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Vector Optimization Problems and Generalized Vector

Variational-Like Inequalities

Ildar Sadeghi1∗ and Somayeh Nadi2

Abstract. In this paper, some properties of pseudoinvex func-
tions, defined by means of limiting subdifferential, are discussed.
Furthermore, the Minty vector variational-like inequality, the Stam-
pacchia vector variational-like inequality and the weak formulations
of these two inequalities defined by means of limiting subdifferen-
tial are studied. Moreover, some relationships between the vector
variational-like inequalities and vector optimization problems are
established.

1. Introduction

Two types of vector variational inequalities (VVI), Stampacchia-type
VVI and Minty-type VVI, have been studied in the literatures. Gian-
nessi [8] extended the classical Stampacchia variational inequality for
vector-valued functions, called Stampacchia vector variational inequal-
ity (SVVI), which has been applied to various problems. In particular,
it has been used as a tool to solve vector optimization problems (VOP)
[1, 2, 5, 7, 21]. Giannessi [7] provided a necessary and sufficient condi-
tions for a point to be a solution of VOP in terms of Minty vector varia-
tional inequality (MVVI) for differentiable and convex functions. Yang
et al. [20] extended the results of Giannessi [7] for differentiable but pseu-
doconvex functions. Recently, Yang and Yang [21] have extended the
results of Giannessi [7] and Yang et al. [20] for differentiable but pseu-
doinvex functions. Yang and Yang [21] also proved that SVVI and MVVI
are equivalent under continuity assumption. The vector variational-like
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inequality (VVLI) is a generalization of a VVI in which the term y−x is
replaced by a bifunction η(y, x). Generalized Minty vector variational-
like inequality problems (GMVVLI) have been studied by Al-Homidan
and Ansari [1]. They also generalized Stampacchia vector variational-
like inequality problems (GSVVLI) defined by means of Clarke’s sub-
differential for nonsmooth VOP under nonsmooth invexity along with
studying the relationships between GMVVLI and SVVLI. Furthermore,
they considered the weak formulations of GMVVLI and GSVVLI and
provided some relations between the solutions of these problems and a
weak efficient solution of VOP. Chen and Huang [5] generalized some of
the main results of Al-Homidan and Ansari [1] and Yang and Yang [19].
They introduced MVVLI, SVVLI and the weak formulations of these
two inequalities defined by means of Mordukhovich limiting subdiffer-
entials in Asplund spaces. They also established some relations between
the vector variational-like inequalities and VOP. The results of [1, 5] for
generalized pseudoinvex functions involving limiting subdifferentials un-
der nonsmooth invexity have been extended in [2]. They presented some
properties of pseudoinvex functions defined by means of limiting subd-
ifferentials along with providing a necessary and sufficient conditions
for a solution to be efficient one of a VOP in terms of GMVVLI. They
also presented some relationships between the solutions of GMVVLI,
GSVVLI and VOP under pseudoinvexity condition.

In this paper, we rectify some results in [2], by using the correct
assumptions. The paper is organized as follows. In Section 2, some
basic definitions and preliminary results are given. Some relations be-
tween various kinds of invexities are established in Section 3. In Section
??, some relationships between the solutions of GMVVLI, GSVVLI, ef-
ficient solution of VOP and weak formulations of these problems are
established.

2. Preliminaries

Let X be a Banach space being an Asplund space; that is, a Banach
space that its separable subspaces have separable duals and the topo-
logical dual of X denoted by X∗. The duality pairing between X and
X∗, the line segment joining x and y and [x, y] \ {x, y} are denoted by
⟨., .⟩, [x, y] and (x, y), respectively.
Let F : X ⇒ X∗ be a set-valued mapping/multifunction. Then the
sequential Painlevé-Kuratowski upper/outer limit of F at x̄ is defined
by

lim sup
x→x̄

F (x) :=
{
x∗∈ X∗| ∃ xk → x̄, x∗k

w∗
→ x∗s.tx∗k ∈ F (xk), k ∈ N

}
,

where w∗ denotes the weak* topology on X∗.
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The epigraph of a function f : X → R is defined by

epif = {(x, α) ∈ X × R : f(x) ≤ α} .
Leting f : X → Y be a mapping between Banach spaces, recall that
f is Fréchet differentiable at x̄ if there is a linear continuous operator
∇f(x̄) : X → Y such that

lim
x→x̄

f(x)− f(x̄)−∇f(x̄)(x− x̄)

∥x− x̄∥
= 0.

Let ε ≥ 0, then the set of ε-normals to a set Ω at x is defined by

(2.1) N̂ε(x; Ω) :=

{
x∗ ∈ X∗ | lim sup

u
Ω−→x

⟨x∗, u− x⟩
∥u− x∥

≤ ε

}
.

For ε = 0, we write N̂(x; Ω) := N̂0(x; Ω) in (2.1) and call it the prenormal

cone or the Fréchet normal cone to Ω at x. If x /∈ Ω, we set N̂ε(x; Ω) := ∅
for all ε ≥ 0.

Recall also that the notation u
Ω→ x for Ω ⊂ X means u → x with

u ∈ Ω. The (basic, limiting, Mordukhovich) normal cone N(x̄,Ω) is

obtained from N̂ε(x; Ω) by taking the sequential Painlevé-Kuratowski
upper/outer limit in the weak* topology on X∗ as

N(x̄; Ω) := lim sup
x→x̄
ε↓0

N̂ε(x; Ω),

and we let N(x̄; Ω) := ∅ for x̄ /∈ Ω.
Let f : X → R̄ be a function and x̄ ∈ X so that |f(x̄)| < ∞. Then

the set

∂Lf(x̄) := {x∗ ∈ X∗ : (x∗,−1) ∈ N ((x̄, f(x̄)), epif)} ,
is called the limiting subdifferential of f at x̄ and its elements are called
limiting subdifferentials of f at this point. We put ∂Lf(x̄) = ∅ if |f(x̄)| =
∞.

Theorem 2.1 ([13]). Let X be an Asplund space and φ : X → R be
locally Lipschitz around x̄. Then ∂Lφ(x̄) ̸= ∅.

Theorem 2.2 ([13]). (mean value inequality for Lipschitzian functions).
Let X be an Asplund space and φ be locally Lipschitz on an open set
containing [x, y]. Then there exists c ∈ [x, y) such that for all x∗ ∈
∂Lφ(c), we have

φ(y)− φ(x) ≤ ⟨x∗, y − x⟩.

Theorem 2.3. If f : Rn → R is locally Lipschitz at x̄, then ∂Lf(x̄)
is closed. In fact, if xn → x̄, x∗n ∈ ∂Lf(xn) and x∗n → x∗, then x∗ ∈
∂Lf(x̄).
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Proof. Since x∗n ∈ ∂Lf(xn) and ∂Lf(x̄) = lim sup
x

φ−→x̄

∂̂f(x) ([13, Theorem

1.89]), for each n, we can find sequences xn,k → xn and x∗n,k ∈ ∂̂f(xn,k)

with x∗n,k
w∗
→ x∗n as k → ∞. We pick the sequences xk,k, which converges

to x̄ and x∗k,k ∈ ∂̂f(xk,k) with x∗k,k
w∗
→ x∗ (this is possible because the

weak-star and norm topologies are agree in finite dimensions). This
means that x∗ ∈ ∂Lf(x̄). □
Definition 2.4. (monotonicity) A mapping T : Rn ⇒ Rn is called
monotone if

⟨v1 − v2, u1 − u2⟩ ≥ 0 whenever v1 ∈ T (u1), v2 ∈ T (u2),

and strictly monotone if this inequality is strict for u1 ̸= u2.

3. Generalized Pseudoinvex Functions

Let η : K ×K → X be a vector-valued mapping and f : K → R be a
function where K ⊆ X is a nonempty set.

Definition 3.1 ([3]). The mapping η : K ×K → X is said to be skew
if

η(y, x) + η(x, y) = 0, x, y ∈ K.

Definition 3.2 ([3, 10]). Let x be an arbitrary point of K. The set K
is said to be invex at x with respect to η if for all y ∈ K and t ∈ [0, 1]
we have

x+ tη(y, x) ∈ K.

If K is invex at every point x ∈ K with respect to η, then K is said to
be invex with respect to η.

Notice that by taking η(y, x) = y − x, each convex set is invex but
the converse is not true in general.

We sometimes need some more assumptions on η in the sequal.

Condition 3.3 ([20]). Let K ⊆ X be an invex set with respect to η
and f : K → R be a function. Then, for all x, y ∈ K we have

f(x+ η(y, x)) ≤ f(y).

Condition 3.4 ([12]). Let K ⊆ X be an invex set with respect to
η : K ×K → X. Then, for all x, y ∈ K and all t ∈ [0, 1],

(a) η(x, x+ tη(y, x)) = −tη(y, x),

(b) η(y, x+ tη(y, x)) = (1− t)η(y, x).

Remark 3.5. It is shown in [14] that if η : K × K → X satisfies
Condition 3.4, then

η(x+ tη(y, x), x) = tη(y, x), for all t ∈ [0, 1] and all x, y ∈ K.



VECTOR OPTIMIZATION PROBLEMS AND GENERALIZED VECTOR ... 73

We assume that K ⊆ X is an invex set with respect to η in this
section unless otherwise specified.

Definition 3.6 ([3, 10]). A function f : K → R is said to be

(i) pre-quasiinvex with respect to η on K if for all x, y ∈ K and all
t ∈ [0, 1] we have

f(y) ≤ f(x) ⇒ f(x+ tη(y, x)) ≤ f(x).

(ii) quasiinvex with respect to η on K if for all x, y ∈ K and all
ζ ∈ ∂Lf(x) we have

f(y) ≤ f(x) ⇒ ⟨ζ, η(y, x)⟩ ≤ 0.

(iii) generalized pseudoinvex with respect to η on K [2] if for all
x, y ∈ K and for all ζ ∈ ∂Lf(x) we have

⟨ζ, η(y, x)⟩ ≥ 0 ⇒ f(x) ≤ f(y).

(iv) generalized strict pseudoinvex with respect to η [2] if for all
x, y ∈ K and for all ζ ∈ ∂Lf(x) we have

⟨ζ, η(y, x)⟩ ≥ 0 ⇒ f(x) < f(y).

Ansari and Rezaei in [2, Theorem 2.5] showed that if f has a local
maximum at x̄, then 0 ∈ ∂Lf(x̄) which is incorrect. The simplest exam-
ple can be given as f(x) = −|x| at x̄ = 0, where

∂Lf(0) = {−1, 1},

and x̄ = 0 is a maximum point of f but 0 /∈ ∂Lf(0). What follows is a
correction of this result.

Proposition 3.7. Let K ⊆ X = Rn be a nonempty open set and η :
K × K → Rn satisfy Condition 3.3. If f : K → R is locally Lipschitz
and generalized pseudoinvex with respect to η, then f is pre-quasiinvex
with respect to the same η.

Proof. In contrast, suppose that f is not pre-quasiinvex with respect to
η. Then, there exist x, y ∈ K and t̂ ∈ [0, 1], such that f(y) ≤ f(x) while
f(x+ t̂η(y, x)) > f(x). For x̂ = x+ t̂η(y, x), we get

(3.1) f(x̂) > f(x) ≥ f(y).

Now let φ(t) = f(x + tη(y, x)), t ∈ [0, 1]. Since f is continuous, then
φ attains its maximum over [0, 1]. Since φ(0) = f(x) < f(x̂) from
(3.1), then t = 0 is not a maximizer and thus f(x + η(y, x)) = φ(1) ≤
f(y) < f(x̂) by Condition 3.3 and (3.1), which implies that t = 1 is
not a maximizer, as well. Hence, there exists a t̄ ∈ (0, 1) such that
f(x̄) = maxt∈[0,1] f(x+ tη(y, x)), where x̄ = x+ t̄η(y, x).
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On the other hand, since K is an open set and f is locally Lipschitz,
there exists 0 < δ̄ < 1 such that Bδ̄(x̄) ⊂ K and f is Lipschitz on an
open set containing [x̄− δη(y, x̄), x̄] ⊂ Bδ̄(x̄) ⊂ K for all δ ∈ (0, δ̄]. Now
by Theorem 2.2, there exists cδ ∈ [x̄− δη(y, x̄), x̄) such that

f(x̄)− f(x̄− δη(y, x̄)) ≤ δ⟨x∗δ , η(y, x̄)⟩,
for some x∗δ ∈ ∂Lf(cδ). It follows from [13, Proposition 1.85] that
the sequence {x∗δ} is bounded. Hence, by Proposition 2.3, {x∗δ} has
a subsequence converging to some x∗ ∈ ∂Lf(x̄) when δ ↓ 0, because
limδ↓0 cδ = x̄. This leads to

0 ≤ lim
δ↓0

f(x̄)− f(x̄− δη(y, x̄))

δ
≤ ⟨x∗, η(y, x̄)⟩.

Now, by the generalized pseudo-invexity assumption, we obtain f(y) ≥
f(x̄). So, from (3.1), we have f(x̂) > f(x̄). Since t̄ is a maximizer of φ
on [0, 1], this is a contradiction. □

Now, we replace locally Lipschitz and generalized pseudoinvexity as-
sumptions on f by monotonicity assumption in Proposition 3.7 for η :
K ×K → R in the following proposition.

Proposition 3.8. Let η : K × K → R satisfy Condition 3.3 and f :
K → R be a monotone function. Then, f is pre-quasiinvex with respect
to the same η.

Proof. Assume that f is not pre-quasiinvex with respect to η. Then,
there exist x, y ∈ K and t ∈ [0, 1], such that f(y) ≤ f(x) and

(3.2) f(x+ tη(y, x)) > f(x).

From (3.2) and Condition 3.3, we have

f(x+ tη(y, x)) > f(x) ≥ f(y) ≥ f(x+ η(y, x)).

Since f is monotone on K, we have

⟨f(x+ tη(y, x))− f(x), tη(y, x)⟩ ≥ 0,

and thus η(y, x) ≥ 0. Also, we have

⟨f(x+ tη(y, x))− f(x+ η(y, x)), (t− 1)η(y, x)⟩ ≥ 0,

resulting to η(y, x) ≤ 0. Hence, η(y, x) = 0, which contradicts (3.2) and
thus f is pre-quasiinvex. □
Definition 3.9 ([15]). A set-valued mapping F : K → 2X

∗
is said to be

(i) invariant monotone with respect to η on K if ∀x, y ∈ K, ∀ζ ∈
F (x), ∀ξ ∈ F (y), we have

⟨ζ, η(y, x)⟩+ ⟨ξ, η(x, y)⟩ ≤ 0.
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(ii) invariant pseudomonotone with respect to η if ∀x, y ∈ K, ∀ζ ∈
F (x), ∀ξ ∈ F (y), we have

⟨ζ, η(y, x)⟩ ≥ 0 ⇒ ⟨ξ, η(x, y)⟩ ≤ 0.

(iii) invariant strictly-pseudomonotone with respect to η if ∀x, y ∈
K, ∀ζ ∈ F (x), ∀ξ ∈ F (y), we have

⟨ζ, η(y, x)⟩ ≥ 0 ⇒ ⟨ξ, η(x, y)⟩ < 0.

Theorem 3.10 ([18, Theorems 3.4 and 3.5]). Let η : K × K → Rn

satisfy Condition 3.4. If f : K → R is locally Lipschitz and generalized
pseudoinvex with respect to η, then it is both strictly pre-quasiinvex and
pre-quasiinvex with respect to the same η.

Theorem 3.11 ([16, Theorem 3.2]). Let f : K → R be locally Lipschitz
pre-quasiinvex function and η be continuous with respect to the second
argument satisfying Condition 3.4, then f is quasiinvex.

Proposition 3.12. Let K ⊆ X = Rn and η : K×K → Rn be continuous
in terms of the second argument. Furthermore, let Condition 3.4 hold
and f : K → R be locally Lipschitz. If f is generalized pseudoinvex with
respect to η, then ∂Lf is invariant pseudomonotone with respect to the
same η.

Proof. Assume the contrary, which is: there exist x, y ∈ K, ζ ∈ ∂Lf(x)
and ξ ∈ ∂Lf(y) such that

(3.3) ⟨ζ, η(y, x)⟩ ≥ 0, ⟨ξ, η(x, y)⟩ > 0.

Since f is generalized pseudoinvex with respect to η, from the first in-
equality in (3.3), we will have f(y) ≥ f(x). On the other hand, f is
pre-quasiinvex with respect to η, by Theorem 3.10. From Theorem 3.11
and the second inequality in (3.3), we get f(x) > f(y), which is a con-
tradiction. Therefore, ∂Lf(x) is invariant pseudomonotone with respect
to η. □

Remark 3.13. Proposition 3.12 has been established in [2, Proposition
3.9]. But there is a gap in the proof, because the authors applied

⟨ξ, η(x, y)⟩ > 0 ⇒ f(x) ≥ f(y),

which does not contradict f(y) ≥ f(x).

The following result is about generalized strict pseudoinvex functions.
The proof is straightforward.

Proposition 3.14. If f : K → R is locally Lipschitz and generalized
strict pseudoinvex with respect to η : K×K → X, then ∂Lf is invariant
strictly-pseudomonotone with respect to the same η.
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4. Vector Optimization

In this section, we study the relationships between the solutions of
the following (weak) Minty and (weak) Stampacchia (VVLI) and (weak)
efficient solutions of vector optimization problems. For the rest of this
article, unless otherwise specified, we assume that K is a nonempty
subset of an Asplund space X and η : K × K → X is a vector-valued
mapping. The interior of K is denoted by intK.

Definition 4.1 ([1, 5]). Let K be an invex set with respect to η and
f = (f1, . . . , fℓ) : X → Rℓ be a vector-valued function.

(i) Generalized Minty vector variational-like inequality problem
(GMVVLIP) is finding a vector x̄ ∈ K such that for all y ∈ K
and all ξi ∈ ∂Lfi(y), i ∈ {1, . . . , ℓ}, we have

⟨ξ, η(y, x̄)⟩ℓ = (⟨ξ1, η(y, x̄)⟩, . . . , ⟨ξℓ, η(y, x̄)⟩) /∈ −Rℓ
+\ {0} .

(ii) Weak generalized Minty vector variational-like inequality prob-
lem (WGMVVLIP) is finding a vector x̄ ∈ K such that for all
y ∈ K and all ξi ∈ ∂Lfi(y), i ∈ {1, ...ℓ}, we have

⟨ξ, η(y, x̄)⟩ℓ = (⟨ξ1, η(y, x̄)⟩, . . . , ⟨ξℓ, η(y, x̄)⟩) /∈ −int Rℓ
+.

(iii) Generalized Stampacchia vector variational-like inequality prob-
lem (GSVVLIP) is finding a vector x̄ ∈ K such that for all
y ∈ K, there exists ζi ∈ ∂Lfi(x̄), i ∈ {1, . . . , ℓ}, such that

⟨ζ, η(y, x̄)⟩ℓ = (⟨ζ1, η(y, x̄)⟩, . . . , ⟨ζℓ, η(y, x̄)⟩) /∈ −Rℓ
+ \ {0} .

(iv) Weak generalized Stampacchia vector variational-like inequality
problem (WGSVVLIP) is finding a vector x̄ ∈ K such that for
all y ∈ K, there exists ζi ∈ ∂Lfi(x̄), i ∈ {1, . . . , ℓ}, such that

⟨ζ, η(y, x̄)⟩ℓ = (⟨ζ1, η(y, x̄)⟩, . . . , ⟨ζℓ, η(y, x̄)⟩) /∈ −int Rℓ
+.

We consider the following vector-minimization problem (VOP):

min
x∈K

(
f(x) =

(
f1(x), f2(x), . . . , fℓ(x)

))
.

Definition 4.2. [2] A point x̄ ∈ K is said to be an efficient (or Pareto)
solution (respectively, weak efficient solution) of (VOP) if

f(y)−f(x̄) =
(
f1(y)−f1(x̄), . . . , fℓ(y)−fℓ(x̄)

)
/∈ −Rℓ

+ \{0} , ∀y ∈ K,(
respectively, f(y)−f(x̄) =

(
f1(y)−f1(x̄), . . . , fℓ(y)−fℓ(x̄)

)
/∈ −int Rℓ

+, ∀y ∈ K
)
.

where Rℓ
+ is the nonnegative orthant of Rℓ. Hereafter 0 stands for the zero

vector.
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It is clear that every efficient solution is a weak efficient solution. See
[4, 6, 9] and the references therein for more details on vector optimiza-
tion theory. See also [4, 11, 17] and the references therein for Pareto
optimality and its applications.

Proposition 4.3. Let K ⊆ X = Rn be a nonempty open invex set with
respect to η : K × K → Rn and fi : K → R, i = 1, 2, . . . , ℓ, be locally
Lipschitz. If x̄ ∈ K, is a weak efficient solution of (VOP), then it is a
solution of (WGSVVLIP).

Proof. Assume that x̄ ∈ K is a weak efficient solution of (VOP) but not
a solution of (WGSVVLIP). So, there exists y ∈ K such that for all
ξi ∈ ∂Lfi(x̄), i = 1, 2, . . . , ℓ, we have

(⟨ξ1, η(y, x̄)⟩, . . . , ⟨ξℓ, η(y, x̄)⟩) ∈ −int Rℓ
+,

that is

(4.1) ⟨ξi, η(y, x̄)⟩ < 0, i = 1, 2, . . . , ℓ.

Since K is an open set and fi, i = 1, 2, . . . , ℓ, is locally Lipschitz, then
there exists 0 < δ̄ < 1 such that Bδ̄(x̄) ⊂ K and fi, i = 1, 2, . . . , ℓ, is
Lipschitz on an open set containing [x̄, x̄ + δη(y, x̄)] ⊂ Bδ̄(x̄) for each
δ ∈ (0, δ̄]. Now there exists cδi ∈ [x̄, x̄ + δη(y, x̄)), by Theorem 2.2, so
that we have

fi(x̄+ δη(y, x̄))− fi(x̄) ≤ δ⟨x∗δi , η(y, x̄)⟩, i = 1, 2, . . . , ℓ,

for some x∗δi ∈ ∂fi(cδi). It follows from [13, Proposition 1.85], the se-

quence {x∗δi} is bounded, i = 1, 2, . . . , ℓ. Hence, when δ ↓ 0, by Proposi-

tion 2.3, {x∗δi} has a subsequence that converges to some x∗i ∈ ∂Lfi(x̄),

i = 1, 2, . . . , ℓ, because limδ↓0 cδi = x̄. From (4.1) we have

lim
δ↓0

fi(x̄+ δη(y, x̄))− fi(x̄)

δ
≤ ⟨x∗i , η(y, x̄)⟩ < 0.

Thus for each i = 1, 2, . . . , ℓ, there exists λi such that for each 0 < δ < λi,
we have fi(x̄+ δη(y, x̄))− fi(x̄) < 0. If λ̄ = min{λ1, λ2, . . . , λℓ, 1}, then
for each 0 < δ < λ̄ we have

fi(x̄+ δη(y, x̄))− fi(x̄) < 0, i = 1, 2, . . . , ℓ.

Therefore, by choosing t̂ ∈ (0, λ̄) we have x̂ = x̄ + t̂η(y, x̄) ∈ K and
fi(x̂) < fi(x̄) for any i ∈ {1, 2, . . . , ℓ} which implies that x̄ is not a weak
efficient solution of (VOP). □
Proposition 4.4. Let K ⊆ X be invex with respect to η : K ×K → X,
such that η is skew. Let fi : K → R, i = 1, 2, . . . , ℓ, be locally Lipschitz
and generalized strict pseudoinvex with respect to η. If x̄ ∈ K is a
solution of (WGSVVLIP), then it is a solution of (GMVVLIP).
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Proof. Let x̄ ∈ X be a solution of (WGSVVLIP) but not a solution of
(GMVVLIP). Then, there exist y ∈ K and ξi ∈ ∂Lfi(y), i = 1, 2, . . . , ℓ,
such that

(⟨ξ1, η(x̄, y)⟩, . . . , ⟨ξℓ, η(x̄, y)⟩) ∈ Rℓ
+\ {0} ,

implying

⟨ξi, η(x̄, y)⟩ ≥ 0, i = 1, 2, . . . , ℓ,

holds strictly for some k ∈ {1, 2, . . . , ℓ}. Since fi, 1 ≤ i ≤ ℓ, is general-
ized strict pseudoinvex with respect to η, each ∂Lfi is invariant strictly-
pseudomonotone with respect to η, from Theorem 3.14 and then we will
have

⟨ζi, η(y, x̄)⟩ < 0, ∀ζi ∈ ∂Lfi(x̄), i = 1, 2, . . . , ℓ.

Therefore, for all ζi ∈ ∂Lfi(x̄), we have

(⟨ζi, η(y, x̄)⟩, . . . , ⟨ζℓ, η(y, x̄)⟩) ∈ −int Rℓ
+,

Thus, x̄ ∈ K is not a solution of (WGSMVVLIP), which contradicts our
assumption. □
Proposition 4.5. Let K ⊆ X = Rn be invex with respect to η : K×K →
Rn. Let fi : K → R, i = 1, 2, . . . , ℓ, be locally Lipschitz. If x̄ ∈ K is a
solution of (WGMVVLIP), then it is a solution of (WGSMVVLIP).

Proof. Suppose that x̄ ∈ K is a solution of (WGMVVLIP). For any
y ∈ K and any sequence {αm} ↘ 0 with αm ∈ (0, 1], we have

ym := x̄+ αmη(y, x̄) ∈ K,

since K is invex. Since x̄ is a solution of (WGMVVLIP), then for all
ξmi ∈ ∂Lfi(ym), i = 1, 2, . . . , ℓ, we have

(⟨ξm1 , η(ym, x̄)⟩, . . . , ⟨ξmℓ , η(ym, x̄)⟩) /∈ −int Rℓ
+.

The sequence {ξmi } is bounded due to [13, Proposition 1.85]. Hence,
when m → ∞, by Proposition 2.3, {ξmi } has a subsequence that con-
verges to some ξi ∈ ∂Lfi(x̄), i = 1, 2, . . . , ℓ, because ym → x̄ as m → ∞.
Therefore, for any y ∈ K, there exists ξi ∈ ∂Lfi(x̄), i = 1, 2, . . . , ℓ, such
that

(⟨ξ1, η(y, x̄)⟩, . . . , ⟨ξℓ, η(y, x̄)⟩) /∈ −int Rℓ
+,

which shows that x̄ is a solution of (WGSMVVLIP). □
From Propositions 4.4 and 4.5, we have the following result.

Theorem 4.6. Let K ⊆ X = Rn be invex with respect to η : K ×K →
Rn such that η is skew. Let fi : K → R, i = 1, 2, . . . , ℓ, be locally
Lipschitz and generalized strict pseudoinvex with respect to η. Then
x̄ ∈ K is a solution of (WGSVVLIP) if and only if it is a solution of
(WGMVVLIP).
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Proposition 4.7. Let K ⊆ X be invex with respect to η : K ×K → X
such that η is skew. Let fi : K → R, i = 1, 2, ..., ℓ, be locally Lipschitz
and generalized strict pseudoinvex with respect to η. If x̄ ∈ K is a weak
efficient solution of (VOP), then it is a solution of (GMVVLIP).

Proof. If x̄ is a weak efficient solution of (VOP) but not a solution of
(GMVVLIP), then there exist y ∈ K and ξi ∈ ∂Lfi(y), i = 1, . . . , ℓ such
that

⟨ξi, η(x̄, y)⟩ ≥ 0, ∀i = 1, 2, . . . , ℓ,

and ⟨ξk, η(x̄, y)⟩ > 0 for some k ∈ {1, 2, . . . , ℓ}. Generalized strict pseu-
doinvexity of fi with respect to η implies that

fi(x̄) > fi(y), ∀i = 1, 2, . . . , ℓ.

Therefore, we have

(f1(y)− f1(x̄), . . . , fℓ(y)− fℓ(x̄)) ∈ −int Rℓ
+,

which contradicts that x̄ ∈ K is a weak efficient solution of (VOP). □

Proposition 4.8. Let K ⊆ X = Rn be invex with respect to η : K×K →
Rn such that η is skew and continuous in terms of the second argument
satisfying Condition 3.4. Let fi : K → R, i = 1, 2, . . . , ℓ, be locally
Lipschitz and generalized pseudoinvex with respect to η. Then x̄ ∈ K
is a weak efficient solution of (VOP) if and only if it is a solution of
(WGMVVLIP).

Proof. Assume that x̄ is a weak efficient solution of (VOP) and not a
solution of (WGMVVLIP). Then, there exist y ∈ K and ξi ∈ ∂Lfi(y),
i = 1, . . . , ℓ, such that

⟨ξi, η(x̄, y)⟩ > 0, ∀i = 1, 2, . . . , ℓ.

Since each fi is generalized pseudoinvex with respect to η, applying
Theorems 3.10 and 3.11, we get each fi is quasiinvex with respect to η.
Thus

⟨ξi, η(x̄, y)⟩ > 0 ⇒ fi(x̄) > fi(y), i = 1, 2, . . . , ℓ.

Hence,

(f1(y)− f1(x̄), . . . , fℓ(y)− fℓ(x̄)) ∈ −int Rℓ
+,

which contradicts the assumption that x̄ is a weak efficient solution of
(VOP).
Conversely, the weak efficiency of (VOP) can be resulted from Proposi-
tion 4.5 and [2, Proposition 4.6]. □

Proposition 4.9. Let K ⊆ X = Rn be invex with respect to η : K ×
K → Rn such that η is continuous in terms of the second argument
and satisfies Condition 3.4. Let fi : K → R, i = 1, 2, . . . , ℓ, be locally
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Lipschitz and generalized pseudoinvex with respect to η. If x̄ ∈ K is a
solution of (GSVVLIP), then it is an efficient solution of (VOP).

Proof. Let x̄ be a solution of (GSVVLIP) and not an efficient solution
of (VOP). Then, there exists y ∈ K such that

f(y)− f(x̄) =
(
f1(y)− f1(x̄), . . . , fℓ(y)− fℓ(x̄)

)
∈ −Rℓ

+ \ {0} .
That is,

(4.2) fi(y) ≤ fi(x̄), i = 1, 2, . . . , ℓ,

and fk(y) < fk(x̄) for some k ∈ {1, 2, . . . , ℓ}. From the generalized
pseudoinvexity of fk with respect to η we have

⟨ξk, η(y, x̄)⟩ < 0, ∀ ξk ∈ ∂Lfk(x̄).

On the other hand, for any i ∈ {1, 2, . . . , ℓ} such that fi(y) = fi(x̄) in
(4.2), from Theorems 3.10 and 3.11, we have

⟨ξi, η(y, x̄)⟩ ≤ 0, ∀ξi ∈ ∂Lfi(x̄).

Therefore,

⟨ξ, η(y, x̄)⟩ = (⟨ξ1, η(y, x̄)⟩, . . . , ⟨ξℓ, η(y, x̄)⟩) ∈ −Rℓ
+ \ {0} ,

which contradicts the assumption that x̄ is a solution of (GSVVLIP). □
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