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New Generalization of Darbo’s Fixed Point Theorem via

α-admissible Simulation Functions with Application

Hossein Monfared1, Mehdi Asadi2 and Ali Farajzadeh3∗

Abstract. In this paper, at first, we introduce αµ-admissible, Zµ-
contraction and Nµ-contraction via simulation functions. We prove
some new fixed point theorems for defined class of contractions
via α-admissible simulation mappings, as well. Our results can
be viewed as extension of the corresponding results in this area.
Moreover, some examples and an application to functional integral
equations are given to support the obtained results.

1. Introduction

Schauder fixed point theorem is one of the useful and important tools
in analysis. In 1955, Darbo [5], by using the concept of a measure of non-
compactness, proved the fixed point property for known contraction on a
closed, bounded and convex subset of Banach spaces. Darbo fixed point
plays a key role in nonlinear analysis especially in proving the existence
of solutions for a lot of classes of nonlinear equations. Since then, some
generalizations of Darbo fixed point theorem have been proved, see [1,
10, 16, 18] and the references therein. Recently, Chen et al. [3] proved
some new generalizations of Darbo fixed point theorem by using the
notion of simulation function that Khojasteh et al. [4, 13] proposed it.

In this paper, we investigate the existence of fixed points of certain
mappings via αµ-admissible simulation functions for α-set contraction
on a closed, bounded and convex subset of Banach spaces.

Throughout the paper, N, R+ and R, respectively, denote the set of
all positive integers, non-negative real numbers and real numbers. Now,
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let us recall some basic concepts, notations and known results which will
be used in the sequel. Let E be a Banach space with the norm ∥.∥ and
ϑ be the zero element in E. The closed ball centered at x with radius
r is denoted by B(x, r) and simply by Br if x = 0. If X is a nonempty
subset of E, then we denote by X and c̄o(X) the closure and closed
convex hull of X, respectively. Moreover, let ME be the family of all
nonempty bounded subsets of E and NE be the subfamily consisting of
all relatively compact subsets of E. In [2], Banas et al. introduced the
concept of the measure of non-compactness.

Definition 1.1. A mapping µ : ME → R+ is said to be a measure of
non-compactness in E if it satisfies the following conditions:

(1) The set kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊆
NE;

(2) X ⊆ Y ⇒ µ(X) ≤ µ(Y );
(3) µ(c̄oX) = µ(X̄) = µ(X);
(4) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ), for all λ ∈ [0, 1];
(5) If {Xn} is a sequence of closed sets ofME such that Xn+1 ⊆ Xn

for n = 1, 2, . . . and limn→∞ µ(Xn) = 0, then the intersection
set X∞ = ∩∞

n=1Xn is nonempty.

The set kerµ described in (1) of Definition 1.1 is said to be kernel of
the measure of non-compactness µ. It is obvious that X∞ belongs to
kerµ.

Theorem 1.2 (Schauder fixed point Theorem). Let Ω be a nonempty,
bounded, closed and convex subset of a Banach space E, then each con-
tinuous and compact map T : Ω → Ω has at least one fixed point in the
set Ω.

The next theorem is an extension of Schauder fixed point Theorem
1.2 by reducing the compactness of the mapping T.

Theorem 1.3 ([3, Darbo fixed point theorem]). Let Ω be a nonempty,
bounded, closed and convex subset of a Banach space E and let T :
Ω → Ω be a continuous mapping. Assume that there exists a constant
k ∈ [0, 1) such that

µ(TX) ≤ kµ(X),

for any nonempty subset X of Ω, where µ is a measure of non-compactness
defined in E. Then, T has a fixed point in the set Ω.

In order to present the main results, we need the following definitions
and preliminary results.

Definition 1.4 ([12, Khan et al.]). An altering distance function is a
continuous and non-decreasing mapping φ : [0,∞) → [0,∞) such that
φ−1({0}) = {0}.
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In [15], see Definition 3.2, the authors slightly modified the definition
of simulation function which introduced by Khojasteh et al. [13] and
enlarged the family of all simulation functions.

Definition 1.5 ([13]). A function σ : [0,∞)× [0,∞) → R is said to be
simulation if it fulfills:
(σ1) σ(0, 0) = 0;
(σ2) σ(t, u) < u− t, for all t, u > 0;
(σ3) if {tn}, {un} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
un >

0, then

(1.1) lim sup
n→∞

σ(tn, un) < 0.

Let Z be the collection of all simulation functions σ : [0,∞)×[0,∞) →
R. It follows from (σ2) that

(1.2) σ(t, t) < 0, for all t > 0.

Definition 1.6. ([3]) A function ζ : [0,∞) × [0,∞) → R is said to be
generalized simulation if:

ζ(t, s) ≤ s− t, for all t, s > 0

.

Let N denote the family of all generalized simulation functions ζ :
[0,∞)× [0,∞) → R.

Definition 1.7 ([6, 7]). Let f : X → X and α : X ×X → (−∞,+∞)
be mappings. We say that f is an α-admissible mapping if α(x, y) ≥ 1
implies that α(fx, fy) ≥ 1, for all x, y ∈ X.

In what follows, we recall the notion of (triangular) α-orbital admis-
sible, introduced by Popescu [14], that is inspired by the authors of [17].

Definition 1.8 ([14]). For a fixed mapping α : M ×M → [0,∞), we
say that a self-mapping T :M →M is an α-orbital admissible if

α(u, Tu) ≥ 1 ⇒ α(Tu, T 2u) ≥ 1.

Let A denote the collection of all α-orbital admissible T :M →M .
In addition, T is called triangular α-orbital admissible if T is α-orbital

admissible and

α(u, v) ≥ 1 and α(v, Tv) ≥ 1 ⇒ α(u, Tv) ≥ 1.

Let O denote the collection of all triangular α-orbital admissible T :
M →M.
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Definition 1.9 ([3]). Let Ω be a nonempty, bounded, closed and convex
subset of a Banach space E and let T : Ω → Ω be a continuous operator.
We say that T is a Zµ-contraction if there exists a simulation function
ξ ∈ Z such that

(1.3) ξ(µ(TX), µ(X)) ≥ 0,

for any nonempty subset X of Ω, where µ is an arbitrary measure of
non-compactness.

Now, we observe some useful properties of Zµ-contractions in Banach
spaces.

Remark 1.10 (([3]). If T is a Zµ-contraction with respect to ξ ∈ Z,
then

(1.4) µ(TX) < µ(X),

for any nonempty subset X of Ω. To prove it, applying (σ2) and (1.3),
we have

0 ≤ ξ(µ(TX), µ(X)) < µ(X)− µ(TX).

Hence, (1.4) holds. We need the following fixed point theorem in the
sequel.

Theorem 1.11 ([3]). Let Ω be a nonempty, bounded, closed and convex
subset of a Banach space E and T : Ω → Ω be a continuous operator. If
T is a Zµ-contraction with respect to ξ ∈ Z. Then, T has at least one
fixed point in Ω .

Definition 1.12 ([3]). Let Ω be a nonempty, bounded, closed and con-
vex subset of a Banach space E and let T : Ω → Ω be a continuous
operator. We say that T is a Nµ-contraction if there exists ζ ∈ N such
that

(1.5) ζ(µ(TX), κ(µ(X))) ≥ 0,

for any nonempty subset X of Ω, where µ is an arbitrary measure of
non-compactness, and κ : [0,∞) → R+ is nondecreasing mapping on
R+ such that limn→∞ κn(t) = 0, for each t > 0.

Now, some useful properties of Nµ-contractions in the setting of Ba-
nach spaces are presented.

Remark 1.13. (1) By the definition of generalized simulation func-
tions, it is obvious that a generalized simulation function must
verify ζ(r, r) ≤ 0, for all r > 0.

(2) If T is Nµ-contraction with respect to ζ ∈ N , then

(1.6) µ(TX) ≤ κ(µ(X)),
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for any nonempty subset X of Ω. To prove it, applying Defini-
tion 1.12, we have

0 ≤ ξ(µ(TX), κ(µ(X))) ≤ κ(µ(X))− µ(TX).

Hence, (1.6) holds.

2. Fixed Point Theorems via α-admissible Simulation
Functions

In order to prove our fixed point theorems, we need the following
related concepts.

Definition 2.1. Let Ω be a nonempty, bounded, closed and convex
subset of a Banach space E, T : Ω → Ω be a continuous mapping and
α : µ(ME) × µ(ME) → (−∞,+∞) be a mapping. We say that T is an
αµ-admissible mapping if

α(µ(X), µ(Y )) ≥ 1 ⇒ α(µ(TX), µ(TY )) ≥ 1,

for any nonempty subsetsX and Y of Ω, where µ is an arbitrary measure
of non-compactness.

Definition 2.2. Let Ω be a nonempty, bounded, closed and convex
subset of a Banach space E, T : Ω → Ω be a continuous and αµ-
admissible operator. We say that T is an αµ-admissible Zµ-contraction
if there exists ξ ∈ Z such that

(2.1) ξ(α(µ(X), µ(TX))µ(TX), µ(X)) ≥ 0.

for any nonempty subsets X of Ω, where µ is the measure of non-
compactness.

Remark 2.3. If α(x, y) = 1, then T turns into a Zµ-contraction with
respect to ξ.

Remark 2.4. If T is an αµ-admissible Zµ-contraction with respect to
ξ, then

(2.2) α(µ(X), µ(TX))µ(TX) < µ(X),

for all X ⊆ Ω such that µ(X) > 0. To prove the assertion, we assume
that X ⊆ Ω. If µ(TX) = 0, then

α(µ(X), µ(TX))µ(TX) = 0 < µ(X).

Otherwise, µ(TX) > 0. If α(µ(X), µ(TX)) = 0, then the inequality is
satisfied trivially. So, assume that α(µ(X), µ(TX)) > 0, applying (σ2)
with (2.1), we derive that

0 ≤ ξ(α(µ(X), µ(TX))µ(TX), µ(X)) < µ(X)−α(µ(X), µ(TX))µ(TX),

so (2.2) holds.
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Theorem 2.5. Let Ω be a nonempty, bounded, closed and convex sub-
set of a Banach space E and let T : Ω → Ω be a continuous opera-
tor. If T is an αµ-admissible Zµ-contraction with respect to ξ ∈ Z and
there exits X0 ⊆ Ω such that X0 be closed and convex, TX0 ⊆ X0 and
α(µ(X0), µ(TX0)) ≥ 1, then T has at least one fixed point in Ω.

Proof. Let X0 ⊆ Ω be such that α(µ(X0), µ(TX0)) ≥ 1, and TX0 ⊆ X0.
Define the sequence {Xn} as follows:
Xn = c̄o(TXn−1), for all n ≥ 1.
It follows from the induction that

Xn ⊆ Xn−1 and TXn ⊆ Xn.

Hence, the hypothesis implies

TX0 ⊆ X0.

Thus,
X1 = c̄o(TX0) ⊆ c̄o(X0) = X0.

Now, suppose that Xn+1 ⊆ Xn, therefore we get

Xn+2 = c̄o(TXn+1) ⊆ c̄o(TXn) = Xn+1,

and
TXn+1 ⊆ TXn ⊆ c̄o(TXn) = Xn+1.

If there exists natural number n0 such that µ(Xn0) = 0, then Xn0 is
compact and TXn0 ⊂ Xn0 . Thus, Theorem 1.2 implies that T has a
fixed point. Next, we suppose that µ(Xn) > 0, for all n ≥ 0. Regarding
that T is αµ-admissible, we derive

α(µ(X0), µ(X1)) = α(µ(X0), µ(c̄o(TX0)))

= α(µ(X0), µ(TX0)) ≥ 1,

which implies that

α(µ(TX0), µ(TX1)) = α(µ(X1), µ(X2)) ≥ 1.

Recursively, we obtain that

(2.3) α(µ(Xn), µ(Xn+1)) ≥ 1, for all n ≥ 0.

On the other hand, by our assumptions and (1.3), we get

ξ(α(µ(Xn), µ(Xn+1))µ(Xn+1), µ(Xn))(2.4)

= ξ(α(µ(Xn), µ(c̄o(TXn))µ(c̄o(TXn)), µ(Xn))

= ξ(α(µ(Xn), µ(TXn))µ(TXn), µ(Xn)) ≥ 0.

Based on Remark 2.4, we can get

0 ≤ ξ(α(µ(Xn), µ(Xn+1))µ(Xn+1), µ(Xn))(2.5)

< µ(Xn)− α(µ(Xn), µ(Xn+1))µ(Xn+1).
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From (2.3), (2.4) and (2.5), we infer that

(2.6) µ(Xn+1) ≤ α(µ(Xn), µ(Xn+1))µ(Xn+1) < µ(Xn).

Hence, {µ(Xn)} is a decreasing sequence of positive real numbers. Thus,
there exists r ≥ 0, such that µ(Xn) → r as n→ ∞. Next, we show that
r = 0. Suppose to the contrary that r > 0. We also have by (2.6):

α(µ(Xn), µ(Xn+1))µ(Xn+1) → r > 0 as n→ ∞.

Applying the axiom (σ3) in Definition 1.5 to the sequences:

{tn = α(µ(Xn), µ(Xn+1))µ(Xn+1)} and {sn = µ(Xn)}
(which have the same limit r > 0 and verify tn < sn, for all n), it follows
that

lim sup
n→∞

ξ(α(µ(Xn), µ(Xn+1))µ(Xn+1), µ(Xn)) = lim sup
n→∞

ξ(tn, sn) < 0,

which contradicts (2.4). We get r = 0 and hence µ(Xn) → 0 as n→ ∞.
Now, since {Xn} is a nested sequence, in view of (5) of Definition 1.1, we
conclude that X∞ = ∩∞

n=1Xn is a nonempty, closed and convex subset
of Ω. Moreover, we know that X∞ belongs to kerµ. So, Xn is compact
and invariant under the mapping T . Consequently, Theorem 1.2 implies
that T has a fixed point in X∞. Since X∞ ⊆ Ω, then the proof is
complete. □

Corollary 2.6 ([3, Theorem 2.1]). Let Ω be a nonempty, bounded, closed
and convex subset of a Banach space E, and T : Ω → Ω be a continuous
operator. If T is a Zµ-contraction with respect to ξ ∈ Z, then T has at
least one fixed point in Ω.

Proof. In Theorem 2.5 let α(x, y) = 1. □

3. Fixed Point Theorems via α-admissible Generalized
Simulation Mappings

Definition 3.1. Let Ω be a nonempty, bounded, closed and convex sub-
set of a Banach space E, T : Ω → Ω be a continuous and αµ-admissible
mapping. We say that T is an αµ-admissible Nµ-contraction if there
exists ξ ∈ N such that

(3.1) ξ(α(µ(X), µ(TX))µ(TX), κ(µ(X))) ≥ 0,

for any nonempty subset X of Ω, where µ is an arbitrary measure of
non-compactness and κ : [0,∞) → R+ is nondecreasing on R+ such that
limn→∞ κn(t) = 0, for each t > 0.

Remark 3.2. If α(x, y) = 1, then T turns into a Nµ-contraction with
respect to ξ.
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Remark 3.3. If T is an αµ-admissible Nµ-contraction with respect to
ξ, then

(3.2) α(µ(X), µ(TX))µ(TX) ≤ κ(µ(X)),

for all X ⊆ Ω such that µ(X) > 0. To prove the assertion, we assume
that X ⊆ Ω. If µ(TX) = 0, then

α(µ(X), µ(TX))µ(TX) = 0 ≤ κ(µ(X)).

Now, we suppose that µ(TX) > 0. If α(µ(X), µ(TX)) = 0, then the
inequality is trivially satisfied. So, assume α(µ(X), µ(TX)) > 0 and
apply (3.1). Hence,

0 ≤ ξ(α(µ(X), µ(TX))µ(TX), κ(µ(X)))

≤ κ(µ(X))− α(µ(X), µ(TX))µ(TX).

So, (3.2) holds.

Next, we prove the following fixed point theorem.

Theorem 3.4. Let Ω be a nonempty, bounded, closed and convex sub-
set of a Banach space E and T : Ω → Ω be a continuous operator.
If T is an αµ-admissible Nµ-contraction with respect to ξ ∈ Z and
there exits X0 ⊆ Ω such that X0 be closed and convex, TX0 ⊆ X0

and α(µ(X0), µ(TX0)) ≥ 1, then T has at least one fixed point in Ω.

Proof. Let X0 ⊆ Ω be such that α(µ(X0), µ(TX0)) ≥ 1 and TX0 ⊆ X0,
then define a sequence {Xn} as follows:
Xn = c̄o(TXn−1), for all n ≥ 1.
If there exists natural number n0 such that µ(Xn0) = 0, then Xn0 is
compact. Since TXn0 ⊂ Xn0 , thus Theorem 1.2 implies that T has a
fixed point. Next, we suppose that µ(Xn) > 0, for all n ≥ 0.
Regarding that T is αµ-admissible, we derive

α(µ(X0), µ(X1)) = α(µ(X0), µ(c̄o(TX0)))

= α(µ(X0), µ(TX0)) ≥ 1,

which implies that

α(µ(TX0), µ(TX1)) = α(µ(X1), µ(X2)) ≥ 1.

Recursively, we obtain that

(3.3) α(µ(Xn), µ(Xn+1)) ≥ 1, for all n = 0, 1, . . . .

On the other hand, by our assumptions and (1.5), we get

ξ(α(µ(Xn), µ(Xn+1))µ(Xn+1), κ(µ(Xn)))(3.4)

= ξ(α(µ(Xn), µ(c̄o(TXn)))µ(c̄o(TXn)), κ(µ(Xn)))
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= ξ(α(µ(Xn), µ(TXn))µ(TXn), κ(µ(Xn))) ≥ 0.

Based on Remark 3.3, we can get

0 ≤ ξ(α(µ(Xn), µ(Xn+1))µ(Xn+1), κ(µ(Xn)))(3.5)

< κ(µ(Xn))− α(µ(Xn), µ(Xn+1))µ(Xn+1).

From (3.3), (3.4) and (3.5), we infer that
(3.6)
µ(Xn+1) ≤ α(µ(Xn), µ(Xn+1))µ(Xn+1) < κ(µ(Xn)), for all n ∈ N.

Since κ : [0,∞) → R+ is nondecreasing, we can get

(3.7) µ(Xn+1) ≤ κ(µ(Xn)) ≤ κ(κ(µ(Xn−1))) ≤ · · · ≤ κn(µ(X0)).

In (3.7), letting n→ ∞, we deduce

lim
n→∞

µ(Xn+1) = 0.

Since {Xn} is a nested sequence, in view of (5) of Definition 1.1, we
conclude that X∞ = ∩∞

n=1Xn is a nonempty, closed and convex subset
of Ω. Moreover, we know that X∞ belongs to kerµ. So, Xn is compact
and invariant under the mapping T . Consequently, Theorem 1.2 implies
that T has a fixed point in X∞. Since X∞ ⊆ Ω, then the proof is
complete.

□
Corollary 3.5 ([3, Theorem 3.1]). Let Ω be a nonempty, bounded, closed
and convex subset of a Banach space E and T : Ω → Ω be a continuous
operator. If T is a Nµ-contraction with respect to ξ ∈ Z, then T has at
least one fixed point in Ω.

Proof. In Theorem 3.4, take α(x, y) = 1. □
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