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Weighted Composition Operators Between Extended

Lipschitz Algebras on Compact Metric Spaces

Reyhaneh Bagheri1 and Davood Alimohammadi2∗

Abstract. In this paper, we provide a complete description of
weighted composition operators between extended Lipschitz alge-
bras on compact metric spaces. We give necessary and sufficient
conditions for the injectivity and the sujectivity of these operators.
We also obtain some sufficient conditions and some necessary con-
ditions for a weighted composition operator between these spaces
to be compact.

1. Introduction and Preliminaries

Let X be a Hausdorff space. We denote by C(X) the set of all
complex-valued continuous functions on X. Then C(X) is a complex
commutative algebra with unit 1X , the constant function on X with
value 1. The set of all bounded function in C(X) is denoted by Cb(X).
We know that Cb(X) is a unital commutative complex Banach algebra
with unit 1X when equipped with the uniform norm

∥f∥X = sup {|f(x)| : x ∈ X} ,
(
f ∈ Cb(X)

)
.

Note that Cb(X) = C(X) whenever X is compact.
Let X1 and X2 be Hausdorff spaces and let A1 and A2 be linear

subspaces of C(X1) and C(X2), respectively. A map T : A1 −→ A2

is called a composition operator from A1 to A2 if there exists a map
φ : X2 −→ X1 such that Tf = foφ for all f ∈ A1. Then T is denoted
by Cφ and called the composition operator from A1 to A2 induced by
φ. A map T : A1 −→ A2 is called a weighted composition operator

2010 Mathematics Subject Classification. 47B38, 47B33, 46J10.
Key words and phrases. Compact operator, Extended Lipschitz algebra, Lipschitz

mapping, Supercontactive mapping, Weighted composition operator.
Received: 19d September 2019, Accepted: 26 January 2020.
∗ Corresponding author.

33

http://scma.maragheh.ac.ir


34 R. BAGHERI AND D. ALIMOHAMMADI

from A1 to A2 if there exist a complex-valued function u on X2 and a
map φ : X2 −→ X1 such that Tf = u.(foφ) for all f ∈ A1. Then T
is denoted by uCφ and called the weighted composition operator from
A1 to A2 induced by u and φ. Clearly, uCφ is a linear operator. In the
case u = 1X2 , the weighted composition operator uCφ reduces to the
composition operator Cφ.

Let X be a compact Hausdorff space. A Banach function algebra
on X is a complex subalgebra A of C(X) that contains 1X , separates
the points of X and is a unital Banach algebra with an algebra norm
∥·∥. Let (A, ∥·∥) be a Banach function algebra on X. For each x ∈ X,
the map eA,X : A −→ C defined by eA,X(f) = f(x) for all f ∈ A, is an
element of ∆(A), the character space of A, which is called the evaluation
character on A at x. This fact implies that A is semisimple and ∥f∥X ≤∥∥∥f̂∥∥∥

∆(A)
≤ ∥f∥ for all f ∈ A, where f̂ is the Gelfand transform of f .

Note that the map x ⇝ eA,X : X −→ ∆(A) is an injective continuous
mapping from X to ∆(A) with the Gelfand topology. If this map is
surjective, we say that A is natural.

Let (X, d) and (Y, ρ) be metric spaces and let K be a nonempty
subset of Y . A map φ : K −→ X is called a Lipschitz mapping
from (K, ρ) to (X, d) if there exists a positive constant M such that
d (φ(x), φ(y)) ≤ Mρ(x, y) for all x, y ∈ K. A map φ : K −→ X is
called a supercontractive mapping from (K, ρ) to (X, d) if for each ε > 0

there exists a δ > 0 such that d(φ(x),φ(y))
ρ(x,y) < ε for all x, y ∈ K with

0 < ρ(x, y) < δ.
Let (X, d) be a metric space. For a complex-valued function f on X,

the Lipschitz constant of f in (X, d) is denoted by p(X,d)(f) and defined
by

p(X,d)(f) = sup

{
|f(x)− f(y)|

d(x, y)
: x, y ∈ K,x ̸= y

}
.

A complex-valued function f is called a Lipschitz function on (X, d) if
f is a Lipschitz mapping from (X, d) to the Euclidean metric space C.
Clearly, f is a Lipschitz function on (X, d) if and only if p(X,d)(f) < ∞.
For each α ∈ (0, 1], the map dα : X ×X −→ R defined by

dα(x, y) = (d(x, y))α , ((x, y) ∈ X ×X) ,

is a metric on X and the induced topology on X by dα coincides with the
induced topology on X by d. For α ∈ (0, 1], we denote by Lip(X, dα) the
set of all complex-valued bounded Lipschitz functions on (X, dα). Then
Lip(X, dα) is a self-adjoint complex subalgebra of Cb(X) containing 1X
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which separates the points of X. Moreover, Lip(X, dα) is a unital com-
mutative complex Banach algebra with the α-Lipschitz algebra norm

∥f∥Lip(X,dα) = ∥f∥X + p(X,dα)(f), (f ∈ Lip(X, d)) .

These algebras are called Lipschitz algebras of order α on (X, d) and
were first studied by Sherbert in [14] and [15].

Kamowitz and Scheinberg in [10] characterized compact unital en-
domorphisms of Lip(X, d) whenever (X, d) is a compact metric space.
Jiménez-Vargas and Villegas-Vallecillos in [9] characterized compact com-
position operators on Lip(X, d) whenever (X, d) is a metric space, not
necessarily compact. Golbaharan and Mahyar in [7] studied weighted
composition operators on Lip(X, d) whenever (X, d) is a compact met-
ric space. They obtained necessary and sufficient conditions for the
injectivity, the surjectivity and the compactness of a weighted compo-
sition operator on Lip(X, d). Weighted composition operators between
Lip(X, d) and Lip(Y, ρ) were studied in [2], where (X, d) and (Y, ρ) are
metric spaces not necessarily compact.

Let (X, d) be a pointed metric space with a basepoint designated by
x0. We denote by Lip0(X, d) the set of all complex-valued Lipschitz
functions f on (X, d) for which f(x0) = 0. Then Lip0(X, d) is a Banach
space with the p(X,d)(0)-norm. For further general facts about Lipschitz
spaces Lip0(X, d), we refer to [16]. Compact composition operators on
Lip0(X, d) characterized by Jiménez-Vargas and Villegas-Vallecillos in
[9] whenever (X, d) is also bounded. Weighted composition operators
between Lip0(X, d)-spaces studied in [6] and the authors obtained some
necessary conditions and some sufficient conditions for the injectivity,
the surjectivity and the compactness of a weighted composition operator
T = uCφ from Lip0(X, d) to Lip0(Y, ρ).

Let (X, d) be a compact metric space and let K be a nonempty com-
pact subset ofX. For α ∈ (0, 1], we define the extended Lipschitz algebra
Lip(X,K, dα) as following:

Lip(X,K, dα) = {f ∈ C(X) : f |K ∈ Lip(K, dα)} .

Then Lip(X,K, dα) is a complex subalgebra of C(X) and Lip(X, dα)
is a complex subalgebra of Lip(X,K, dα). Moreover, Lip(X,K, dα) =
Lip(X, dα) whenever K = X and Lip(X,K, dα) = C(X) whenever K
is finite. It is known [8] that Lip(X,K, dα) is natural Banach function
algebra on X. We know [5] that Lip(X,K, dα) is a regular Banach
algebra. Some properties of unital homomorphisms between extended
Lipschitz algebras were studied in [5]. For further details of the extended
Lipschitz algebras, we refer to [1], [3], [4], [11] and [12].

In this paper we assume that for j ∈ {1, 2}, (Xj , dj) is a compact
metric space, Kj is a nonempty compact subset of Xj and αj ∈ (0, 1].
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In Section 2, we study some properties of weighted composition oper-
ators between Lip(X1,K1, d

α1
1 ) and Lip(X2,K2, d

α2
2 ). In particular, we

show that these operators are bounded. In Section 3, we give some
necessary conditions and some sufficient conditions for the injectivity
and the surjectivity of a weighted composition operator T = uCφ from
Lip(X1,K1, d

α1
1 ) to Lip(X2,K2, d

α2
2 ). In Section 4, we give some neces-

sary conditions and some sufficient conditions that a weighted composi-
tion operator T = uCφ from Lip(X1,K1, d

α1
1 ) to Lip(X2,K2, d

α2
2 ) to be

compact.

2. Some Properties of Weighted Composition Operators

Throughout this section we always assume that (Xj , dj) is a compact
metric space, Kj is a nonempty compact subset of Xj , αj ∈ (0, 1] and

Aj = Lip(Xj ,Kj , d
αj

j ), where j ∈ {1, 2}. For a complex-valued function

u on a nonempty set Y , we denote by coz(u) the set of all y ∈ Y for
which u(y) ̸= 0.

We first give some sufficient conditions that T = uCφ be a weighted
composition operator from A1 to A2.

Lemma 2.1. Let u be a complex-valued continuous function on (X2, d2)
and let φ : X2 −→ X1 be a map with φ(K2) ⊆ K1. Suppose that
φ|coz(u) is a continuous mapping from (coz(u), dα2

2 ) to (X1, d
α1
1 ) and f

is a complex-valued continuous function on (X1, d1). Then u · (foφ) is
a complex-valued continuous function on (X2, d2).

Proof. Assume that y0 ∈ coz(u). Since coz(u) is an open set in (X2, d
α2
2 ),

φ is a continuous mapping in y0 and f is a complex-valued continuous
function on (X1, d

α1
1 ). We deduce that foφ is continuous at y0 and so

u · (foφ) is continuous at y0. Let y0 ∈ X2 \ coz(u) and ε > 0 be given.
The continuity of u at y0 implies that there exists δ > 0 such that

|u(y)− u(y0)| <
ε

1 + ∥f∥X1

,

for all y ∈ X2 with d2(y, y0) < δ. Let y ∈ X2 with d2(y, y0) < δ. Then

|u · (foφ)(y)− u · (foφ)(y0)| = |u(y)| |f(φ(y))|
= |u(y)− u(y0)| |f(φ(y))|

≤ ε

1 + ∥f∥X1

∥f∥X1

< ε.

Thus, u · (foφ) is continuous at y0. Therefore, u · (foφ) is a complex-
valued continuous function on (X2, d2). □
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Theorem 2.2. Let u ∈ A2, φ : X2 −→ X1 be a map for which φ(K2) is a
subset of K1 and let φ|coz(u) be a continuous mapping from (coz(u), dα2

2 )
to (X1, d

α1
1 ). If K2 ⊆ X2 \ coz(u) or K2 ∩ coz(u) ̸= ∅ and φ|K2∩coz(u) is

a Lipschitz mapping from (K2∩ coz(u), dα2
2 ) to (K1, d

α1
1 ), then T = uCφ

is a weighted composition operator from A1 to A2.

Proof. Let f ∈ A1. By Lemma 2.1, Tf is a complex-valued continuous
function on (X2, d

α2
2 ). We first assume that K2 ⊆ X2 \ coz(u). Then for

each x, y ∈ K2 with x ̸= y, we have Tf(x) = Tf(y) = 0 and so

|Tf(x)− Tf(y)|
dα2
2 (x, y)

≤ 1.

Therefore, Tf is a complex-valued Lipschitz function on (K2, d
α2
2 ) and

so Tf ∈ A2.
We now assume that K2 ∩ coz(u) ̸= ∅ and φ|K2∩coz(u) is a Lipschitz

mapping from (K2 ∩ coz(u), dα2
2 ) to (K1, d

α1
1 ). Then there exists a posi-

tive constant M such that

(2.1) dα1
1 (φ(x), φ(y)) ≤ Mdα2

2 (x, y),

for all x, y ∈ K2 ∩ coz(u). We prove that

(2.2)
|Tf(x)− Tf(y)|

dα2
2 (x, y)

≤ M ∥u∥X2
p(K1,d

α1
1 )(f) + ∥f∥X1

p(K2,d
α2
2 )(u),

for all x, y ∈ K2 with x ̸= y. To this aim, pick x, y ∈ K2 with x ̸= y.
Let us distinguish the following cases.
Case 1. x ∈ K2 and y ∈ K2 \ coz(u). Then

|Tf(x)− Tf(y)|
dα2
2 (x, y)

=
|u(x)f(φ(x))− u(y)f(φ(y))|

dα2
2 (x, y)

=
|u(x)| |f(φ(x))|

dα2
2 (x, y)

= |f(φ(x))| |u(x)− u(y)|
dα2
2 (x, y)

≤ ∥f∥X1
p(K2,d

α2
2 )(u).

Case 2. x ∈ K2 \ coz(u) and y ∈ K2. Then

|Tf(x)− Tf(y)|
dα2
2 (x, y)

=
|u(x)f(φ(x))− u(y)f(φ(y))|

dα2
2 (x, y)

=
|−u(y)| |f(φ(y))|

dα2
2 (x, y)

= |f(φ(y))| |u(x)− u(y)|
dα2
2 (x, y)
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≤ ∥f∥X1
p(K2,d

α2
2 )(u).

Case 3. x, y ∈ K2 ∩ coz(u) and φ(x) = φ(y). Then

|Tf(x)− Tf(y)|
dα2
2 (x, y)

=
|u(x)f(φ(x))− u(y)f(φ(y))|

dα2
2 (x, y)

= |f(φ(x))| |u(x)− u(y)|
dα2
2 (x, y)

≤ ∥f∥X1
p(K2,d

α2
2 )(u).

Case 4. x, y ∈ K2 ∩ coz(u) and φ(x) ̸= φ(y). Then

|Tf(x)− Tf(y)|
dα2
2 (x, y)

=
|u(x)f(φ(x))− u(y)f(φ(y))|

dα2
2 (x, y)

= |u(x)| |f(φ(x))− f(φ(y))|
dα2
2 (x, y)

+ |f(φ(y))| |u(x)− u(y)|
dα2
2 (x, y)

= |u(x)| |f(φ(x))− f(φ(y))|
dα1
1 (φ(x), φ(y))

dα1
1 (φ(x), φ(y))

dα2
2 (x, y)

+ |f(φ(y))| |u(x)− u(y)|
dα2
2 (x, y)

≤ M ∥u∥X2
p(K1,d

α1
1 )(f) + ∥f∥X1

p(K2,d
α2
2 )(u).

Summarizing, we have proved that (2.2) holds for all x, y ∈ K2 with
x ̸= y. Therefore, Tf ∈ A2 and so the proof is complete. □

Corollary 2.3. Let u ∈ A2 and let φ : X2 −→ X1 be a continuous
mapping from (X2, d

α2
2 ) to (X1, d

α1
1 ) with φ(K2) ⊆ K1. If φ|K2 is a Lip-

schitz mapping from (K2, d
α2
2 ) to (K1, d

α1
1 ), then T = uCφ is a weighted

composition operator from A1 to A2.

The following example shows that there exists a nonzero weighted
composition operator uCφ from A1 to A2 where K2 ∩ coz(u) ̸= ∅ and φ
is not a Lipschitz mapping from (K2 ∩ coz(u), dα2

2 ) to (K1, d
α1
1 ).

Example 2.4. Let X = [−2, 2], K = [−1, 1] and d be the Euclidean
metric on X. Define the function u : X −→ C by

u (x) =

 0, −2 ≤ x ≤ −1,
1 + x, −1 ≤ x ≤ 1, (x ∈ X).
2, 1 ≤ x ≤ 2,
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Clearly, u ∈ Lip(X,K, d1). Define the map φ : X −→ X by

φ (x) =


x, −2 ≤ x ≤ −1,√
2 + 2x− 1, −1 ≤ x ≤ 1, (x ∈ X).

x, 1 ≤ x ≤ 2,

Then φ is a continuous mapping from (X, d1) to (X, d1), φ and it is
injective on K and φ(K) ⊆ K. Moreover, K ∩ coz(u) = (−1, 1]. Since
for each n ∈ N, −1 + 1

n ,−1 + 2
n ∈ K ∩ coz(u) and

d1
(
φ(−1 + 1

n), φ(−1 + 2
n)
)

d1
(
−1 + 1

n ,−1 + 2
n

) =

∣∣∣√2 + 2
(
−1 + 1

n

)
−
√
2 + 2

(
−1 + 2

n

)∣∣∣∣∣(−1 + 1
n

)
−
(
−1 + 2

n

)∣∣
=

∣∣∣√ 2
n −

√
4
n

∣∣∣∣∣− 1
n

∣∣
= n

(
2√
n
−

√
2√
n

)
=
(
2−

√
2
)√

n,

we deduce that φ is not a Lipschitz mapping from (K ∩ coz(u), d1) to
(K, d1).

Now we show that T = uCφ is a weighted composition operator from
A to A, where A = Lip(X,K, d1). Let f ∈ A. It is clear that Tf is a
complex-valued continuous function on (X, d1). We prove that

(2.3)
|Tf(x)− Tf(y)|

d1(x, y)
≤ 2p(K,d1)(f) + p(K,d1)(u) ∥f∥X ,

for all x, y ∈ K with x ̸= y. To this aim, pick x, y ∈ K with x ̸= y. Let
us distinguish the following cases.
Case 1. x = −1 and y ∈ K \ {−1}. Then

|Tf(x)− Tf(y)|
d1(x, y)

=
| − u(y)|
d1(x, y)

|f(φ(y))|

=
|u(x)− u(y)|

d1(x, y)
|f(φ(y))|

≤ p(K,d1)(u) ∥f∥X .

Case 2. x ∈ K \ {−1} and y = −1. Then

|Tf(x)− Tf(y)|
d1(x, y)

=
|u(x)|
d1(x, y)

|f(φ(x))|
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=
|u(x)− u(y)|

d1(x, y)
|f(φ(x))|

≤ p(K,d1)(u) ∥f∥X .

Case 3. x, y ∈ K \ {−1} and x ̸= y. Then

|Tf(x)− Tf(y)|
d1(x, y)

=
|u(x) [f(φ(x))− f(φ(y))] + [u(x)− u(y)] f(φ(y))|

|x− y|

≤ |u(x)| |f(φ(x))− f(φ(y))|
|x− y|

+
|u(x)− u(y)|

|x− y|
|f(φ(y))|

= |1 + x| |φ(x)− φ(y)|
|x− y|

|f(φ(x))− f(φ(y))|
|φ(x)− φ(y)|

+
|u(x)− u(y)|

|x− y|
|f(φ(y))|

≤ |1 + x| |
√
2 + 2x−

√
2 + 2y|

|x− y|
|f(φ(x))− f(φ(y))|

d1(φ(x), φ(y))

+
|u(x)− u(y)|

d1(x, y)
|f(φ(y))|

≤ |1 + x| |
√
2 + 2x−

√
2 + 2y|

|x− y|
p(K,d1)(f)

+ p(K,d1)(u) ∥f∥X

= |1 + x| | (2 + 2x)− (2 + 2y) |
|x− y|

∣∣√2 + 2x−
√
2 + 2y

∣∣p(K,d1)(f)

+ p(K,d1)(u) ∥f∥X

=
2 |1 + x|√

2 + 2x−
√
2 + 2y

p(K,d1)(f)

+ p(K,d1)(u) ∥f∥X

=
2 (1 + x)√
2 + 2x

p(K,d1)(f) + p(K,d1)(u) ∥f∥X

=
√
2
√
1 + x p(K,d1)(f) + p(K,d1)(u) ∥f∥X

≤ 2p(K,d1)(f) + p(K,d1)(u) ∥f∥X .

Summarizing, we have proved that (2.3) holds for all x, y ∈ K with
x ̸= y. Therefore, Tf ∈ Lip(X,K, d1) = A. Hence, T = uCφ is a
weighted composition operator from A to A.
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We now give some necessary conditions that T = uCφ be a weighted
composition operator from A1 to A2.

Theorem 2.5. Let u be a complex-valued function on X2 and let φ :
X2 −→ X1 be a map with φ(K2) ⊆ K1. If T = uCφ is a weighted
composition operator from A1 to A2, then u ∈ A2 and T is a bounded

linear operator from
(
A1, ∥ · ∥Lip(X1,K1,d

α1
1 )

)
to
(
A2, ∥ · ∥Lip(X2,K2,d

α2
2 )

)
.

Proof. Let T = uCφ be a weighted composition operator from A1 to A2.
Then T is a complex linear operator from A1 to A2. Since 1X ∈ A1

and T1X = u, we deduce that u ∈ A2. To prove the continuity of T

from
(
A1, ∥ · ∥Lip(X1,K1,d

α1
1 )

)
to
(
A2, ∥ · ∥Lip(X2,K2,d

α2
2 )

)
, let {fn}∞n=1 be

a sequence in A1 with

(2.4) lim
n→∞

fn = 0X1 ,
(
in
(
A1, ∥ · ∥Lip(X1,K1,d

α1
1 )

))
,

and g ∈ A2 with

(2.5) lim
n→∞

Tfn = g,
(
in
(
A2, ∥ · ∥Lip(X2,K2,d

α2
2 )

))
.

Let y ∈ X2 be given. By (2.4), we deduce that limn→∞ ∥fn∥X = 0 which
implies that

(2.6) lim
n→∞

fn(φ(y)) = 0.

According to (2.6) and the boundedness of u on X2, we get

(2.7) lim
n→∞

u(y)fn(φ(y)) = 0.

By (2.5), we deduce that limn→∞ ∥u.(fnoφ)− g∥X2
= 0 which implies

that

(2.8) lim
n→∞

u(y)fn(φ(y)) = g(y).

From (2.8) and (2.6), we get

(2.9) g(y) = 0.

Since (2.9) holds for all y ∈ X2, we deduce that g = 0X2 . Therefore, T is

a continuous mapping from the Banach space
(
A1, ∥ · ∥Lip(X1,K1,d

α1
1 )

)
to

the Banach space
(
A2, ∥ · ∥Lip(X2,K2,d

α2
2 )

)
by the closed graph theorem

for Banach spaces. Hence, the proof is complete. □

Theorem 2.6. Let u be a complex-valued function on X2, let K2 ∩
coz(u) ̸= ∅ and let φ : X2 −→ X1 be a map with φ(K2) ⊆ K1. If
T = uCφ is a weighted composition operator from A1 to A2, then φ is a
continuous mapping from (K2 ∩ coz(u), dα2

2 ) to (X1, d
α1
1 ) and a Lipschitz
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mapping from (K, dα2
2 ) to (X1, d

α1
1 ) for all compact subset K of K2 ∩

coz(u) in (X2, d2).

Proof. By Theorem 2.5, u ∈ A2 and T is a bounded linear operator

from
(
A1, ∥ · ∥Lip(X1,K1,d

α1
1 )

)
to
(
A2, ∥ · ∥Lip(X2,K2,d

α2
2 )

)
. We first show

that φ is a continuous mapping from (K2 ∩ coz(u), dα2
2 ) to (X1, d

α1
1 ).

Suppose that y0 ∈ K2 ∩ coz(u) and φ is not continuous at y0. Then
there exist a positive number ε and a sequence {yn}∞n=1 in X2 such that

dα2
2 (yn, y0) < 1

n and dα1
1 (φ(yn), φ(y0)) ≥ ε for all n ∈ N. Define the

function hφ(y0),ε : X1 −→ C by

hφ(y0),ε(x) = max

{
0,

ε− dα1
1 (x, φ(y0))

ε

}
, (x ∈ X1).

Then hφ(y0),ε ∈ Lip(X1, d
α1
1 ) and so hφ(y0),ε ∈ A1. Since limn→∞ yn = y0

in (X2, d
α2
2 ) and Thφ(y0),ε ∈ A2, we deduce that

lim
n→∞

Thφ(y0),ε(yn) = Thφ(y0),ε(y0),

that is,

(2.10) lim
n→∞

u(yn)hφ(y0),ε(φ(yn)) = u(y0)hφ(y0),ε(φ(y0)).

According to hφ(y0),ε(φ(yn)) = 0 for all n ∈ N, we get

(2.11) lim
n→∞

u(yn)hφ(y0),ε(φ(yn)) = 0.

From (2.10) and (2.11), we deduce that

(2.12) lim
n→∞

u(y0)hφ(y0),ε(φ(y0)) = 0.

By (2.12) and y0 ∈ coz(u), we get hφ(y0),ε(φ(y0)) = 0 which contradicts
to hφ(y0),ε(φ(y0)) = 1. Therefore, φ is continuous on K2 ∩ coz(u).

Let K ⊆ K2 ∩ coz(u) be a compact set in (X2, d2). We show that φ
is a Lipschitz mapping from (K, dα2

2 ) to (X1, d
α1
1 ). Take

C = inf {|u(y)| : y ∈ K} .

Since K ⊆ coz(u) and u is a continuous complex-valued function on
(X2, d

α2
2 ), we deduce that C > 0. Let x, y ∈ K with x ̸= y. Define the

function fφ(y) : X1 −→ C by

fφ(y)(t) = dα1
1 (t, φ(y)), (t ∈ X1).

It is easy to see that fφ(y) ∈ Lip(X1, d
α1
1 ),

∥∥fφ(y)∥∥X1
≤ (diam(X1))

α1

and p(X1,d
α1
1 )(fφ(y)) ≤ 1. Therefore, fφ(y) ∈ A1 and

(2.13)
∥∥fφ(y)∥∥Lip(X1,K1,d

α1
1 )

≤ 1 + (diam(X1))
α1 .
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By the definition of fφ(y), the boundedness of T and (2.13), we get

dα1
1 (φ(x), φ(y))

dα2
2 (x, y)

=
1

|u(x)|
|u(x)| d

α1
1 (φ(x), φ(y))

dα2
2 (x, y)

=
1

|u(x)|
|u(x)fφ(y)(φ(x))− u(y)fφ(y)(φ(y))|

dα2
2 (x, y)

=
1

|u(x)|
|Tfφ(y)(x)− Tfφ(y)(y)|

dα2
2 (x, y)

≤ 1

C
p(X2,d

α2
2 )

(
Tfφ(y)

)
≤ 1

C

∥∥Tfφ(y)∥∥Lip(X2,K2,d
α2
2 )

≤ 1

C
∥T∥

∥∥fφ(y)∥∥Lip(X1,K1,d
α1
1 )

≤ 1

C
∥T∥ (1 + (diam(X1))

α1) .

Since the inequality above holds for all x, y ∈ K with x ̸= y, we deduce
that φ is a Lipschitz mapping from (K, dα2

2 ) to (X1, d
α1
1 ). Hence, the

proof is complete. □
Theorem 2.7. Let u be a complex-valued function on X2, φ : X2 −→ X1

be a map with φ(K2) ⊆ K1 and let φ|coz(u) be a continuous mapping from
(coz(u), dα2

2 ) to (X1, d
α1
1 ). Then T is a weighted composition operator

from A1 to A2 if and only if u ∈ A2 and

(2.14) sup

{
|u(x)| d

α1
1 (φ(x), φ(y))

dα2
2 (x, y)

: x, y ∈ K2, x ̸= y

}
< ∞.

Proof. We first assume that T is a weighted composition operator from
A1 to A2. By Theorem 2.5, u ∈ A2 and T is a bounded linear oper-

ator from
(
A1, ∥ · ∥Lip(X1,K1,d

α1
1 )

)
to
(
A2, ∥ · ∥Lip(X2,K2,d

α2
2 )

)
. To prove

(2.14), let x, y ∈ K2 with x ̸= y. Define the function fφ(y) : X1 −→ C
by

fφ(y)(t) = dα1
1 (t, φ(y)), (t ∈ X1).

Then fφ(y) ∈ A1 and

(2.15) ∥f∥Lip(X1,K1,d
α1
1 ) ≤ (diam(X1))

α1 + 1.

According to Tf = uCφf ∈ A2 and (2.15), we get

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

=
|u(x)dα1

1 (φ(x), φ(y))− u(y)dα1
1 (φ(y), φ(y))|

dα2
2 (x, y)

=

∣∣u(x) (fφ(y)oφ) (x)− u(y)
(
fφ(y)oφ

)
(y)
∣∣

dα2
2 (x, y)
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=
|Tfφ(y)(x)− Tfφ(y)(y)|

dα2
2 (x, y)

≤ p(K2,d
α2
2 )

(
Tfφ(y)

)
=
∥∥Tfφ(y)∥∥Lip(X2,K2,d

α2
2 )

≤ ∥T∥
∥∥fφ(y)∥∥Lip(X1,K1,d

α1
1 )

≤ ∥T∥ ((diam(X1))
α1 + 1) .

Since the inequality above holds for all x, y ∈ K2 with x ̸= y, we deduce
that

sup

{
|u(x)| d

α1
1 (φ(x), φ(y))

dα2
2 (x, y)

: x, y ∈ K2, x ̸= y

}
≤ ∥T∥ ((diam(X1))

α1 + 1) ,

and so (2.14) holds.
We now assume that u ∈ A2 and (2.14) holds. Take

(2.16) C = sup

{
|u(x)| d

α1
1 (φ(x), φ(y))

dα2
2 (x, y)

: x, y ∈ K2, x ̸= y

}
.

Let f ∈ A1. By Lemma 2.1, Tf is a complex-valued continuous function
on (X2, d

α2
2 ). We now show that

(2.17)
|Tf(x)− Tf(y)|

dα2
2 (x, y)

≤ Cp(K1,d
α1
1 )(f) + p(K2,d

α2
2 )(u) ∥f∥X1

,

for all x, y ∈ K2 with x ̸= y. To this aim, pick x, y ∈ K2 with x ̸= y.
Let us distinguish the following cases.
Case 1. φ(x) ̸= φ(y). By φ(K2) ⊆ K1, (2.16) and u ∈ A2, we get

|Tf(x)− Tf(y)|
dα2
2 (x, y)

=
|u(x)f(φ(x))− u(y)f(φ(y))|

dα2
2 (x, y)

≤ |u(x)| |f(φ(x))− f(φ(y))|
dα1
1 (φ(x), φ(y))

dα1
1 (φ(x), φ(y))

dα2
2 (x, y)

+
|u(x)− u(y)|
dα2
2 (x, y)

|f(φ(y))|

≤ Cp(K1,d
α1
1 )(f) + p(K2,d

α2
2 )(u) ∥f∥X1

.

Case 2. φ(x) = φ(y). Then

|Tf(x)− Tf(y)|
dα2
2 (x, y)

=
|u(x)f(φ(x))− u(y)f(φ(y))|

dα2
2 (x, y)

=
|u(x)− u(y)|
dα2
2 (x, y)

|f(φ(x))|

≤ p(K2,d
α2
2 )(u) ∥f∥X1

≤ Cp(K1,d
α1
1 )(f) + p(K2,d

α2
2 )(u) ∥f∥X1

.
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Therefore, (2.17) holds for all x, y ∈ K2 with x ̸= y. This implies that
Tf |K2 ∈ Lip(K2, d

α2
2 ).

Summarising, we have shown that Tf is a complex-valued continuous
function on (X2, d

α2
2 ) and Tf |K2 ∈ Lip(K2, d

α2
2 ) for all f ∈ A1. There-

fore, Tf ∈ A2 for all f ∈ A1 and so T = uCφ is a weighted composition
operator from A1 to A2. □

3. Injectivity and Surjectivity

Throughout this section we always assume that (Xj , dj) is a compact
metric space, Kj is a nonempty compact subset of Xj , αj ∈ (0, 1] and

Aj = Lip(Xj ,Kj , d
αj

j ), where j ∈ {1, 2}.
We first give some necessary and sufficient conditions for the injectiv-

ity of weighted composition operators from A1 to A2.

Theorem 3.1. Let u be a complex-valued function on X2, φ : X2 −→ X1

be a continuous mapping from (X2, d
α2
2 ) to (X1, d

α1
1 ) and let T = uCφ be

a weighted composition operator from A1 to A2. If T is injective, then
K1 ⊆ φ(X2) and φ(coz(u)) is dense in X1.

Proof. We first assume that K1 is not a subset of φ(X2). Then there
exists s ∈ K1 such that s /∈ φ(X2). The continuity of φ from (X2, d2)
to (X1, d1) and the compactness of X2 in (X2, d2) imply that φ(X2)
is compact in (X1, d1). Since A1 is a regular natural Banach function
algebra on X1, there exists a function f ∈ A1 such that f(s) = 1 and
f(φ(X2)) = {0}. Thus f ∈ A1 \ {0X1} and

Tf(y) = u(y)f(φ(y)) = u(y)0 = 0,

for all y ∈ X2. Therefore, T is not injective.
We now assume that T is injective and show that φ(coz(u)) is dense

in X1. Define the function f : X1 −→ C by

f(x) = distd1(x, φ(coz(u))), (x ∈ X1).

It is easy to see that f ∈ Lip(X1, d1) and so f ∈ A1. If y ∈ coz(u), then
φ(y) ∈ φ(coz(u)) and so f(φ(y)) = 0 which implies that

Tf(y) = u(y)f(φ(y)) = 0.

If y ∈ X2 \ coz(u), then

Tf(y) = u(y)f(φ(y)) = 0f(φ(y)) = 0.

Therefore, Tf(y) = 0 for all y ∈ X2 and so Tf = 0X2 . The injectivity
of T implies that f = 0X1 . Therefore,

distd1(x, φ(coz(u))) = f(x) = 0



46 R. BAGHERI AND D. ALIMOHAMMADI

for all x ∈ X1. This implies that x ∈ φ(coz(u))
d1
, the closure of

φ(coz(u)) in (X1, d1), for all x ∈ X1. Therefore, X1 ⊆ φ(coz(u))
d1

and so φ(coz(u)) is dense in X1. □

Theorem 3.2. Let u be a complex-valued function on X2, φ : X2 −→ X1

be a continuous mapping from (X2, d
α2
2 ) to (X1, d

α1
1 ) and let T = uCφ

be a weighted composition operator from A1 to A2. If φ(coz(u)) is dense
in X1, then T is injective and K1 ⊆ φ(X2).

Proof. Let φ(coz(u)) be dense in X1. To prove the injectivity of T , let
f ∈ A1 with Tf = 0X2 . Assume that s ∈ φ(coz(u)). Then there exists
y ∈ coz(u) with s = φ(y). Therefore, u(y) ̸= 0 and

0 = Tf(y) = u(y)f(φ(y)) = u(y)f(s).

Hence, f(s) = 0. Since φ(coz(u)) is dense in (X1, d
α1
1 and f(φ(coz(u))) =

{0}, we deduce that f(X1) = {0} and so f = 0X1 . Therefore, T is
injective. Hence, K1 ⊆ φ(X2) by Theorem 3.1 and so the proof is com-
plete. □

Here, we give some sufficient conditions for the surjectivity of weighted
composition operators from A1 to A2.

Theorem 3.3. Let u ∈ A2 and let φ : X2 −→ X1 be a surjective
Lipschitz mapping from (X2, d

α2
2 ) to (X1, d

α1
1 ) with φ(K2) = K1. If

(3.1) inf

{
|u(x)| d

α1
1 (φ(x), φ(y))

dα2
2 (x, y)

: x, y ∈ X2, x ̸= y

}
> 0,

then T = uCφ is a surjective weighted composition operator from A1 to
A2.

Proof. Since u ∈ A2 and φ : X2 −→ X1 is a Lipschitz mapping from
(X2, d

α2
2 ) to (X1, d

α1
1 ) with φ(K2) ⊆ K1, we deduce that T = uCφ is a

weighted composition operator from A1 to A2 by Theorem 2.2. Suppose
that (3.1) holds. Then φ is injective on X2 and coz(u) = X2. Take

(3.2) C = inf

{
|u(x)| d

α1
1 (φ(x), φ(y))

dα2
2 (x, y)

: x, y ∈ X2, x ̸= y

}
.

Since u is a complex-valued continuous function on (X2, d
α2
2 ) and coz(u) =

X2, there exists y0 ∈ X2 such that u(y0) ̸= 0 and

(3.3) |u(y)| ≤ |u(y0)|,

for all y ∈ X2. Define the function ρ : X2 ×X2 :−→ R by

ρ(x, y) = dα1
1 (φ(x), φ(y)), (x, y ∈ X2).
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The injectivity of φ : X2 −→ X1 implies that ρ is a metric on X2. Let
s, t ∈ X1. Then φ−1(s), φ−1(t) ∈ X2. Take x = φ−1(s) and y = φ−1(t).
Then s = φ(x) and t = φ(y). Thus

ρ(φ−1(s), φ−1(t)) = ρ(x, y) = dα1
1 (φ(x), φ(y)) = dα1

1 (s, t).

Therefore, φ−1 is a Lipschitz mapping from (X1, d
α1
1 ) to (X2, ρ) and

so φ−1 is a continuous mapping from (X1, d
α1
1 ) to (X2, ρ). Since φ :

X2 −→ X1 is a Lipschitz mapping from (X2, d
α2
2 ) to (X1, d

α1
1 ), there

exists a positive constant M such that

(3.4) dα1
1 (φ(x), φ(y)) ≤ Mdα2

2 (x, y),

for all x, y ∈ X2. From (3.2), (3.3) for y = x, the definition of ρ and
(3.4), we get

(3.5)
C

|u(y0)|
dα2
2 (x, y) ≤ ρ(x, y) ≤ Mdα2

2 (x, y),

for all x, y ∈ X2. This implies that the metrics dα2
2 and ρ are boundedly

equivalent on X2. Therefore, C(X2, d
α2
2 ) = C(X2, ρ). Moreover, A2 and

Lip(X2,K2, ρ) have the same elements by [5, Theorem 2.5].
To prove the surjectivity of T , let g ∈ A2. Then g

u ∈ A2 and so
g
u ∈ Lip(X2,K2, ρ). Thus g

u is a complex-valued continuous function

on (X2, ρ). Take f = g
uoφ

−1. Then f is a complex-valued continuous
function on (X1, d

α1
1 ). Assume that s, t ∈ K1. Since φ(K2) = K1, we

get

|f(s)− f(t)| =
∣∣∣g
u
(φ−1(s))− g

u
(φ−1(t))

∣∣∣
≤ p(K2,ρ)(

g

u
) ρ(φ−1(s), φ−1(t))

= p(K2,ρ)(
g

u
) dα1

1

(
φ(φ−1(s)), φ(φ−1(t))

)
= p(K2,ρ)(

g

u
) dα1

1 (s, t).

Thus f |K1 ∈ Lip(K1, d
α1
1 ). Therefore, f ∈ A1. On the other hand, for

each y ∈ X2 we have

Tf(y) = u(y)f(φ(y)) = u(y)
g

u
(φ−1(φ(y)) = u(y)

g(y)

u(y)
= g(y).

Therefore, Tf = g and so T is surjective. □

We now give some necessary conditions for the surjectivity of compo-
sition operators and weighted composition operators between extended
Lipschitz algebras.
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Theorem 3.4. Let φ : X2 −→ X1 be a Lipschitz mapping from (X2, d
α2
2 )

to (X1, d
α1
1 ) with φ(K2) ⊆ K1 and let S be the composition operator from

A1 to A2 induced by φ. If S is surjective, then φ is injective on X2 and

(3.6) inf

{
dα1
1 (φ(x), φ(y))

dα2
2 (x, y)

: x, y ∈ K2, x ̸= y

}
> 0.

Proof. Let S be surjective. Assume that y ∈ X2. Define the function
gy : X2 −→ C by

gy(z) = dα2
2 (z, y), (z ∈ X2).

Then gy ∈ Lip(X2, d
α2
2 ), ∥gy∥X2

≤ (diamd2(X2))
α2 and p(X2,d

α2
2 )(gy) ≤ 1.

Therefore, gy ∈ A2 and

∥gy∥Lip (X2,K2, d
α2
2 ) ≤ (diamd2(X2))

α2 + 1.

To prove the injectivity of φ on X2, let x, y ∈ X2 with φ(x) = φ(y). The
surjectivity of S implies that there exists f ∈ A1 such that gy = S(f) =
foφ. It follows that

dα2
2 (x, y) = gy(x) = Sf(x) = f(φ(x)) = f(φ(y)) = Sf(y) = gy(y) = 0.

Therefore, x = y and so φ is injective.

To prove (3.6), define the map ρ : X2 ×X2 :−→ R by

ρ(x, y) = dα1
1 (φ(x), φ(y)), (x, y ∈ X2).

The injectivity of φ on X2 implies that ρ is a metric on X2. We claim
that

(3.7) Lip(K2, d
α2
2 ) ⊆ Lip(K2, ρ).

Let g ∈ Lip(K2, d
α2
2 ). By Tietze extension theorem [13, Theorem 20.4],

there exists a complex-valued continuous function g̃ on (X2, d
α2
2 ) such

that g̃|K2 = g and ∥g̃∥X2
≤ 2 ∥g∥K2

. Therefore, g̃ ∈ A2. The surjectivity
of S implies that there exists F ∈ A1 such that g̃ = SF . Since φ(K2) is
a subset of K1, we get

|g(x)− g(y)|
ρ(x, y)

=
|g̃(x)− g̃(y)|

dα1
1 (φ(x), φ(y))

=
|SF (x)− SF (y)|
dα1
1 (φ(x), φ(y))

=
|F (φ(x))− F (φ(y))|

dα1
1 (φ(x), φ(y))

≤ p(K1,d
α1
1 )(F ),

for all x, y ∈ K2 with x ̸= y. Hence, g ∈ Lip(K2, ρ) and so (3.7) holds.
By (3.7), we deduce that the map g 7−→ g : Lip(K2, d

α2
2 ) −→ Lip(K2, ρ)
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is an algebra homomorphism from Lip(K2, d
α2
2 ) to Lip(K2, ρ). Since(

Lip(K2, ρ), ∥·∥Lip(K2,ρ)

)
is a semisimple commutative Banach algebra,

this map is continuous. Therefore, there exists a positive constant M
such that ∥g∥Lip(K2,ρ) ≤ M ∥g∥Lip(K2,d

α2
2 ) for all g ∈ Lip(K2, d

α2
2 ). Let

x, y ∈ K2 such that x ̸= y. Since gy ∈ A2 and ∥gy∥Lip(X2,K2,d
α2
2 ) ≤

(diamd2(X2))
α2 + 1, we deduce that gy|K2 ∈ Lip(K2, d

α2
2 ) and so

|gy(x)− gy(y)|
ρ(x, y)

≤ p(K2,ρ)(gy)

≤ ∥gy|K2∥Lip(K2,ρ)

≤ M ∥gy|K2∥Lip(K2,d
α2
2 )

≤ M ∥gy∥Lip(X2,K2,d
α2
2 )

≤ M ((diamd2(X2))
α2 + 1) .

Take

M ′ =
1

M ((diamd2(X2))α2 + 1)
.

Then M ′ > 0 and

dα1
1 (φ(x), φ(y))

dα2
2 (x, y)

=
ρ(x, y)

dα2
2 (x, y)

=
ρ(x, y)

|gy(x)− gy(y)|
≥ M ′.

Since the inequality above holds for all x, y ∈ K2 with x ̸= y, we deduce
that

inf

{
dα1
1 (φ(x), φ(y))

dα2
2 (x, y)

: x, y ∈ K2, x ̸= y

}
≥ M ′.

Hence, (3.6) holds and the proof is complete. □

Theorem 3.5. Let u ∈ A2, φ : X2 −→ X1 be a Lipschitz mapping
from (X2, d

α2
2 ) to (X1, d

α1
1 ) with φ(K2) ⊆ K1 and let T = uCφ be a

weighted composition operator from A1 to A2. If T is surjective, then φ
is injective on X2 and

inf

{
|u(x)| d

α1
1 (φ(x), φ(y))

dα2
2 (x, y)

: x, y ∈ K2, x ̸= y

}
> 0.

Proof. Since T = uCφ is a weighted composition operator from A1 to
A2, by Theorem 2.5, u ∈ A2. Let T be surjective. Since 1X2 ∈ A2, there
exists a function f1 ∈ A1 such that Tf1 = 1X2 . This implies that

1 = Tf1(y) = u(y)f1(φ(y)),
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for all y ∈ Y . Therefore, u(y) ̸= 0 for all y ∈ Y . This implies that
1
u ∈ A2. It follows that 1

uTf ∈ A2 for all f ∈ A1. Thus, foφ ∈ A2 for
all f ∈ A1. Therefore, Cφ : A1 −→ A2 is a composition operator from
A1 to A2. Take

M1 = inf

{
dα1
1 (φ(x), φ(y))

dα2
2 (x, y)

: x, y ∈ K2, x ̸= y

}
.

We claim that Cφ is surjective. Let g ∈ A2. Then ug ∈ A2. By the
surjectivity of T , there exists f ∈ A1 such that

u.(foφ) = Tf = ug.

This implies that Cφf = foφ = g since u(y) ̸= 0 for all y ∈ X2. Hence,
our claim is justified. Therefore, φ is surjective and M1 > 0 by Theorem
3.4. Since K2 is a nonempty compact subset of X2 in (X2, d

α2
2 ) and u is

continuous on K2, there exists y1 ∈ K2 such that

|u(y1)| = inf {|u(y)| : y ∈ K2} .

By the argument above, |u(y1)| > 0. Let x, y ∈ K2 with x ̸= y. Then

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

≥ |u(y1)|M1.

Therefore,

inf

{
|u(x)| d

α1
1 (φ(x), φ(y))

dα2
2 (x, y)

: x, y ∈ K2, x ̸= y

}
≥ |u(y1)|M1.

Hence, the proof is complete. □

4. Compactness of Weighted Composition Operators

This section is devoted to the compactness of weighted composition
operators between extended Lipschitz algebras. We first give a general-
ized of [7, Theorem 4.1] that its proof can be done similarly.

Theorem 4.1. For j ∈ {1, 2}, let Xj be a compact Hausdorff space and(
Aj , ∥·∥j

)
be a compact Banach function algebra on Xj. Suppose that T

is a linear operator from A1 to A2 which is bounded from
(
A1, ∥·∥X1

)
to(

A2, ∥·∥X2

)
. If T is compact, then {Tfn}∞n=1 converges to the function

0X2 in (A2, ∥·∥2) for each bounded sequence {fn}∞n=1 in (A1, ∥·∥1) which
converges uniformly to the function 0X1. The converse is true if the
closed unit ball of (A1, ∥·∥1) is relatively compact in

(
A1, ∥·∥X1

)
.

In the rest of this section, we always assume that (Xj , dj) is a com-
pact metric space, Kj is a compact subset of Xj , αj ∈ (0, 1] and

Aj = Lip(Xj ,Kj , d
αj

j ), where j ∈ {1, 2}.
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We give some necessary conditions for the compactness of weighted
composition operators from A1 to A2.

Theorem 4.2. Let u be a complex-valued function on X2 and let φ :
X2 −→ X1 be a map such that T = uCφ is a weighted composition
operator from A1 to A2. If T is compact, then {Tfn}∞n=1 converges to the

function 0X2 in
(
A2, ∥ · ∥Lip(X2,K2,d

α2
2 )

)
for all bounded sequence {fn}∞n=1

in
(
A1, ∥·∥Lip(X1,K1,d

α1
1 )

)
which converges uniformly to the function 0X1.

Proof. Let T = uCφ is compact. Suppose that {fn}∞n=1 is a bounded se-

quence in
(
A1, ∥·∥Lip(X1,K1,d

α1
1 )

)
which converges uniformly to the func-

tion 0X1 . Since T = uCφ is a weighted composition operator from A1

to A2, we deduce that u ∈ A2 and for each f ∈ A1 we have

|Tf(y)| = |u(y)f(φ(y))| = |u(y)| |f(φ(y))| ≤ ∥u∥X2
∥f∥X1

,

for all y ∈ X2. Therefore,

∥Tf∥X2
≤ ∥u∥X2

∥f∥X1
,

for all f ∈ A1. This implies that

(4.1) ∥Tfn∥X2
≤ ∥u∥X2

∥fn∥X1

for all n ∈ N. Since u is a complex-valued bounded function on X2,
{fn}∞n=1 converges uniformly to the function 0X1 and (4.1) holds for all
n ∈ N. We deduce that {Tfn}∞n=1 converges uniformly to the function

0X2 . Since
(
A1, ∥ · ∥Lip(X1,K1,d

α1
1 )

)
and

(
A2, ∥ · ∥Lip(X2,K2,d

α2
2 )

)
are com-

plex Banach function algebras on X1 and X2, respectively, we deduce
that

lim
n→∞

∥Tfn∥Lip(X2,K2,d
α2
2 ) = 0,

by Theorem 4.1. Hence, the proof is complete. □

Theorem 4.3. Let u be a complex-valued function on X2, φ : X2 −→ X1

be a mapping and let T = uCφ be a weighted composition operator from
A1 to A2. If T is compact, then

limu(x)
dα1
1 (φ(x), φ(y))

dα2
2 (x, y)

= 0,

when x, y ∈ K2 and d1(φ(x), φ(y)) tends to 0.

Proof. Let T be compact but limu(x)
d
α1
1 (φ(x),φ(y))

d
α2
2 (x,y)

̸= 0 when x, y ∈
K2 and d1(φ(x), φ(y)) tends to 0. Then there exist ε > 0 and two
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sequences {xn}∞n=1 and {yn}∞n=1 in K2 with xn ̸= yn for all n ∈ N and
limn→∞ d1 (φ(xn), φ(yn)) = 0 but

(4.2) |u(xn)|
dα1
1 (φ(xn), φ(yn))

dα2
2 (xn, yn)

≥ ε

for all n ∈ N. Let n ∈ N. Define the function hn : X1 −→ C by

hn (t) =

{
dα1
1 (t, φ(yn)), d1(t, φ(yn)) ≤ d1(φ(xn), φ(yn)),

dα1
1 (φ(xn), φ(yn)), d1(t, φ(yn)) ≥ d1(φ(xn), φ(yn)).

It is easy to see that hn ∈ Lip(X1, d
α1
1 ) and p(X1,d

α1
1 )(hn) ≤ 1. Moreover,

we can easily show that

∥hn∥X1 ≤ dα1
1 (φ(xn), φ(yn)) ≤ (diamd1(X1))

α1 .

Therefore, {hn}∞n=1 is a bounded sequence in
(
A1, ∥ · ∥Lip(X1,K1,d

α1
1 )

)
and {hn}∞n=1 converges uniformly on X1 to the function 0X1 . Since T is
compact, by Theorem 4.2 we deduce that

(4.3) lim
n→∞

∥Tf∥Lip(X2,K2,d
α2
2 ) = 0.

By (4.3), there exists N ∈ N such that

(4.4) ∥TfN∥X2
+ p(K2,d

α2
2 )(ThN ) <

ε

2
.

On the other hand,

|u(xN )| d
α1
1 (φ(xN ), φ(yN ))

dα2
2 (xN , yN )

=
|u(xN )hN (φ(xN ))|

dα2
2 (xN , yN )

=
|u(xN )hN (φ(xN ))− u(yN )hN (φ(yN ))|

dα2
2 (xN , yN )

=
|ThN (xN )− ThN (yN )|

dα2
2 (xN , yN )

≤ p(K2,d
α2
2 ) (ThN ) .(4.5)

From (4.4) and (4.5), we get

|u(xN )| d
α1
1 (φ(xN ), φ(yN ))

dα2
2 (xN , yN )

<
ε

2
,

which contradicts to (4.2) for n = N . Hence, the proof is complete. □
Theorem 4.4. Let u be a complex-valued function on X2, K2∩coz(u) ̸=
∅, let φ : X2 −→ X1 be a mapping such that φ|K2 is a uniformly contin-
uous from (K2, d

α2
2 ) to (X1, d

α1
1 ) and let T = uCφ be a weighted compo-

sition operator from A1 to A2. If T is compact, then φ is a supercon-
tractive mapping from (K, dα2

2 ) to (X1, d
α1
1 ) for all nonempty compact

subset K of K2 ∩ coz(u) in (X2, d
α2
2 ).



WEIGHTED COMPOSITION OPERATORS BETWEEN EXTENDED · · · 53

Proof. Let T be compact. By Theorem 4.3,

(4.6) limu(x)
dα1
1 (φ(x), φ(y))

dα2
2 (x, y)

= 0,

when x, y ∈ K2 and d1(φ(x), φ(y)) tends to 0. Let K be a nonempty
compact subset of K2 ∩ coz(u). Let ε > 0 be given. Take

(4.7) C = inf {|u(y)| : y ∈ K} .
Then C > 0. By (4.6), there exists δ1 > 0 such that

(4.8) |u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

< Cε,

for all x, y ∈ K2 with 0 < d1(φ(x), φ(y)) < δ1. Since φ|K2 is a uniformly
continuous from (K2, d

α2
2 ) to (X1, d

α1
1 ), there exists δ > 0 such that

(4.9) dα1
1 (φ(x), φ(y)) < δα1

1 ,

for all x, y ∈ K2 with dα2
2 (x, y) < δ. Assume that x, y ∈ K with 0 <

dα2
2 (x, y) < δ. Then, by (4.9), d1(φ(x), φ(y)) < δ1 since K ⊆ K2. If

φ(x) = φ(y), then
dα1
1 (φ(x), φ(y))

dα2
2 (x, y)

< ε.

If φ(x) ̸= φ(y), then 0 < d1(φ(x), φ(y)) < δ1 and so

dα1
1 (φ(x), φ(y))

dα2
2 (x, y)

≤ 1

C
|u(x)| d

α1
1 (φ(x), φ(y))

dα2
2 (x, y)

<
1

C
Cε

= ε,

by (4.7) and (4.8). Hence, the proof is complete. □
The following example shows that the converse of Theorem 4.4 does

not hold in general.

Example 4.5. Let X1 = X2 =
{

1
n : n ∈ Z \ {0}

}
∪{0} and d1 and d2 be

the Euclidean metric on X1 and X2, K1 =
{

(−1)n+1

|n| : n ∈ Z \ {0}
}
∪{0},

K2 =
{

1
n : n ∈ N

}
∪{0} and α1 = α2 = 1. Clearly, (Xj , dj) is a compact

metric space and Kj is a compact set in (Xj , dj) for j ∈ {1, 2}. Define
the function u : X2 −→ C by

u(x) = x, (x ∈ X2) .

Then u ∈ A2, coz(u) =
{

1
n : n ∈ Z \ {0}

}
andK2∩coz(u) =

{
1
n : n ∈ N

}
.

Define the function φ : X2 −→ X1 by

φ(0) = 0, φ(
1

n
) =

(−1)n+1

|n|
, (n ∈ Z \ {0}) .
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Clearly, φ(K2) is a subset of K1. Since
∣∣φ( 1n)− φ(0)

∣∣ = ∣∣ 1
n

∣∣ = ∣∣ 1
n − 0

∣∣
for all n ∈ Z \ {0}, we deduce that φ is continuous at 0. On the other
hand, 0 is the only limit point of X2 in (X2, d

α2
2 ). This implies that φ is

continuous at 1
n for all n ∈ Z\{0}. Therefore, φ is a continuous mapping

from (X2, d
α2
2 ) to (X1, d

α1
1 ). The compactness of (X2, d

α2
2 ) implies that

φ is uniformly continuous from (K2, d
α2
2 ) to (X1, d

α1
1 ).

We now show that

(4.10) |u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

≤ 3,

for all x, y ∈ K2 with x ̸= y. To this aim, pick x, y ∈ K2 with x ̸= y.
Let us distinguish the following cases.
Case 1. x = 0 and y ∈ K2 \ {0}. Then

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

= 0

< 3.

Case 2. x = 1
n with n ∈ N and y = 0. Then

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

=

∣∣∣∣ 1n
∣∣∣∣
∣∣φ( 1n)− φ(0)

∣∣∣∣ 1
n − 0

∣∣
=

∣∣∣∣(−1)n+1

n
− 0

∣∣∣∣
=

1

n
< 3.

Case 3. x = 1
2j and y = 1

2k , where j, k ∈ N with j ̸= k. Then

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

=
1

2j

∣∣∣− 1
2j +

1
2k

∣∣∣∣∣∣ 12j − 1
2k

∣∣∣
=

1

2j

< 3.

Case 4. x = 1
2j−1 and y = 1

2k−1 , where j, k ∈ N with j ̸= k. Then

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

=
1

2j − 1

∣∣∣ 1
2j−1 − 1

2k−1

∣∣∣∣∣∣ 1
2j−1 − 1

2k−1

∣∣∣
=

1

2j − 1
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< 3.

Case 5. x = 1
2j and y = 1

2k−1 , where j, k ∈ N with 2j < 2k − 1. Then

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

=
2k − 1 + 2j

2j(2k − 1− 2j)

=
1

2j
+

2

2k − 1− 2j

< 3.

Case 6. x = 1
2j and y = 1

2k−1 , where j, k ∈ N with 2j > 2k − 1. Then

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

=
2k − 1 + 2j

2j(2j − 2k + 1)

<
4j

2j(2j − 2k + 1)

=
2

2j − 2k + 1

< 3.

Case 7. x = 1
2j−1 and y = 1

2k , where j, k ∈ N with 2j − 1 < 2k. Then

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

=
2k + 2j − 1

(2j − 1)(2k − 2j + 1)

=
2k − 2j + 1 + 2(2j − 1)

(2j − 1)(2k − 2j + 1)

=
1

2j − 1
+

2

2k − 2j + 1

< 3.

Case 8. x = 1
2j−1 and y = 1

2k , where j, k ∈ N with 2j − 1 > 2k. Then

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

=
2k + 2j − 1

(2j − 1)(2j − 1− 2k)

≤ 2(2j − 1)

(2j − 1)(2j − 1− 2k)

=
2

2j − 1− 2k

< 3.

Therefore, (4.10) holds for all x, y ∈ K2 with x ̸= y. This implies that

sup

{
|u(x)| d

α1
1 (φ(x), φ(y))

dα2
2 (x, y)

: x, y ∈ K2, x ̸= y

}
≤ 3.
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Hence, T = uCφ is a weighted composition operator from A1 to A2 by
Theorem 2.7.

It is clear that, K2∩coz(u) =
{

1
n : n ∈ N

}
. Since the relative topology

on K2 ∩ coz(u) is the discrete topology on K2 ∩ coz(u), the compact
subsets of K2 ∩ coz(u) are finite. Therefore, φ is a supercontractive
mapping from (K, dα2

2 ) to (X1, d
α1
1 ) for all nonempty compact subset K

of K2 ∩ coz(u).
We now show that T = uCφ is not a compact operator from A1 to

A2. Let n ∈ N. Define the function fn : X1 −→ C by

fn (x) =


− 1

n , x ≤ − 1
n ,

x, − 1
n ≤ x ≤ 1

n ,
1
n , x ≥ 1

n .

Clearly, fn is a complex-valued continuous function on (X1, d
α1
1 ) and

(4.11) ∥fn∥X1
≤ 1

n
.

We claim that

(4.12) p(K1,d
α1
1 )(fn) ≤ 1.

To this aim, pick x, y ∈ K1 with x ̸= y. Let us distinguish the following
cases.
Case 1. x = 0 and y = (−1)j+1

|j| , where j ∈ Z and |j| ≥ n. Then

|fn(x)− fn(y)|
dα1
1 (x, y)

=
|0− y|
|0− y|

≤ 1.

Case 2. x = 0 and y = (−1)j+1

|j| , where j ∈ Z and |j| ≤ n. Then

|fn(x)− fn(y)|
dα1
1 (x, y)

=
1
n
1
|j|

≤ 1.

Case 3. x = (−1)j+1

|j| and y = 0, where j ∈ Z and |j| ≥ n. Then

|fn(x)− fn(y)|
dα1
1 (x, y)

=
|x− 0|
|x− 0|

≤ 1.

Case 4. x = (−1)j+1

|j| and y = 0, where j ∈ Z and |j| ≤ n. Then

|fn(x)− fn(y)|
dα1
1 (x, y)

=
1
n
1
|j|
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≤ 1.

Hence, our claim is justified.
From (4.11) and (4.12), we get

∥fn∥Lip(X1,K1,d
α1
1 ) ≤ 2.

Therefore, {fn}∞n=1 is a bounded sequence in
(
A1, ∥ · ∥Lip(X1,K1,d

α1
1 )

)
,

which converges uniformly to the function 0X1 . On the other hand, for
each n ∈ N we have

p(K2,d
α2
2 )(Tfn) ≥

∣∣∣Tfn( 1n)− Tfn(
1

n+1)
∣∣∣

dα2
2 ( 1n ,

1
n+1)

=

∣∣∣u( 1n)fn(φ( 1n))− u( 1
n+1)fn(φ(

1
n+1))

∣∣∣∣∣∣ 1n − 1
n+1

∣∣∣
= n(n+ 1)

∣∣∣∣ 1nfn((−1)n+1

n
)− 1

n+ 1
fn(

(−1)n+2

n+ 1
)

∣∣∣∣
= n(n+ 1)

∣∣∣∣(−1)n+1

n2
− (−1)n+2

(n+ 1)2

∣∣∣∣
= n(n+ 1)

∣∣∣∣ 1n2
+

1

(n+ 1)2

∣∣∣∣
= n(n+ 1)

(n+ 1)2 + n2

n2(n+ 1)2

=
(n+ 1)2 + n2

n(n+ 1)

>
2n2 + 2n

n(n+ 1)

= 2.

Therefore, limn→∞ ∥Tfn∥Lip(X2,K2,d
α2
2 ) ̸= 0. Hence, T is not compact by

Theorem 4.2.

We now give some sufficient conditions for the compactness of weighted
composition operators from A1 to A2.

Theorem 4.6. Let u be a complex-valued function on X2, φ : X2 −→ X1

be a map with φ(X2) ⊆ K1, K2 ⊆ X2 \ coz(u) and let T = uCφ be a
weighted composition operator from A1 to A2. Then T is compact.

Proof. To prove the compactness of T , let {fn}∞n=1 be a sequence in A1

with ∥fn∥Lip(X1,K1,d
α1
1 ) ≤ 1. Then ∥fn∥X1

≤ 1 and p(K1,d
α1
1 )(fn) ≤ 1

for all n ∈ N. Thus, {fn|K1}
∞
n=1 is a uniformly bounded sequence
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of complex-valued functions on K1 and an equicontinuous sequence of
complex-valued functions on compact metric space (K1, d

α1
1 ). By Arzela-

Ascoli theorem, there exists a subsequence
{
fnj

}∞
j=1

of {fn}∞n=1 such

that
{
fnj |K1

}∞
j=1

converges uniformly on K1. Since T is a weighted com-

position operator from A1 to A2, we deduce that u ∈ A2 by Theorem 2.5.

We claim that
{
Tfnj

}∞
j=1

is a Cauchy sequence in
(
A2, ∥·∥Lip(X2,K2,d

α2
2 )

)
.

Let ε > 0 be given. Since φ(X2) ⊆ K1 and
{
fnj |K1

}∞
j=1

converges uni-

formly on K1, we deduce that
{
fnjoφ

}∞
j=1

converges uniformly on X2.

This implies that
{
u.(fnjoφ)

}∞
j=1

converges uniformly on X2, since u is a

complex-valued bounded function on X2. Therefore, there exists N ∈ N
such that

(4.13)
∣∣u(x)fnj (φ(x))− u(x)fnk

(φ(x))
∣∣ < ε

2
,

for all j, k ∈ N with j ≥ N and k ≥ N and for each x ∈ X2. Let j, k ∈ N
with j ≥ N and k ≥ N . Then

(4.14)
∥∥Tfnj − Tfnk

∥∥
X2

≤ ε

2
.

Since K2 ⊆ X2 \ coz(u) for each x, y ∈ K2 with x ̸= y we have

|(Tfnj − Tfnk
)(x)− (Tfnj − Tfnk

)(y)|
dα2
2 (x, y)

= 0.

This implies that

(4.15) p(K2,d
α2
2 )(Tfnj − Tfnk

) = 0.

From (4.14) and (4.15), we get∥∥Tfnj − Tfnk

∥∥
Lip(X2,K2,d

α2
2 )

< ε.

Hence, our claim is justified. Since
(
A2, ∥ · ∥Lip(X2,K2,d

α2
2 )

)
is a Banach

space, we deduce that there exists g ∈ A2 such that
{
Tfnj

}∞
j=1

converges

to g in
(
A2, ∥ · ∥Lip(X2,K2,d

α2
2 )

)
. Therefore, T is compact and so the proof

is complete. □

Example 4.7. Let X1 = [−1, 1], d1 be the Euclidean metric on X1,
K1 = [0, 1], α1 = 1, X2 = [0, 2], K2 = [0, 1], d2 be the Euclidean metric
on X2 and α2 = 1. Define the function u : X2 −→ C by

u (x) =

{
0, 0 ≤ x < 1,
1− x, 1 ≤ x ≤ 2.
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Clearly, u ∈ Lip(X2,K2, d
α2
2 ) and K2 ∩ coz(u) = ∅. Define the function

φ : X2 −→ X1 by

φ(x) =
x

2
, (x ∈ X2).

It is obvious that φ is a Lipschitz mapping from (X2, d
α2
2 ) to (X1, d

α1
1 )

and φ(X2) = [0, 1] ⊆ K1. Therefore, T = uCφ is a compact weighted
composition operator from A1 to A2 by Theorem 2.2 and Theorem 4.6.

Theorem 4.8. Let u be a complex-valued function on X2, K2∩coz(u) ̸=
∅, φ : X2 −→ X1 be a map with φ(X2) ⊆ K1, φ|K2∩coz(u) be a Lipschitz
mapping from (K2 ∩ coz(u), dα2

2 ) to (X1, d
α1
1 ) and let T = uCφ be a

weighted composition operator from A1 to A2. Then T is compact if

limu(x)
d
α1
1 (φ(x),φ(y))

d
α2
2 (x,y)

= 0 when x, y ∈ K2 and d1(φ(x), φ(y)) tends to 0.

Proof. Let limu(x)
d
α1
1 (φ(x),φ(y))

d
α2
2 (x,y)

= 0 when x, y ∈ K2 and d1(φ(x), φ(y))

tends to 0. Since φ|K2∩coz(u) is a Lipschitz mapping from (K2∩coz(u), dα2
2 )

to (X1, d
α1
1 ), there exists M > 0 such that

(4.16)
dα1
1 (φ(x), φ(y))

dα2
2 (x, y)

≤ M,

for all x, y ∈ K2 ∩ coz(u) with x ̸= y.
To prove the compactness of T , let {fn}∞n=1 be a sequence in A1 with

∥fn∥Lip(X1,K1,d
α1
1 ) ≤ 1 . Then ∥fn∥X1

≤ 1 and p(K1,d
α1
1 )(fn) ≤ 1 for all

n ∈ N. Thus, {fn|K1}
∞
n=1 is a uniformly bounded sequence of complex-

valued functions on K1 and an equicontinuous sequence of complex-
valued functions on compact metric space (K1, d

α1
1 ). By Arzela-Ascoli

theorem, there exists a subsequence
{
fnj

}∞
j=1

of {fn}∞n=1 such that{
fnj |K1

}∞
j=1

converges uniformly on K1. Since T is a weighted composi-

tion operator from A1 to A2, we deduce that u ∈ A2 by Theorem 2.5. We

claim that
{
Tfnj

}∞
j=1

is a Cauchy sequence in
(
A2, ∥ · ∥Lip(X2,K2,d

α2
2 )

)
.

Let ε > 0 be given. By hypothesis, there exists δ > 0 such that

(4.17) |u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

<
ε

2 ∥u∥Lip(X2,K2,d
α2
2 ) + 4

,

where x, y ∈ K2 and 0 < d1(φ(x), φ(y)) ≤ δ. Since φ(X2) ⊆ K1 and{
fnj |K1

}∞
j=1

converges uniformly on K1, we deduce that
{
fnjoφ

}∞
j=1

converges uniformly on X2. Thus, there exists N1 ∈ N such that

(4.18)
∣∣fnj (φ(x))− fnk

(φ(x))
∣∣ < ε

2 ∥u∥Lip(X2,K2,d
α2
2 ) + 4

,

for all j, k ∈ N with j ≥ N1 and k ≥ N1 and each x ∈ X2. Since{
fnjoφ

}∞
j=1

converges uniformly onX2 and u is a complex-valued bounded
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function on X2, we deduce that
{
u.(fnjoφ)

}∞
j=1

converges uniformly on

X2. It follows that there exists N2 ∈ N such that

(4.19)
∣∣u(x)fnj (φ(x))− u(x)fnk

(φ(x))
∣∣ < min

{
ε

3
,
δα1ε

4M

}
,

for all j, k ∈ N with j ≥ N2 and k ≥ N2 and for each x ∈ X2. Take
N = max{N1, N2} and let j, k ∈ N with j ≥ N and k ≥ N . Since (4.19)
holds for all x ∈ X2, we get

(4.20)
∥∥Tfnj − Tfnk

∥∥
X2

≤ ε

3
.

We now show that

(4.21)

∣∣(Tfnj − Tfnk
)(x)− (Tfnj − Tfnk

)(y)
∣∣

dα2
2 (x, y)

≤ ε

2
,

for all x, y ∈ K2 with x ̸= y. To this aim, take hj,k = Tfnj − Tfnk
and

pick x, y ∈ K2 with x ̸= y. Let us distinguish the following cases.
Case 1. φ(x) = φ(y). Then, by (4.18) and u ∈ A2 we get

|(hj,k)(x)− (hj,k)(y)|
dα2
2 (x, y)

=
|u(x)− u(y)|
dα2
2 (x, y)

∣∣fnj (φ(x))− fnk
(φ(x))

∣∣
≤ p(K2,d

α2
2 )(u)

ε

2 ∥u∥Lip(X2,K2,d
α2
2 ) + 4

≤ ∥u∥Lip(X2,K2,d
α2
2 )

ε

2 ∥u∥Lip(X2,K2,d
α2
2 ) + 4

≤ ε

2
.

Case 2. 0 < d1(φ(x), φ(y)) ≤ δ. Then by (4.16), (4.17), (4.19) and
(4.18) we get

|(hj,k)(x)− (hj,k)(y)|
dα2
2 (x, y)

≤ |u(x)|
fnj (φ(x))− fnj (φ(y))

dα2
2 (x, y)

+ |u(x)| fnk
(φ(x))− fnk

(φ(y))

dα2
2 (x, y)

+
|u(x)− u(y)|
dα2
2 (x, y)

∣∣fnj (φ(y))− fnk
(φ(y))

∣∣
= |u(x)| d

α1
1 (φ(x), φ(y))

dα2
2 (x, y)

fnj (φ(x))− fnj (φ(y))

dα1
1 (φ(x), φ(y))

+ |u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

fnk
(φ(x))− fnk

(φ(y))

dα1
1 (φ(x), φ(y))

+
|u(x)− u(y)|
dα2
2 (x, y)

∣∣fnj (φ(y))− fnk
(φ(y))

∣∣
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≤ ε

2 ∥u∥Lip(X2,K2,d
α2
2 ) + 4

p(K1,d
α1
1 )(fnj )

+
ε

2 ∥u∥Lip(X2,K2,d
α2
2 ) + 4

p(K1,d
α1
1 )(fnk

)

+ ∥u∥Lip(X2,K2,d
α2
2 )

ε

2 ∥u∥Lip(X2,K2,d
α2
2 ) + 4

≤
∥u∥Lip(X2,K2,d

α2
2 ) + 2

2 ∥u∥Lip(X2,K2,d
α2
2 ) + 4

ε

=
ε

2
.

Case 3. x, y ∈ K2 ∩ coz(u) and d1(φ(x), φ(y)) ≥ δ. Since j ≥ N2 and
k ≥ N2 and x, y ∈ X2, by (4.19) we get

(4.22)
∣∣u(x)fnj (φ(x))− u(x)fnk

(φ(x))
∣∣ < δα1ε

4M
,

and

(4.23)
∣∣u(y)fnj (φ(y))− u(y)fnk

(φ(y))
∣∣ < δα1ε

4M
.

Now, from (4.16), (4.22) and (4.23) we obtain

|(hj,k)(x)− (hj,k)(y)|
dα2
2 (x, y)

=
dα1
1 (φ(x), φ(y))

dα2
2 (x, y)

|(hj,k)(x)− (hj,k)(y)|
dα1
1 (φ(x), φ(y))

≤ M
|(hj,k)(x)− (hj,k)(y)|

dα1
1 (φ(x), φ(y))

≤ M

[∣∣u(x)fnj (φ(x))− u(x)fnk
(φ(x))

∣∣
dα1
1 (φ(x), φ(y))

+

∣∣u(y)fnj (φ(y))− u(y)fnk
(φ(y))

∣∣
dα1
1 (φ(x), φ(y))

]

≤ M

[∣∣u(x)fnj (φ(x))− u(x)fnk
(φ(x))

∣∣
δα1

+

∣∣u(y)fnj (φ(y))− u(y)fnk
(φ(y))

∣∣
δα1

]

≤ M

δα1

[
δα1ε

4M
+

δα1ε

4M

]
=

ε

2
.



62 R. BAGHERI AND D. ALIMOHAMMADI

Case 4. x, y ∈ K2 \ coz(u). Then

|(hj,k)(x)− (hj,k)(y)|
dα2
2 (x, y)

<
ε

2
.

Case 5. x ∈ K2 \ coz(u), y ∈ K2 and d1(φ(x), φ(y)) ≥ δ. Then

|(hj,k)(x)− (hj,k)(y)|
dα2
2 (x, y)

=
|u(y)|

dα2
2 (x, y)

|fnj (φ(y))− fnk
(φ(y))|

=
|u(x)− u(y)|
dα2
2 (x, y)

|fnj (φ(y))− fnk
(φ(y))|

≤ p(K2,d
α2
2 )(u)

ε

2∥u∥Lip(X2,K2,d
α2
2 ) + 4

≤ ε

2
.

Case 6. x ∈ K2, y ∈ K2 \ coz(u) and d1(φ(x), φ(y)) ≥ δ. Then

|(hj,k)(x)− (hj,k)(y)|
dα2
2 (x, y)

=
|u(x)|

dα2
2 (x, y)

|fnj (φ(x))− fnk
(φ(x))|

=
|u(x)− u(y)|
dα2
2 (x, y)

|fnj (φ(x))− fnk
(φ(x))|

≤ p(K2,d
α2
2 )(u)

ε

2∥u∥Lip(X2,K2,d
α2
2 ) + 4

≤ ε

2
.

Summarising, we have proved that (4.23) holds for all x, y ∈ K2 with
x ̸= y. This implies that

(4.24) p(K2,d
α2
2 )

(
Tfnj − Tfnk

)
≤ ε

2
.

By (4.20) and (4.24), we deduce that∥∥Tfnj − Tfnk

∥∥
Lip(X2,K2,d

α2
2 )

< ε.

Hence, our claim is justified. Since (A2, ∥·∥Lip(X2,K2,d
α2
2 )) is a Banach

space, we deduce that there exists g ∈ A2 such that
{
Tfnj

}∞
j=1

converges

to g in (A2, ∥·∥Lip(X2,K2,d
α2
2 )). Therefore, T is compact and so the proof

is complete. □

Corollary 4.9. Let (X, d) be compact metric space and let K be a
nonempty clopen proper subset of X in (X, d). Suppose that 0 < β <
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α ≤ 1 and u ∈ Lip(X,K, dβ). Let y0 ∈ K and let the map φy0 : X −→ X
defined by

φy0 (y) =

{
y, y ∈ K,
y0, y ∈ X \K.

Then Ty0 = uCφy0
: Lip(X,K, dα) −→ Lip(X,K, dβ) is a compact

weighted composition operator.

Proof. Clearly, φy0 is a continuous mapping from (X, dβ) to (X, dα).
Since

dα(φy0(x), φy0(y))

dβ(x, y)
=

dα(x, y)

dβ(x, y)

= dα−β(x, y)

≤ (diamd(X))α−β ,

for all x, y ∈ K with x ̸= y, we deduce that φy0 is a Lipschitz map-

ping from (X, dβ) to (X, dα). According to φy0(K) ⊆ K and u ∈
Lip(X,K, dβ), we conclude that Ty0 = uCφy0

is a weighted composi-

tion operator from Lip(X,K, dα) to Lip(X,K, dβ) by Theorem 2.2.
Since α− β > 0 and

dα(φy0(x), φy0(y))

dβ(x, y)
= dα−β(x, y) = (d(φy0(x), φy0(y)))

α−β,

for all x, y ∈ K with x ̸= y, we deduce that lim
dα(φy0(x),φy0 (y))

dβ(x,y)
= 0 when

x, y ∈ K and d(φy0(x), φy0(y)) tends to 0. Therefore, the boundedness
of u on X implies that

limu(x)
dα(φy0(x), φy0(y))

dβ(x, y)
= 0,

when x, y ∈ K and d(φy0(x), φy0(y)) tends to 0. Hence, Ty0 = uCφy0
is

compact by Theorem 4.8. □

Theorem 4.10. Let u be a complex-valued function on X2, K2∩coz(u) ̸=
∅, φ : X2 −→ X1 be a map with φ(X2) ⊆ K1 and let φ|K be a supercon-
tractive mapping from (K, dα2

2 ) to (X1, d
α1
1 ) for all nonempty compact

subset K of K2 ∩ coz(u). Suppose that T = uCφ is a nonzero weighted
composition operator from A1 to A2. If φ|K2∩coz(u) is a Lipschitz map-
ping from (K2 ∩ coz(u), dα2

2 ) to (X1, d
α1
1 ), then T is compact.

Proof. Let φ|K2∩coz(u) be a Lipschitz mapping from (K2 ∩ coz(u), dα2
2 )

to (X1, d
α1
1 ) and φ|K is a supercontractive mapping from (K, dα2

2 ) to
(X1, d

α1
1 ) for all nonempty compact subset K of K2 ∩ coz(u). To prove
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the compactness of T , by Theorem 4.8, it is sufficient to show that

(4.25) limu(x)
dα1
1 (φ(x), φ(y))

dα2
2 (x, y)

= 0,

when x, y ∈ K2 and d1(φ(x), φ(y)) tends to 0. Let ε > 0 be given. Since
φ|K2∩coz(u) is a Lipschitz mapping from (K2 ∩ coz(u), dα2

2 ) to (X1, d
α1
1 ),

there exists M > 0 such that

(4.26)
dα1
1 (φ(x), φ(y))

dα2
2 (x, y)

≤ M,

for all x, y ∈ K2 ∩ coz(u) with x ̸= y. Set

(4.27) K =

{
x ∈ K2 : |u(x)| ≥

ε

2 (M + 1)

}
.

Clearly, K is a compact subset of K2 ∩ coz(u). We first assume that
K = ∅. Then

(4.28) |u(x)| < ε

2 (M + 1)
,

for all x ∈ K2. Take δ =

(
ε

1+∥u∥
Lip(X2,K2,d

α2
2 )

) 1
α1

. Let x, y ∈ K2 with

0 < d1(φ(x), φ(y)) < δ. If x, y ∈ K2 ∩ coz(u), then by (4.26) and (2.17)
we get

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

≤ ε

2 (M + 1)
M

< ε.

If x ∈ K2 \ coz(u) and y ∈ K2, then

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

< ε.

If x ∈ K2 and y ∈ K2 \ coz(u), then

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

=
|u(x)− u(y)|
dα2
2 (x, y)

dα1
1 (φ(x), φ(y))

≤ p(K2,d
α2
2 )(u)δ

α1

≤ ∥u∥Lip(X2,K2,d
α2
2 )

ε

1 + ∥u∥Lip(X2,K2,d
α2
2 )

< ε.

We now assume that K ̸= ∅. Then φ is a supercontractive map-
ping from (K, dα2

2 ) to (X1, d
α1
1 ) and so there exists δ0 with 0 < δ0 <
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ε
1+∥u∥

Lip(X2,K2,d
α2
2 )

such that

(4.29)
dα1
1 (φ(x), φ(y))

dα2
2 (x, y)

<
ε

2
(
1 + ∥u∥Lip(X2,K2,d

α2
2 )

) ,
for all x ∈ K with 0 < dα2

2 (x, y) < δ0. Take

δ = min


 ε

2
(
1 + ∥u∥Lip(X2,K2,d

α2
2 )

)
 1

α1

, δ
2
α1
0

 .

We prove that

(4.30) |u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

< ε,

for all x, y ∈ K2 with 0 < d1(φ(x), φ(y)) < δ. To this aim, pick x, y ∈ K2

with 0 < d1(φ(x), φ(y)) < δ. Let us distinguish the following cases.
Case 1. x, y ∈ K with 0 < dα2

2 (x, y) < δ0. Then by (4.29) we get

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

≤ ∥u∥Lip(X2,K2,d
α2
2 )

ε

2
(
1 + ∥u∥Lip(X2,K2,d

α2
2 )

)
< ε.

Case 2. x, y ∈ K with dα2
2 (x, y) ≥ δ0. Then

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

≤ ∥u∥Lip(X2,K2,d
α2
2 )

δα1

δ0

≤ ∥u∥Lip(X2,K2,d
α2
2 ) δ0

≤ ∥u∥Lip(X2,K2,d
α2
2 )

ε

1 + ∥u∥Lip(X2,K2,d
α2
2 )

< ε.

Case 3. x ∈ K2 \K and y ∈ K2. Then

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

≤ ε

2 (M + 1)
M

< ε.

Case 4. x ∈ K and y ∈ K2 \ (K ∪ coz(u)). Then

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

=
|u(x)− u(y)|
dα2
2 (x, y)

dα1
1 (φ(x), φ(y))

≤ p(K2,d
α2
2 )(u)δ

α1

≤ ∥u∥Lip(X2,K2,d
α2
2 )

ε

2
(
1 + ∥u∥Lip(X2,K2,d

α2
2 )

)
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< ε.

Case 5. x ∈ K and y ∈ (K2 ∩ coz(u)) \K. Then

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

≤ |u(x)− u(y)|
dα2
2 (x, y)

dα1
1 (φ(x), φ(y))

+ |u(y)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

≤ p(K2,d
α2
2 )(u)δ

α1 +
ε

2 (M + 1)
M

< ∥u∥Lip(X2,K2,d
α2
2 )

ε

2
(
1 + ∥u∥Lip(X2,K2,d

α2
2 )

) +
ε

2

< ε.

Case 6. x ∈ K and y ∈ K \ coz(u). Then

|u(x)| d
α1
1 (φ(x), φ(y))

dα2
2 (x, y)

=
|u(x)− u(y)|
dα2
2 (x, y)

dα1
1 (φ(x), φ(y))

≤ p(K2,d
α2
2 )(u)δ

α1

≤ ∥u∥Lip(X2,K2,d
α2
2 )

ε

2
(
1 + ∥u∥Lip(X2,K2,d

α2
2 )

)
< ε.

Summarizing, we have shown that (4.30) holds for all x, y ∈ K2 with 0 <
d1(φ(x), φ(y)) < δ. Hence, (4.25) holds and the proof is complete. □

The following example shows that the converse of Theorem 4.10 is
not valid.

Example 4.11. Let Xj = [−2, 2], dj be the Euclidean metric on Xj ,
Kj = [−1, 1] and αj = 1 for j ∈ {1, 2}. Define the function u : X2 −→ C
by

u(x) = x, (x ∈ X2).

Then u ∈ A2, K2∩coz(u) = [−1, 1]\{0}. Define the map φ : X2 −→ X1

by

φ(x) = sgn(x), (x ∈ X2).

It is easy to see that for each nonempty compact subset K of K2 ∩
coz(u), there exists a γ ∈ (0, 1) such that K ⊂ [−1,−γ] ∪ [γ, 1]. On
the other hand, it is clear that φ is a supercontractive mapping from
[−1,−γ] ∪ [γ, 1] for all γ ∈ (0, 1). Therefore, φ|K is a supercontractive
mapping from (K, dα2

2 ) to (X1, d
α1
1 ) for all nonempty compact subset of

K2 ∩ coz(u).
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Since
dα1
1 (φ( 1n), φ(−

1
n))

dα2
2 ( 1n ,−

1
n)

=

∣∣φ( 1n)− φ(− 1
n)
∣∣∣∣ 1

n − −1
n

∣∣ = n,

for all n ∈ N, we deduce that φ|K2∩coz(u) is not a Lipschitz mapping
from (K2 ∩ coz(u), dα2

2 ) to (X1, d
α1
1 ).

Let f ∈ A1. We show that

(4.31) p(X2,d
α2
2 )(Tf) ≤ 3 ∥f∥K1

.

To prove (4.31), it is sufficient to show that

(4.32)
|Tf(x)− Tf(y)|

dα2
2 (x, y)

≤ 3 ∥f∥K1
,

for all x, y ∈ X2 with x ̸= y. To this aim, pick x, y ∈ X2 with x ̸= y.
Let us distinguish the following cases.
Case 1. x = 0 and y ̸= 0. Then

|Tf(x)− Tf(y)|
dα2
2 (x, y)

=
|y| |f(φ(y))|

|y|
≤ ∥f∥K1

.

Case 2. x ̸= 0 and y = 0. Then

|Tf(x)− Tf(y)|
dα2
2 (x, y)

=
|x| |f(φ(x))|

|x|
≤ ∥f∥K1

.

Case 3. x > 0 and y > 0. Then

|Tf(x)− Tf(y)|
dα2
2 (x, y)

=
|x− y| |f(1)|

|x− y|
≤ ∥f∥K1

.

Case 4. x < 0 and y < 0. Then

|Tf(x)− Tf(y)|
dα2
2 (x, y)

=
|x− y| |f(−1)|

|x− y|
≤ ∥f∥K1

.

Case 5. x > 0 and y < 0. Then

|Tf(x)− Tf(y)|
dα2
2 (x, y)

=
|xf(1)− yf(−1)|

|x− y|

=
|x[f(1)− f(−1)] + (x− y)f(−1)|

|x− y|

≤ x

x− y
|f(1)− f(−1)|+ |f(−1)|

≤ |f(1)− f(−1)|+ |f(−1)|
≤ 3 ∥f∥K1

.
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Case 6. x < 0 and y > 0. Then

|Tf(x)− Tf(y)|
dα2
2 (x, y)

=
|xf(−1)− yf(1)|

|x− y|

≤ |f(1)|+ y

y − x
|f(1)− f(−1)|

≤ |f(1)|+ |f(1)− f(−1)|
≤ 3 ∥f∥K1

.

Thus, (4.32) holds for all x, y ∈ X2 with x ̸= y and so (4.31) holds.
Therefore, Tf ∈ A2. Since f ∈ A1 was chosen arbitrary, we deduce that
T = uCφ is a weighted composition operator from A1 to A2.

We now show that T is compact. Let {fn}∞n=1 be a sequence in
A1 with ∥fn∥Lip(X1,K1,d

α1
1 ) ≤ 1 for all n ∈ N. Then the sequence

{fn|K1}
∞
n=1 is uniformly bounded on K1 and p(X1,d

α1
1 )(fn)

≤ 1 for all

n ∈ N which implies that {fn|K1}
∞
n=1 is equicontinuous on the com-

pact metric space (K1, d
α1
1 ). By Arzela-Ascoli theorem, there exists a

subsequence
{
fnj

}∞
j=1

of {fn}∞n=1 such that
{
fnj |K1

}∞
j=1

converges uni-

formly on K1. We now claim that
{
Tfnj

}∞
j=1

is a Cauchy sequence in(
A2, ∥ · ∥Lip(X2,K2,d

α2
2 )

)
. Let ε > 0. Then there exists N1 ∈ N such that∥∥fnj − fnk

∥∥
K1

<
ε

6
,

for all j, k ∈ N with j ≥ N1 and k ≥ N1. Since
{
fnj

}∞
j=1

converges uni-

formly on K1, φ(X2) ⊆ K1 and u is a complex-valued bounded function
on X2, we deduce that

{
Tfnj

}∞
j=1

converges uniformly on X2. Thus,

there exists N2 such that∥∥Tfnj − Tfnk

∥∥
X2

<
ε

2
,

for all j, k ∈ N with j ≥ N2 and k ≥ N2. Take N = max {N1, N2} and
let j, k ∈ N with j ≥ N and k ≥ N . Then

(4.33)
∥∥fnj − fnk

∥∥
K1

<
ε

6
,

(4.34)
∥∥Tfnj − Tfnk

∥∥
X2

<
ε

2
.

By the argument above and applying (4.33), we deduce that

p(K2,d
α2
2 )

(
Tfnj − Tfnk

)
= p(K2,d

α2
2 )

(
T (fnj − fnk

)
)

≤ 3
∥∥fnj − fnk

∥∥
K1
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<
ε

2
.(4.35)

From (4.34) and (4.35), we get∥∥Tfnj − Tfnk

∥∥
Lip(X2,K2,d

α2
2 )

< ε.

Hence, our claim is justified. Since
(
A2, ∥ · ∥Lip(X2,K2,d

α2
2 )

)
is a Banach

space, we deduce that
{
Tfnj

}∞
j=1

converges in
(
A2, ∥ · ∥Lip(X2,K2,d

α2
2 )

)
.

Therefore, T is compact.

5. Conclusions

In this paper,we study weighted composition operators between ex-
tended Lipschitz algebras on compact metric spaces. In particular, we
show that every weighted composition operator between extended Lips-
chitz algebras is automatically continuous. We also give some necessary
conditions and some sufficient conditions for the injectivity, the surjec-
tivity and the compactness of these operators. Our results extend some
of the obtained results in [5] and [7].
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