-908.

[13] B.S. Mordukhovich, Variational analysis and generalized differentiation, I: Basic Theory, II: Applications, Springer, Berlin, 2006.

[14] M. Oveisiha and J. Zafarani, Generalized Minty vector variational-like inequalities and vector optimization problems in Asplund spaces, Optim. Lett., 7 (2013), pp. 709-721.

[15] M. Oveisiha and J. Zafarani, Vector optimization problem and generalized convexity, J. Optim. Theory App., 52 (2012), pp. 29-43.

[16] M. Rezaie and J. Zafarani, Vector optimization and variational-like inequalities, J. Global Optim., 43 (2009), pp. 47-66.

[17] M. Soleimani-damaneh, An optimization modelling for string selection in molecular biology using Pareto optimality, Appl. Math. Model., 35 (2011), pp. 3887-3892.

[18] M. Soleimani-damaneh, Characterizations and applications of generalized invexity and monotonicity in Asplund spaces, Top., 18 (2010), pp. 1-22.

[19] X.M. Yang and X.Q. Yang, Vector variational-like inequality with pseudoinvexity, Optimization, 55 (2006), pp. 157-170.

[20] X.M. Yang, X.Q. Yang, and K. L. Teo, Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl., 117 (2003), pp. 607-625.

[21] X.M. Yang, X.Q. Yang, and K.L. Teo, Some remarks on the Minty vector variational inequality, J. Optim. Theory Appl., 121 (2004), pp. 193-201.