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Strong Convergence of the Iterations of Quasi ϕ-nonexpansive

Mappings and its Applications in Banach Spaces

Rasoul Jahed1, Hamid Vaezi1,2∗ and Hossein Piri3

Abstract. In this paper, we study the iterations of quasi
ϕ-nonexpansive mappings and its applications in Banach spaces.
At the first, we prove strong convergence of the sequence generated
by the hybrid proximal point method to a common fixed point of a
family of quasi ϕ-nonexpansive mappings. Then, we give applica-
tions of our main results in equilibrium problems.

1. Introduction and Preliminaries

We denote the dual of a real Banach space E with E∗, its norm
with ∥.∥ and the value of v ∈ E∗ at x ∈ E by ⟨x, v⟩. The mapping
J : E → 2E

∗
defined by

Jx =
{
v ∈ E∗ : ⟨x, v⟩ = ∥x∥2 = ∥v∥2

}
for x ∈ E, is called the duality mapping. A Banach space E for which∥∥x+y

2

∥∥ < 1 for any x, y ∈ E with ∥x∥ = ∥y∥ = 1 and x ̸= y, is called
strictly convex. Also, it is called uniformly convex if for any ε ∈ (0, 2],
there exists δ > 0 such that ∥x+y

2 ∥ < 1 − δ, for any x, y ∈ E with
∥x∥ = ∥y∥ = 1 and ∥x − y∥ ≥ ε. We know that a uniformly convex
Banach space is reflexive and strictly convex. A Banach space E is
called smooth if the limit

(1.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for all x, y ∈ U = {z ∈ E : ∥z∥ = 1}. If for all x, y ∈ U , the
limit (1.1) is attained uniformly, then E is called the uniformly smooth
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Banach space. The strong convergence of a sequence {xk} in E to x ∈ E
is denoted by xk → x and its weak convergence by xk ⇀ x.

For a smooth Banach space E, we will use the following function

(1.2) ϕ(x, y) = ∥x∥2 − 2 ⟨x, Jy⟩+ ∥y∥2

for any x, y ∈ E which is used in [1] by Alber, in [4] by Kamimura and
Takahashi and in [10] by Reich. It can be shown from the definition of
ϕ that

(1.3) 0 ≤ (∥x∥ − ∥y∥)2 ≤ ϕ(x, y).

Since the duality mapping is the identity operator in Hilbert spaces, so
ϕ(x, y) = ∥x− y∥2, if E is a Hilbert space.

Proposition 1.1 ([4]). Suppose that {xk} and {yk} are two sequences
in a uniformly convex and smooth Banach space E. If ϕ(xk, yk) tends
to zero, as k → ∞ and either {xk} or {yk} is bounded, then lim

k→∞
∥xk −

yk∥ = 0.

Proposition 1.2 ([4]). Let C be a nonempty closed convex subset of a
reflexive, strictly convex and smooth Banach space E and x ∈ E. Then
we can find a unique element x0 ∈ C, such that

ϕ(x0, x) = inf {ϕ(z, x) : z ∈ C} .
Regarding Proposition 1.2, we denote the unique element x0 ∈ C by

PC(x), where the mapping PC is called the generalized projection from
E onto C. It is well known that the generalized projection mapping PC

is coincident with the metric projection from E onto C in Hilbert spaces.
We also need the following proposition to prove the strong convergence
in Section 3.

Proposition 1.3 ([4]). Let C be a convex subset of a smooth Banach
space E, x ∈ E and x0 ∈ C. Then

ϕ(x0, x) = inf {ϕ(z, x) : z ∈ C}
if and only if

⟨z − x0, Jx− Jx0⟩ ≤ 0, ∀z ∈ C.

Let C be a closed and convex subset of a Banach space E. We denote
the set of all fixed points of a mapping T : C → C by F (T ), i.e. F (T ) =
{x ∈ C : Tx = x}.
T is called a nonexpansive mapping if and only if for any x, y ∈ C,

∥Tx− Ty∥ ≤ ∥x− y∥
and T is called a quasi-nonexpansive mapping, whenever F (T ) ̸= ∅

and for any (q, x) ∈ F (T )× C,

∥Tx− q∥ ≤ ∥x− q∥.
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Regarding the definitions of nonexpansive and quasi-nonexpansive map-
pings, we recall now the definitions of ϕ-nonexpansive and quasi ϕ-
nonexpansive mappings in Banach spaces.

Definition 1.4. A mapping T : C → C is said to be ϕ-nonexpansive if
and only if

ϕ(Tx, Ty) ≤ ϕ(x, y), ∀x, y ∈ C

and T is said to be quasi ϕ-nonexpansive, whenever F (T ) ̸= ∅ and

ϕ(q, Tx) ≤ ϕ(q, x), ∀(q, x) ∈ F (T )× C.

This paper is organized as follows. In Section 2, we study iterations of
quasi ϕ-nonexpansive mappings and prove strong convergence of their it-
erations to a common fixed point of the sequence of quasi ϕ-nonexpansive
mappings. Finally, in Section 3, we give applications of our main results
in equilibrium problems.

2. Main Results

Suppose that C is a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let Tk : C → C be a
sequence of quasi ϕ-nonexpansive mappings with

∩
k F (Tk) ̸= ∅. Now,

we are going to study strong convergence of the sequence {xk} generated
by the following algorithm.

Algorithm 1

1: Initialize:
Take x0 ∈ C, n := 0 and γk ∈ [ε, 12 ] for some ε ∈ (0, 12 ]
and k = 0, 1, 2, . . .

2: Step 1:

(2.1) zn = Tnxn

3: Step 2:
Determine the next approximation xn+1 as the
projection of x0 onto the intersection Hn ∩Wn,
xn+1 = PHn∩Wn(x0), where

Hn = {z ∈ C : ⟨z − xn, Jxn − Jzn⟩ ≤ −γnϕ(xn, zn)} ;
Wn = {z ∈ C : ⟨z − xn, Jx0 − Jxn⟩ ≤ 0} .

4: Step 3:
Set n := n+ 1 and go back Step 1.

In order to prove the optimality of weak limit points, it is need to de-
fine the demiclosedness of a sequence of quasi ϕ-nonexpansive mappings.
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Nonexpansive mappings are demiclosed. But for quasi ϕ-nonexpansive
mappings, we have to assume this property even in Hilbert spaces.
Therefore we introduce the definition of demiclosedness for a sequence
of mappings.

Definition 2.1. A sequence {Tk} of quasi ϕ-nonexpansive mappings is
said to be demiclosed if for each subsequences

{
xkj

}
of {xk} and

{
Tkj

}
of {Tk}, if

(2.2) xkj ⇀ p and lim
j→∞

∥Tkjxkj − xkj∥ = 0, then p ∈
∩
k

F (Tk).

If Tk ≡ T , then Definition 2.1 reduces to the defenition of the demi-
closedness of T .

Lemma 2.2. If Algorithm 1 reaches to the iteration step n, then
∩

k F (Tk) ⊂
Hn ∩Wn and xn+1 is well defined.

Proof. Note that
∩

k F (Tk) is closed and convex. Also, Hn and Wn

are closed and convex by the definition of them. We now show that∩
k F (Tk) ⊂ Hn ∩Wn for all n ≥ 0. Putting

Cn = {z ∈ C : ϕ(z, zn) ≤ ϕ(z, xn)} .

It is easy to see that

Cn =

{
z ∈ C : ⟨z − xn, Jxn − Jzn⟩ ≤

−1

2
ϕ(xn, zn)

}
.

Since γn ∈ [ε, 12 ], we have Cn ⊆ Hn for all n ≥ 0. Take x∗ ∈
∩

k F (Tk),
Since {Tk} is a sequence of quasi ϕ-nonexpansive mapping, then (2.1)
shows that ϕ(x∗, zn) ≤ ϕ(x∗, xn) for all x∗ ∈

∩
k F (Tk). Therefore∩

k F (Tk) ⊂ Cn for all n ≥ 0, that implies
∩

k F (Tk) ⊂ Hn for all n ≥ 0.
Next, we show that

∩
k F (Tk) ⊂ Hn∩Wn, for all n ≥ 0, by the induction.

Indeed, we have
∩

k F (Tk) ⊂ H0 ∩W0, because W0 = C. Assume that∩
k F (Tk) ⊂ Hn ∩Wn for some n ≥ 0. Since xn+1 = PHn∩Wn(x0), we

have

⟨z − xn+1, Jx0 − Jxn+1⟩ ≤ 0, ∀z ∈ Hn ∩Wn.

Since
∩

k F (Tk) ⊂ Hn ∩Wn, therefore

⟨z − xn+1, Jx0 − Jxn+1⟩ ≤ 0, ∀z ∈
∩
k

F (Tk).

PHn∩Wn is a projection map, so ⟨z − xn+1, Jx0 − Jxn+1⟩ ≤ 0, ∀z ∈∩
k F (Tk). Now, the definition of Wn+1 implies that

∩
k F (Tk) ⊂ Wn+1

and so
∩

k F (Tk) ⊂ Hn+1 ∩ Wn+1. From induction it follows that∩
k F (Tk) ⊂ Cn ∩ Wn ⊂ Hn ∩ Wn for all n ≥ 0. Since

∩
k F (Tk) is

nonempty, therefore xn+1 is well defined. □
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Lemma 2.3. Let {xn} and {zn} be the sequences generated by Algorithm
2, then we have lim

n→∞
∥xn − zn∥ = 0.

Proof. From the definition of Wn, we have xn = PWn(x0). Let u ∈∩
k F (Tk). Since PWn is the projection map onto Wn, we have

⟨u− xn, Jx0 − Jxn⟩ ≤ 0,

this implies that

(2.3) ϕ(xn, x0) ≤ ϕ(u, x0).

Thus, the sequence {xn} is bounded. Moreover, the projection xn+1 =
PHn∩Wn(x0) implies xn+1 ∈Wn. Similar to the previous case we see that
ϕ(xn, x0) ≤ ϕ(xn+1, x0). Therefore, the sequence {ϕ(xn, x0)} is non-
decreasing and hence convergent. By xn+1 ∈ Wn and xn = PWn(x0), a
simple calculation shows that

ϕ(xn+1, xn) ≤ ϕ(xn+1, x0)− ϕ(xn, x0).

Passing to the limit in the above inequality as n→ ∞, one gets

lim
n→∞

ϕ(xn+1, xn) = 0.

Now, by Proposition 1.1, we have lim
n→∞

∥xn+1 − xn∥ = 0. Since xn+1 ∈
Hn, from the definition of Hn, we have

γnϕ(xn, zn) ≤ ⟨xn − xn+1, Jxn − Jzn⟩ .

Thus γnϕ(xn, zn) ≤ ∥xn − xn+1∥∥Jxn − Jzn∥. Since γn ≥ ε > 0 and
lim
n→∞

∥xn+1−xn∥ = 0, then lim
n→∞

ϕ(xn, zn) = 0. Now, by Proposition 1.1,

we have lim
n→∞

∥xn − zn∥ = 0. □

Theorem 2.4. Assume that E is a uniformly convex and uniformly
smooth Banach space. Let Tk : C → C be a sequence of quasi ϕ-
nonexpansive mappings and {Tk} satisfies (2.2). Then the sequence {xk}
generated by Algorithm 2 converges strongly to P∩

k F (Tk)x0.

Proof. It is clear that
∩

k F (Tk) is closed and convex. We define x∗ =
P∩

k F (Tk)(x0). Note that from Lemma 2.3, we have

(2.4) lim
n→∞

∥xn − zn∥ = 0.

Now, by (2.1), we have lim ∥Tnxn − xn∥ = 0.
On the other hand, note that the sequence {xn} is bounded. Assume

that p is any weak limit point of the sequence {xn}. Therefore, there
exists a subsequence {xnk

} of {xn} such that xnk
⇀ p as k → ∞.

Note that we have lim ∥Tnk
xnk

− xnk
∥ = 0. Now, (2.2) shows that

p ∈
∩

k F (Tk).
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In the sequel, we first prove that there exists only one weak limit
point of {xn}. Finally, we show that xn → x∗. From the definition of
Wn, we have xn = PWn(x0). For x∗ ∈

∩
k F (Tk) ⊂ Wn, since PWn is

the projection map onto Wn, we have ⟨x∗ − xn, Jx0 − Jxn⟩ ≤ 0. This
implies that ϕ(xn, x0) ≤ ϕ(x∗, x0). Therefore

(2.5) ∥xn∥2 − 2 ⟨xn, Jx0⟩+ ∥x0∥2 ≤ ϕ(x∗, x0).

Since xnk
⇀ p and ∥ · ∥ is weak lower semi-continuous, replacing n by

nk in (2.5), we have

ϕ(p, x0) = ∥p∥2 − 2 ⟨p, Jx0⟩+ ∥x0∥2

≤ lim inf
n→∞

(
∥xnk

∥2 − 2 ⟨xnk
, Jx0⟩+ ∥x0∥2

)
≤ ϕ(x∗, x0).

By the definition of x∗, we have x∗ = p. In the sequel, since {xnk
} is a

arbitrary subsequence of {xn}, we have xn ⇀ x∗. By taking limsup and
liminf from (2.5) and by definition of ϕ(x∗, x0), we get lim

n→∞
∥xn∥ = ∥x∗∥.

Now, note that

lim
n→∞

ϕ(xn, x
∗) = lim

n→∞

(
∥xn∥2 − 2 ⟨xn, Jx∗⟩+ ∥x∗∥2

)
= 0.

Therefore by proposition 1.1, we have xn → x∗ = P∩
k F (Tk)(x0). □

3. Application in Equilibrium Problems

In this section, we apply our main results to approximate a solu-
tion of equilibrium problems. In fact, our main motivation in this sec-
tion is to approximate a solution of equilibrium problems using quasi-
nonexpansive mappings. LetK be a nonempty, closed and convex subset
of Banach space E. Suppose that f : K ×K → R is a bifunction. An
equilibrium problem for f and K (shortly EP (f ;K)) is to find x∗ ∈ K
such that

(3.1) f(x∗, y) ≥ 0, ∀y ∈ K.

x∗ is said to be an equilibrium point. The set of all equilibrium points
for (3.1) is denoted by S(f ;K). We now recall some monotonicity as-
sumptions on the bifunction f : K ×K → R:

(i) f is called monotone, whenever f(x, y)+f(y, x) ≤ 0,∀x, y ∈ K.
(ii) f is called pseudomonotone, whenever f(x, y) ≥ 0 with x, y ∈

K, it holds that f(y, x) ≤ 0.
(iii) f is called µ-under monotone where µ is the under monotonicity

constant of f , if there exists µ ≥ 0 such that f(x, y)+ f(y, x) ≤
µ
2 (ϕ(x, y) + ϕ(y, x)), for all x, y ∈ K.
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In [3], the authors have shown that if f satisfies in the following condi-
tions;

(P1) f(x, x) = 0 for all x ∈ K,
(P2) f(x, ·) is lower semi-continuous (lsc) and convex for all x ∈ K,
(P3) f(·, y) is upper semi-continuous for all y ∈ K,
(P4) f is a µ-under monotone bifunction,

then there is the unique point Jf
λx such that

(3.2) f
(
Jf
λx, y

)
+ λ

⟨
y − Jf

λx, J
(
Jf
λx

)
− Jx

⟩
≥ 0, ∀y ∈ K,

where x ∈ E and λ > µ. In this case, Jf
λx is said to be the resolvent

of f of order λ at x ∈ E. Consider {λk} ⊂ (µ, λ̄], for some λ̄ > µ and
x0 ∈ E. The proximal point method for approximating a solution of

the equilibrium problem for f defined by xk+1 = Jf
λk
xk. In (3.2), it is

clear that F (Jf
λ ) ⊆ S(f ;K) and if f is pseudomonotone, then we have

S(f ;K) ⊆ F (Jf
λ ).

In the sequel, we study the strong convergence of the sequence gen-
erated by the hybrid proximal point method. We first propose the algo-
rithm, then we show the sequence generated by the algorithm converges
strongly to a solution of the problem.

Algorithm 2

1: Initialize:
x0 ∈ E, n := 0, µ < λk ≤ λ̄ for some λ̄, γk ∈ [ε, 12 ] for

some ε ∈ (0, 12 ] and k = 0, 1, 2, . . .
2: Step 1:

Let zn be the equilibrium point of
f(x, y) + λn ⟨y − x, Jx− Jxn⟩, i.e.

(3.3) f(zn, y) + λn ⟨y − zn, Jzn − Jxn⟩ ≥ 0, ∀y ∈ K,

3: Step 2:
Determine the next approximation xn+1 as the
projection of x0 onto Hn ∩Wn, xn+1 = PHn∩Wn(x0),
where

Hn = {z ∈ E : ⟨z − xn, Jxn − Jzn⟩ ≤ −γnϕ(xn, zn)} ,
Wn = {z ∈ E : ⟨z − xn, Jx0 − Jxn⟩ ≤ 0} .

4: Step 3:
Set n := n+ 1 and go back Step 1.
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We show that strong convergence of the sequence generated by Aal-
gorithm 2 to an equilibrium point of f is a consequence of our main
result.

Lemma 3.1. Suppose that f : K × K → R satisfies P1–P4 and it is

pseudomonotone. If S(f ;K) ̸= ∅, then Jf
λk

is a quasi ϕ-nonexpansive
sequence.

Proof. Let p ∈ S(f ;K) and take y = p in (3.2), we get

f
(
Jf
λk
xk, p

)
+ λk

⟨
p− Jf

λk
xk, J

(
Jf
λk
xk

)
− Jxk

⟩
≥ 0

Since p ∈ S(f ;K) and f is pseudomonotone, therefore we have

f
(
Jf
λk
xk, p

)
≤ 0. Hence⟨

p− Jf
λk
xk, J

(
Jf
λk
xk

)
− Jxk

⟩
≥ 0

which implies that

ϕ
(
Jf
λk
xk, xk

)
≤ ϕ(p, xk)− ϕ

(
p, Jf

λk
xk

)
Therefore Jf

λk
is quasi ϕ-nonexpansive. □

Lemma 3.2. Suppose that f : K × K → R satisfies P1–P4 and it
is pseudomonotone. If S(f ;K) ̸= ∅ and f(·, y) is weakly upper semi-

continuous for all y ∈ K, then Jf
λk

satisfies (2.2).

Proof. Take y ∈ K. Suppose that the sequence {xk} is arbitrary such

that xk ⇀ p and
∥∥∥Jf

λk
xk − xk

∥∥∥ → 0. We are going to prove p ∈∩
k F (J

f
λk
). We have

0 ≤ f
(
Jf
λk
xk, y

)
+ λk

⟨
y − Jf

λk
xk, J

(
Jf
λk
xk

)
− Jxk

⟩
≤ f

(
Jf
λk
xk, y

)
+ λk∥y − Jf

λk
xk∥∥J

(
Jf
λk
xk

)
− Jxk∥.

Note that {λk} and {xk} are bounded and lim
k→∞

∥∥∥J (
Jf
λk
xk

)
− Jxk

∥∥∥ = 0,

we have:

(3.4) 0 ≤ lim inf
k→∞

f
(
Jf
λk
xk, y

)
, ∀y ∈ K.

Note that since lim
k→∞

∥Jf
λk
xk − xk∥ = 0, we have Jf

λk
xk ⇀ p. Now since

f(·, y) is weakly upper semi-continuous for all y ∈ K, we obtain

0 ≤ lim inf
k→∞

f
(
Jf
λk
xk, y

)
≤ lim sup

k→∞
f
(
Jf
λk
xk, y

)
≤ f(p, y),
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for all y ∈ K. Hence p ∈ S(f ;K) and since f is pseudomonotone, then

p ∈
∩

k F (J
f
λk
). □

The following theorem is a direct consequence of our main results.

Theorem 3.3. Suppose that f : K × K → R satisfies P1–P4 and it
is pseudomonotone. If S(f ;K) ̸= ∅ and f(·, y) is weakly upper semi-
continuous for all y ∈ K. Then {xk} generated by the algorithm 2 is
strongly convergent to PS(f ;K)x0.

Proof. It follows from Lemmas 3.1, 3.2 and Theorem 2.4. □

Example 3.4. Let E = ℓp =

{
ξ = (ξ1, ξ2, · · · ) :

( ∞∑
i=1

|ξi|p
) 1

p

<∞

}
for 1 < p < ∞ and let K = {ξ = (ξ1, ξ2, ξ3, . . .) ∈ ℓp : ξi ≥ 0, ∀i ∈ N}.
Define f : K ×K → R by f(x, y) = ⟨y − x, Jx⟩. It is easy to see that
the conditions of Theorem 3.3 are satisfied. Now, if the sequence {xk}
is generated by Algorithm 2, then by Theorem 3.3, it converges strongly
to an element of S(f ;K).

Example 3.5. Suppose that ψ : E → R is a convex, proper and lsc
function. Define f(x, y) = ψ(y)−ψ(x) and K = E. Then the conditions
of Theorem 3.3 are satisfied. Now, if the sequence {xk} is generated by
Algorithm 2, then by Theorem 3.3, it converges strongly to an element
of S(f ;K). Finally, It is easy to see that each equilibrium point of f
is a minimizer of ψ and vice versa. Therefore Algorithm 2 provides a
scheme to approximate a minimizer of ψ.
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Recherche Opérationnelle, 3 (1970), pp. 154-158.

10. S. Reich, A weak convergence theorem for the alternating method
with Bregman distances, Theory and applications of nonlinear op-
erators of accretive and monotone type, Lecture Notes in Pure and
Appl. Math., 178, Dekker, New York, (1996), pp. 313-318.

11. R.T. Rockafellar, Characterization of the subdifferentials of convex
functions, Pacific J. Math., 17 (1966), pp. 497-510.

12. R.T. Rockafellar, Monotone operators and the proximal point algo-
rithm, SIAM J. Control Optim., 14 (1976), pp. 877-898.

13. R.T. Rockafellar, On the maximal monotonicity of subdifferential
mappings, Pacific J. Math., 33 (1970), pp. 209-216.

1 Department of Mathematics, Sarab Branch, Islamic Azad University,
Sarab, Iran.

E-mail address: rjahed@iaugermi.ac.ir

2 Department of Mathematics, Faculty of Mathematical Science, Uni-
versity of Tabriz, Tabriz, Iran.

E-mail address: hvaezi@tabrizu.ac.ir

3 Department of Mathematics, University of Bonab, Bonab, Iran.
E-mail address: h.piri@bonabu.ac.ir


	1. Introduction and Preliminaries
	2. Main Results
	3. Application in Equilibrium Problems
	References

