Document Type: Research Paper


1 Department of Mathematics, Bilehsavar Branch, Islamic Azad University, Bilehsavar, Iran.

2 Department of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran.

3 Department of Mathematics, Razi University, Kermanshah, 67149, Iran.



In this paper, at first, we introduce $\alpha_{\mu}$-admissible, $Z_\mu$-contraction and  $N_{\mu}$-contraction via simulation functions. We prove some new fixed point theorems for defined class of contractions   via $\alpha$-admissible simulation mappings, as well. Our results  can be viewed as extension of the corresponding results in this area.  Moreover, some examples and an application to functional integral equations are given to support the obtained results.


[1] A. Aghajani, J. Banas, and N. Sabzali, Some generalizations of Darbo's fixed point theorem and applications, Bull. Belg. Math. Soc., Simon Stevin 20 (2013), pp. 345-358.

[2] J. Bana's and K. Goebel, Measures of noncompactness in Banach spaces, in: Lecture Notes in Pure and Applied Mathematics, Dekker New York, 60, 1980.

[3] J. Chen and X. Tang, Generalizations of Darbo's fixed point theorem via simulation functions with application to functional integral equations, J. Comput. Appl. Math., 296 (2016), pp. 564-575.

[4] C.-M. Chen, E. Karapi nar, and D. O'regan, On $(alpha-phi)$-Meir-Keeler contractions on partial Hausdorff metric spaces, University Politehnica Of Bucharest Scientific, Bulletin-Series A-Applied Mathematics And Physics, 80 (2018), pp. 101-110.

[5] G. Darbo, Punti unitti in transformazioni a condominio non compatto, Rend. Semin. Mat. Univ. Padova, 24 (1955), pp. 84-92.

[6] A. Farajzadeha and A. Kaewcharoen, Best proximity point theorems for a new class of $alpha-psi-$ proximal contractive mappings, J. Non. Conv. Anal., 16 (2015), pp. 497-507.

[7] A. Farajzadeha, P. Chuadchawna, and A. Kaewcharoen, Fixed point theorems for $(alpha; eta; psi;xi)-$contractive multi-valued mappings on $ alpha-eta$ complete partial metric spaces, J. Nonlinear Sci. Appl., 9 (2016), pp. 1977-1990.

[8] M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), pp. 604-608.

[9] L. Gholizadeh and E. Karapi nar, Best proximity point results in dislocated metric spaces via $R$-functions, Revista da la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 112 (2018), pp. 1391-1407.

[10] A. Hajji, A generalization of Darbo's fixed point and common solutions of equations in Banach spaces, Fixed Point Theory Appl. (2013), 2013:62.

[11] E. Karapi nar and F. Khojasteh, An approach to best proximity points results via simulation functions, J. Fixed Point Theory Appl., 19 (2017), pp. 1983-–1995.

[12] M. S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 30 (1984), pp. 1-9.

[13] F. Khojasteh, S. Shukla, and S. Radenovic, A new approach to the study of fixed point theory for simulation function, Filomat, 29 (2015), pp. 1189-1194.

[14] O. Popescu, Some new fixed point theorems for $alpha$-Geraghty contractive type maps in metric spaces, Fixed Point Theory Appl., (2014), 2014:190.

[15] A.F. Roldan-Lopez-de-Hierro, E. Karapi nar, C. Roldan-Lopez-de-Hierro, and J. Martnez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 275 (2015), pp. 345-355.

[16] A. Samadi and M.B. Ghaemi, An extension of Darbos theorem and its application, Abstr. Appl. Anal., 2014 (2014), Article ID 852324, 11 pages.

[17] B. Samet, C. Vetro, and P. Vetro, Fixed point theorem for $alpha-psi$-contractive type mappings, Nonlinear Anal., 75 (2012), pp. 2154-2165.

[18] P. Zangenehmehr, A.P. Farajzadeh, and S.M. Vaezpour, On fixed point theorems for monotone increasing vector valued mappings via scalarizing, Positivity, 19 (2015), pp. 333-340.