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About One Sweep Algorithm for Solving Linear-Quadratic

Optimization Problem with Unseparated Two-Point

Boundary Conditions

Fikret A. Aliev1∗, Mutallim M. Mutallimov2, Ilkin A. Maharramov3, Nargiz Sh.
Huseynova4 and Leyla I. Amirova5

Abstract. In the paper a linear-quadratic optimization problem
(LCTOR) with unseparated two-point boundary conditions is con-
sidered. To solve this problem is proposed a new sweep algorithm
which increases doubles the dimension of the original system. In
contrast to the well-known methods, here it refuses to solve linear
matrix and nonlinear Riccati equations, since the solution of such
multi-point optimization problems encounters serious difficulties in
passing through nodal points. The results are illustrated with a
specific numerical example.

1. Introduction

As in known, optimization problems with unseparated two-point and
multi-point boundary conditions [4, 5, 7, 12] play a great role in solving
many practical problems as constructing optimal program trajectories
and control systems [3, 11, 16, 17, 26], for motion of gas and gas-fluid
mixture in annular space and hoist [9, 20], when producing gas by gas-lift
method. As even for solving nonlinear optimization problems [4, 11, 16]
the quasilinearization method is used with the help of solving a linearly
square optimization problem (LSOP), so for the latter attracts attention
of researchers [2, 21, 22, 25].
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There exist various methods for solving LSOP with unseparated bound-
ary conditions, where missing boundary data are found by solving cor-
responding Euler-Lagrange differential equation and then optimal solu-
tions that are called a method that raises the dimension of the original
system [5, 7] are recovered. In the case when the length of the interval
determining the system is long, the Moshinsky method [1, 3, 19] that
twice increases the length of the interval and twice raises the dimension
of the original system, is used. Here it is difficult to ensure good stip-
ulation of final systems for finding both initial data and at any point
inside the interval. Therefore, in [3–5, 7, 23] the sweep method is de-
veloped for solving LSOP with unseparated boundary conditions and
this requires to solve some nonlinear systems of differential equations
not raising the dimension of the original system. In [22], the results
of [4, 5, 7] are given in the case of multi-point boundary conditions, in
[2, 21] a counter-example with non-optimality of the obtained results is
given. Apparently, in [2, 21, 22] the problems are associated with pas-
sage of matrix equations from nodal points to Riccati equations, that
requires complex researches.

In the present paper, based on the method raising the dimension
[3, 24] of the original system, we give a sweep method for solving LSOP
with unseparated boundary conditions, in the three-point case such an-
noyances [21] do not happen, i.e., the example cited in [21] is easily
solved here. Proceeding from the results of [2] here, we study a discrete
case which can be extended to discontinuous case.

2. Problem Statement and the Method Raising the
Dimension of the Original System

At first, we consider linear square optimization problem with two-
point unseparated boundary conditions, i.e., let the motion of the object
be described by the following discrete linear controllable system [13, 16]

x (i+ 1) = ψ(i)x(i) + Γ(i)u(i), i = 1, 2, . . . , ℓ,(2.1)

with unseparated boundary conditions

Φ1x(0)− Φ2x(ℓ) = q,(2.2)

where x(i)−n- dimensional phase vector, u(i) ism− dimensional control
action, ψ(i), Γ(i) and the constants Φ1, Φ2 are n×n, n×m and k×n-
dimensional matrices, respectively, the known constant vector q is of
dimension k × 1, respectively.

It is required to find such vectors x(i), u(i) that the square functional

J =
1

2

l−1∑
i=0

(
x′(i)R(i)x(i) + u′(i)C(i)u(i)

)
(2.3)
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at constraint (2.1), (2.2) obtains minimal value, where R(i) = R′(i) ≥
0, C(i) = C ′(i) > 0 are n× n; m×m-dimensional symmetric matrices,
the prime denotes the transposition operation.

Using necessary optimality conditions of problem (2.1)-(2.3) in the
form of Euler-Lagrange, from [13, 16] it is easy to show that the solution
of problems (2.1)-(2.3) is reduced to the solution of the following system
of 2n-th order finite-difference equations [15]

x(i+ 1) = ψ(i)x(i)−M(i)λ(i+ 1)
λ(i) = R(i)x(i) + ψ′(i)λ(i+ 1)

}
(2.4)

with the following boundary conditions

Φ
′
1v + λ(0) = 0

−Φ
′
21v + λ(ℓ) = 0

(2.5)

and (2.2), M(i) = Γ(i)C−1(i)Γ′(i).
Denoting Φ = [Φ1,−Φ2] and using the results of [14], the matrix Φ′

is represented in the form

Φ′ = P−1

[
E
0

]
Q−1 ,

where P and Q are some square, E is unit matrix of dimensions 2n ×
2n, n× n and k × k , respectively.

Let the matrix P be decomposed into blocks

P =

[
P1 P2

P3 P4

]
,

where the matrices P1, P2 and P3, P4 are of dimension k×n and (2n−
k)×n, respectively. Then, it is shown in [3] that the solution of problems
(2.1), (2.2) is reduced to the solution of equation (2.4) with the following
2n boundary conditions[

Φ1 0
0 − P3

] [
x(0)
λ(0)

]
+

[
−Φ2 0
0 P3

] [
x(ℓ)
λ(ℓ)

]
=

[
q
0

]
(2.6)

and the control law u(i) is determined in the form

u(i) = −C−1(i)Γ′(i)λ(i+ 1) .(2.7)

As was shown in [3], the missing boundary data are determined from
the following system of linear algebraic equations

ψ(0, ℓ) 0 − E −M(0, ℓ)
R(0, ℓ) − E 0 ψ′(0, ℓ)
Φ1 0 − Φ2 0
0 − P3 0 P4



x(0)
λ(0)
x(ℓ)
λ(ℓ)

 =


0
0
q
0

 ,(2.8)
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where ψ(0, ℓ), M(0, ℓ), and R(0, ℓ) satisfy the following recurrent rela-
tions

ψ(i, j) = ψ(i+ j − 1)Q(i, j − 1)ψ(i, j − 1), ψ(i, 1)(2.9)

= ψ(i),

M(i, j) =M(i+ j − 1) + ψ(i+ j − 1)Q(i, j − 1)

×M(i, j − 1)ψ′(i+ j − 1), M(i, 1) =M(i),

R(i, j) = R(i, j − 1) + ψ′(i, j − 1)R(i+ j − 1)

×Q(i, j − 1)ψ(i, j − 1), R(i, 1) = R(i)

Q(i, j) = (E +M(i, j)R(i+ j))−1

for i = 0, j = ℓ.
Having solving the system of linear algebraic equations (SLAE) (2.8),

we find the initial and final values x(0), λ(0), x(ℓ), and λ(ℓ). In what fol-
lows, as was shown in [3], the current values x(i) and λ(i) are determined
from the following SLAE[

E M(0, i)
0 ψ′(0, i)

] [
x(i)
λ(i)

]
=

[
ψ(0, i) 0
−R(0, i) E

] [
x(0)
λ(0)

]
(2.10)

or

[
ψ(i, ℓ− i) 0
R(i, ℓ− i) − E

] [
x(i)
λ(i)

]
=

[
E M(i, ℓ− i)
0 − ψ′(i, ℓ− i)

] [
x(ℓ)
λ(ℓ)

](2.11)

depending on degeneracy of the matrices ψ(i). Thus, finding x(0), λ(0),
and x(ℓ) from SLAE (2.8), we restore the current values x(i) and λ(i)
from (2.10) and (2.11) depending on what points i degenerates ψ(i).
Then we restore optimal control u(i) by formula (2.7). Note that ψ(0, ℓ),
M(0, ℓ), and R(0, ℓ) are determined from (2.9) for i = 0, j = ℓ.

It should be noted that for large dimension of problems (2.1)-(2.3)
such a method can encounter difficulties, i.e., for finding initial data
x(0) (vector of dimension n) it is required to solve 4n-dimensional SLAE
(2.8). For determining x(i) for the general case (ψ(i) does not exist) it
is also required to solve SLAE (2.10), (2.11).

Therefore, in [18, 21] a sweep method is offered for solving problem
(2.1)-(2.3), that despite (2.8), (2.10), and (2.11) considerably decreases
dimension of similar equations for determining x(0) and x(i). However,
when solving optimization problems of multi-point boundary value prob-
lems, these methods face difficulties. In the following point of the func-
tion, we give a new sweep algorithm that can be successfully extended
[21] to the multi-point general case as well [22].
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3. New Sweep Method

We use the idea of the sweep method [3–7, 23] instead of equations
(2.8) for determining x(0), λ(0), x(ℓ), and λ(ℓ) using the first two equa-
tions, i.e. substituting λ(ℓ) from the second equations of (2.5) in the
second equation of (2.8), and have

R(0, ℓ)x(0) +
(
Φ

′
1 − ψ′(0, ℓ)Φ

′
2

)
v = 0 .(3.1)

Now, having determined x(ℓ) from the first equation of (2.8) in the
form

x(ℓ) = ψ(0, ℓ)x(0)−M(0, ℓ)λ(ℓ)(3.2)

we substitute this formula (3.2) and (2.2), after some transformations
have

Φ1x(0)− Φ2ψ(0, ℓ)x(0) + Φ2M(0, ℓ)λ(ℓ) = q .(3.3)

Then, taking into account from the last relation λ(ℓ) from (2.5), in
(3.3) we get

(Φ1 − Φ2ψ(0, ℓ))x(0) + Φ2M(0, ℓ)Φ
′
2v = q ,(3.4)

where having joined (3.1), (3.4) for determining x(0), v we have the
following system of linear algebraic equations (SLAE)[

R(0, ℓ) Φ
′
1 − ψ′(0, ℓ)Φ

′
2

Φ1 − Φ2ψ(0, ℓ) − Φ2M(0, ℓ)Φ
′
2

] [
x(0)
v

]
=

[
0
q

]
.(3.5)

Note that the main matrix of SLAE (3.5) is symmetric, and this allows
to solve this problem more precisely [8].

We stop on calculation of x(i) and u(i) without using λ(i). For this,
we suppose that ψ−1(i) from (2.4) exists. Then from the second equation
of (2.4), we represent λ(i+ 1) in the form

λ(i+ 1) = −ψ′−1(i)R(i)x(i) + ψ′−1(i)λ(i) .(3.6)

From (3.6) and the first equation of (2.5), for i = 0, we have

λ(1) = −ψ′−1(0)R(0)x(0)− ψ′−1(0)Φ
′
1v ,

and for i = 1

λ(2) = −ψ′−1(1)R(1)x(1) + ψ′−1(1)λ(1)

= −ψ′−1(1)R(1)x(1)− ψ′−1(1)ψ′−1(0)R(0)λ(0)− ψ′−1(1)ψ′−1(0)Φ
′
1v
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and so on. By mathematical induction, we can sow that

λ(i+ 1) = −
i∑

k=0

 i∏
j=k

ψ′−1(i+ k − 1)

Rkxk −
i∏

k=0

(
ψ′−1(i− 1)

)
Φ

′
1v .

(3.7)

Taking into account formulas (3.7) in (3.6), we find x(i + 1) by x(i)
and v in the following form

x(i+ 1) = ψ(i)x(i)−M(i)


i∑

k=0

 i∏
j=k

ψ′−1(i+ k − j)

R(k)x(k)

(3.8)

−

(
i∏

k=0

ψ−1
i−k

)
Φ

′
1v

}
, (i = 0, 1, . . . , ℓ− 1)

u(i) will be

u(i) = C−1(i)Γ ′(i)


i∑

k=0

 i∏
j=k

ψ′−1(i+ k − j)

R(k)x(k)(3.9)

+

(
i∏

k=0

ψ′(i− k)

)
Φ

′
1v

}
, i = 0, 1, . . . , ℓ− 1 .

For the given matrices from (2.1)-(2.3) - ψ(i),Γ(i),Φ1,Φ2, C(i), R(i), q
from SLAE (3.5) we find x(0), v. Then we determine the control u(i)
from relations (3.9), the trajectory x(i) from (3.8).

4. Algorithm and Example

Thus, we have the following computing
Algorithm.

• We formulate the given matrices ψ(i), Γ(i), Φ1, Φ2, C(i), and
R(i) and q vector from problem (2.1)-(2.3).

• From relations (2.9) under the matrix conditions ψ(0, 1) = ψ(0),
M(0, 1) = M(0), R(0, 1) = R(0) we calculate ψ(0, ℓ), R(0, ℓ)
and M(0, ℓ).

• We formulate the main matrix and vector in the right hand side
of SLAE (3.5).

• We solve SLAE (3.5).
• The control u(i) is calculated from (3.9), the trajectory x(i)
from (3.8).
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It should be noted that algorithm (2.1) is a “sweep” algorithm. In
fact this algorithm does not use the adjoint vector λ(i).

Example 4.1. We consider the case when in problem (2.1)-(2.3) n =
m = k = 1, ℓ = 4 , and the constants ψ(i), Γ(i), ϕ1, ϕ2, q, R(i) and
C(i) are determined as follows

ψ(0) = ψ(1) = ψ(2) = ψ(3) = 1,
Γ(0) = Γ(1) = Γ(2) = Γ(3) = 1,
Φ1 = 1, Φ2 = 1, q = 1,
R(0) = R(1) = R(2) = R(3) = 1,
C(0) = C(1) = C(2) = C(3) = 1 .

(4.1)

Then problem (2.1)-(2.3) takes the following form

x(i+ 1) = x(i) + u(i), i = 0, 1, 2, 3,

x(0)− x(4) = 1

J =
1

2

3∑
i=0

[
x2(i) + u2(i)

]
→ min .(4.2)

Using the recurrent relation (2.9), after some calculations we have

ψ(0, 4) =
1

13
, M(0, 4) =

21

13
, R(0, 4) =

21

13
.

Substituting these values in (3.5), we get the system of linear algebraic
equations 

21
13x(0) +

12
13v = 0

12
13x(0)−

21
13v = 1

whose solution equals x(0) = 4
15 , v = − 7

15 .
Then, using formulas (3.8) and (3.9), we find the solution of problem

(4.2) in the following form

x(0) = 4
15 , x(1) = 1

15 , x(2) = − 1
15 , x(3) = − 4

15 , x(4) = −11
15

u(0) = −1
5 , u(1) = − 2

15 , u(2) = −1
5 , u(3) = − 7

15 .

And the functional obtains its minimal value J = 7
30 .
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