Sahand Communications in Mathematical Analysis (SCMA) Vol. 17 No. 4 (2020), 61-69 http://scma.maragheh.ac.ir DOI: 10.22130/scma.2019.109347.625

Integral Operators on the Besov Spaces and Subclasses of Univalent Functions

Zahra Orouji^{1*} and Ali Ebadian²

ABSTRACT. In this note, we study the integral operators $I_g^{\gamma,\alpha}$ and $J_g^{\gamma,\alpha}$ of an analytic function g on convex and starlike functions of a complex order. Then, we investigate the same operators on H^{∞} and Besov spaces.

1. INTRODUCTION

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disk in the plane \mathbb{C} , and $H(\mathbb{D}) := \{g : \mathbb{D} \longrightarrow \mathbb{C} \mid g \text{ is analytic}\}$. Also, let A be the subclass of $H(\mathbb{D})$, which its elements are of the from

$$g(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$

Suppose that $S^*(\alpha)$ is the famous subclass of A, which is starlike of order α $(0 \leq \alpha < 1)$. Indeed, $g \in S^*(\alpha)$ is equivalent to $Re(zg'(z)/g(z)) > \alpha$ in \mathbb{D} . Similarly, we have $g \in K(\alpha)$ if and only if

$$\operatorname{Re}\left(1+\frac{zg''(z)}{g'(z)}\right) > \alpha, \quad (z \in \mathbb{D}),$$

where $K(\alpha)$ is the subclass of A contained in the convex functions of order α .

²⁰²⁰ Mathematics Subject Classification. 30C45, 30C80.

Key words and phrases. Integral operators, Besov spaces, Convex functions of complex order, Starlike functions of complex order, Schwarzian norm.

Received: 10 June 2019, Accepted: 22 October 2019.

^{*} Corresponding author.

As usual, we write $S^* = S^*(0)$ and K = K(0). For $0 \neq b \in \mathbb{C}$, the subclasses of A, S_b^* and K_b , are defined by

$$S_b^* = \left\{ g \in A : \operatorname{Re}\left\{ 1 + \frac{1}{b} \left(\frac{zg'(z)}{g(z)} - 1 \right) \right\} > 0, \quad (z \in \mathbb{D}) \right\},$$

and

$$K_b = \left\{ g \in A : \operatorname{Re}\left\{ 1 + \frac{1}{b} \left(\frac{zg''(z)}{g'(z)} \right) \right\} > 0, \quad (z \in \mathbb{D}) \right\}.$$

Then, we can see that for $0 \leq \alpha < 1$,

$$S_{1-\alpha}^* = S^*(\alpha), \qquad K_{1-\alpha} = K(\alpha).$$

We refer to [3, 11, 12] for some important results.

For some real number β and non-zero complex number b, we introduce a subclass of $H(\mathbb{D})$, $P(\beta, b)$, as follows:

$$P(\beta, b) := \left\{ g \in H(\mathbb{D}) : \operatorname{Re}\left\{ \frac{1}{b} \left(\frac{zg'(z)}{g(z)} \right) \right\} \ge \beta \text{ and } g(0) = 1 \right\}.$$

For example, $\frac{1}{1-z}$ and $\frac{1}{1+z}$ belong to $P(-\frac{1}{2}, 1)$. Let $g \in H(\mathbb{D})$ be locally univalent. Let

$$S_g(z) = \left(\frac{g''(z)}{g'(z)}\right)' - \frac{1}{2} \left(\frac{g''(z)}{g'(z)}\right)^2,$$

denote the Schwarzian derivative of g, and let

$$||S_g|| = \sup_{z \in \mathbb{D}} (1 - |z|^2)^2 |S_g(z)|,$$

which denotes its Schwarzian norm.

If $g \in K$ and $h(z) = 1 + \frac{zg''(z)}{g'(z)}$, then Reh(z) > 0 $(z \in \mathbb{D})$, so h is subordinate to $\lambda(z) = \frac{1+z}{1-z}$, where λ is the half-plan mapping. Therefore, $h(z) = \lambda(\varphi(z))$ for some Schwarz function φ , and we have

$$\frac{zg''(z)}{g'(z)} = \frac{1+\varphi(z)}{1-\varphi(z)} - 1$$
$$= \frac{2\varphi(z)}{1-\varphi(z)},$$

with the notation $\psi(z) = \frac{\varphi(z)}{z}$, where ψ is analytic and satisfies $|\psi(z)| \le 1$ in \mathbb{D} . Then it can be written as follows:

(1.1)
$$\frac{g''(z)}{g'(z)} = \frac{2\psi(z)}{1 - z\psi(z)}.$$

Hence, the Schwarzian derivative of g can be written in the following form:

$$S_g(z) = \left(\frac{g''(z)}{g'(z)}\right)' - \frac{1}{2} \left(\frac{g''(z)}{g'(z)}\right)^2 \\ = \frac{2\psi'(z)}{(1 - z\psi(z))^2}.$$

Then, we obtain

(1.2)
$$|S_g(z)| \le \frac{2}{(1-|z|^2)^2}.$$

By the inequality (1.2), the Schwarzian norm $||S_g||$ of the convex mapping is not greater than 2. If the convex mapping g is bounded, then $||S_g|| < 2$ (see [10]).

Finally, let $g \in H(\mathbb{D})$. We consider two integral operators on $H(\mathbb{D})$, as follows:

$$I_g^{\gamma,\alpha}(h)(z) = \int_0^z h'(w)g^{\gamma}(w)w^{\alpha-1}dw, \quad (z \in \mathbb{D}),$$

and

$$J_g^{\gamma,\alpha}(h)(z) = \int_0^z h(w)(g'(w))^{\gamma} w^{\alpha-1} dw, \quad (z \in \mathbb{D}),$$

where $\gamma, \alpha > 0$.

Integral operators play an important role in various fields (see [4, 8]). If $\gamma = \alpha = 1$, then $I_g^{1,1}(h) = I_g(h)$ and $J_g^{1,1}(h) = J_g(h)$, which are Alexander operators. These integral operators have been investigated by many authors [7, 9, 13, 14].

In this note, we study $I_g^{\gamma,\alpha}$ and $J_g^{\gamma,\alpha}$ operators on K, $K(\alpha)$ and S_b^* . Here, we obtain the necessary and sufficient conditions such that $I_g^{\gamma,\alpha}(\mathbb{D})$ and $J_g^{\gamma,\alpha}(\mathbb{D})$ are bounded, Furthermore, we obtain the sufficient conditions such that $|S_{I_d^{\gamma,\alpha}}| < 2$.

2. Integral Operators on $K(\alpha)$ and $S^*(\alpha)$

Now, we verify the integral operators, $I_g^{\gamma,\alpha}$ and $J_g^{\gamma,\alpha}$, on $K(\alpha)$ and $S^*(\alpha)$.

Lemma 2.1. (i) Let $\alpha > 0, \gamma > 0, \beta \ge 0$ and $0 \ne b \in \mathbb{C}$, where $(\alpha - 1)\operatorname{Reb} \ge 0$. If $g \in P(\beta, b)$, then $I_g^{\gamma, \alpha}$ is an operator on K_b . (ii) Let $\gamma > 0, 0 \le \alpha < 1$ and $\beta \in \mathbb{R}$, where $1 \le 2\alpha + \beta\gamma < 2$. If $g \in P(\beta, 1)$, then $I_g^{\gamma, \alpha}$ is an operator from $K(\alpha)$ to $K(2\alpha + \beta\gamma - 1)$.

Proof. (i) Let
$$h \in K_b$$
. Then, for $z \in \mathbb{D}$,
(2.1)
Re $\left\{1 + \frac{1}{b} \frac{z(I_g^{\gamma,\alpha}h)''(z)}{(I_g^{\gamma,\alpha}h)'(z)}\right\}$
 $= \operatorname{Re}\left\{1 + \frac{1}{b} \frac{z(z^{\alpha-1}h''(z)g^{\gamma}(z) + \gamma z^{\alpha-1}h'(z)g'(z)g^{\gamma-1}(z))}{z^{\alpha-1}h'(z)g^{\gamma}(z)}\right\}$
 $+ \operatorname{Re}\left\{\frac{1}{b} \frac{z(\alpha-1)z^{\alpha-2}h'(z)g^{\gamma}(z)}{z^{\alpha-1}h'(z)g^{\gamma}(z)}\right\}$
 $= (\alpha-1)\operatorname{Re}\left(\frac{1}{b}\right) + \operatorname{Re}\left\{1 + \frac{1}{b}\left(\frac{zh''(z)}{h'(z)}\right)\right\} + \gamma\operatorname{Re}\left\{\frac{1}{b}\left(\frac{zg'(z)}{g(z)}\right)\right\}.$
By this hypothesis and (2.1), we obtain

$$\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z(I_g^{\gamma},n)(z)}{(I_g^{\gamma,\alpha}h)'(z)}\right)\right\}>0.$$

Therefore, $I_g^{\gamma,\alpha} h \in K_b$ for all $h \in K_b$.

(ii) We can prove this part in a similar manner as the proof of part (i).

Lemma 2.2. Let $\alpha > 0$, $0 \neq b \in \mathbb{C}$ and $0 < \gamma < \alpha \operatorname{Re}(\frac{1}{b})$. If $g \in K_b$, then $J_g^{\gamma,\alpha}$ is an operator from S_b^* to K_b .

Proof. Let $h \in S_b^*$, then for $z \in \mathbb{D}$,

$$\begin{aligned} \operatorname{Re}\left\{1+\frac{1}{b}\frac{z(J_{g}^{\gamma,\alpha}h)'(z)}{(J_{g}^{\gamma,\alpha}h)'(z)}\right\} \\ &=\operatorname{Re}\left\{1+\frac{1}{b}\frac{z(z^{\alpha-1}h'(z)(g'(z))^{\gamma}+\gamma z^{\alpha-1}h(z)g''(z)(g'(z))^{\alpha-1})}{z^{\alpha-1}h(z)(g'(z))^{\gamma}}\right\} \\ &+\operatorname{Re}\left\{\frac{1}{b}\frac{z(\alpha-1)z^{\alpha-2}h(z)(g'(z))^{\gamma}}{z^{\alpha-1}h(z)(g'(z))^{\gamma}}\right\} \\ &=\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{zh'(z)}{h(z)}\right)+\frac{\gamma}{b}\left(\frac{zg''(z)}{g'(z)}\right)+\frac{\alpha-1}{b}\right\} \\ &=\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{zh'(z)}{h(z)}-1\right)\right\}+\gamma\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{zg''(z)}{g'(z)}\right)\right\}+\alpha\operatorname{Re}\left(\frac{1}{b}\right)-\gamma. \end{aligned}$$
By this hypothesis, we obtain $J_{q}^{\gamma,\alpha}h \in K_{b}.$

By this hypothesis, we obtain $J_g^{\gamma,\alpha}h \in K_b$.

Theorem 2.3. Let $\gamma > 0$, $0 \le \alpha < 1$ and $\beta \in \mathbb{R}$, where $1 \le 2\alpha + \beta\gamma < 2$. Also, let $g \in P(\beta, 1)$ and $h \in K(\alpha)$. Then, the image $(I_g^{\gamma, \alpha}h)(\mathbb{D})$ is bounded if and only if

$$\limsup_{|z| \to 1} (1 - |z|) \left| \frac{zh''(z)}{h'(z)} + \frac{\gamma zg'(z)}{g(z)} + \alpha + 1 \right| < 1.$$

Proof. By using Part (2) of Lemma 2.1, we have $I_g^{\gamma,\alpha}h \in K$. By replacing $g = I_g^{\gamma,\alpha}h$ in (1.1), then there exists $\psi \in H(\mathbb{D})$ such that

$$\frac{(I_g^{\gamma,\alpha}h)''(z)}{(I_g^{\gamma,\alpha}h)'(z)} = \frac{2\psi(z)}{1 - z\psi(z)}.$$

Therefore

$$\psi(z) = \frac{\frac{(I_g^{\gamma,\alpha}h)''(z)}{(I_g^{\gamma,\alpha}h)'(z)}}{2 + \frac{z(I_g^{\gamma,\alpha}h)'(z)}{(I_g^{\gamma,\alpha}h)'(z)}} \\ = \frac{\frac{h''(z)}{h'(z)} + \frac{\gamma g'(z)}{g(z)} + \frac{\alpha - 1}{z}}{1 + \alpha + \frac{zh''(z)}{h'(z)} + \frac{\gamma zg'(z)}{g(z)}}$$

Thus, we obtain

(2.2)
$$\frac{1-|z|}{|1-z\psi(z)|} = \frac{1-|z|}{\frac{2}{\left|\frac{zh''(z)}{h'(z)} + \frac{\gamma zg'(z)}{g(z)} + \alpha + 1\right|}} = \frac{1}{2}(1-|z|)\left|1+\alpha + \frac{zh''(z)}{h'(z)} + \frac{\gamma zg'(z)}{g(z)}\right|$$

By Theorem 2 in [10], we can conclude that the image $(I_g^{\gamma,\alpha}h)(\mathbb{D})$ is bounded if and only if

$$\limsup_{|z| \to 1} \frac{1 - |z|}{|1 - z\psi(z)|} < \frac{1}{2},$$

and so by (2.2), the proof is complete.

Similarly, by using Lemma 2.2, the following theorem is achieved:

Theorem 2.4. Let $0 < \gamma < \alpha$, $g \in K$ and $h \in S^*$. Then, the image $(J_g^{\gamma,\alpha}h)(\mathbb{D})$ is bounded if and only if

$$\limsup_{|z| \to 1} (1 - |z|) \left| \frac{zh'(z)}{h(z)} + \frac{\gamma z g''(z)}{g'(z)} + \alpha + 1 \right| < 1.$$

By using part 2 of Lemma 2.1, we can obtain the below result:

Corollary 2.5. Let $\gamma > 0$, $0 \le \alpha < 1$ and $\beta \in \mathbb{R}$, where $1 \le 2\alpha + \beta \gamma < 2$. If $g \in P(\beta, 1)$ and $h \in K(\alpha)$, then $\|S_{I_{q}^{\gamma, \alpha}h}\| \le 2$.

And also, by Theorem 2.3, the below conclusion is gained:

Corollary 2.6. Let $\gamma > 0$, $0 \le \alpha < 1$ and $\beta \in \mathbb{R}$, where $1 \le 2\alpha + \beta \gamma < 2$. If

$$\limsup_{|z| \to 1} (1 - |z|) \left| \frac{zh''(z)}{h'(z)} + \frac{\gamma zg'(z)}{g(z)} + \alpha + 1 \right| < 1,$$

then $\|S_{I_a^{\gamma,\alpha}h}\| < 2.$

Finally, a similar corollary to those above is also true for the operator $J_f^{\gamma,\alpha}h$.

3. INTEGRAL OPERATORS ON BESOV SPACES

We use dA(z) to denote the area measure of \mathbb{D} which is normalized, so the area of \mathbb{D} is 1. We have

$$dA(z) = \frac{1}{\pi} dx dy$$
$$= \frac{r}{\pi} dr d\theta,$$

where $z = x + iy = re^{i\theta}$ and we set

$$dA_{\alpha}(z) = (\alpha + 1)(1 - |z|^2)^{\alpha} dA(z),$$

where $\alpha > -1$. It is clear that if α is a real number then

$$\int_{\mathbb{D}} (1-|z|^2)^{\alpha} dA(z) < \infty,$$

if and only if $\alpha > -1$.

For $1 and <math>\delta \ge 1$, the Besov space B^p_{δ} is defined as the set of all $g \in H(\mathbb{D})$ such that

$$\|g\|_{B^p_{\delta}} := |g(0)| + \left\{ (p-1) \int_{\mathbb{D}} (1-|z|^2)^{p-2} |g'(z)|^p dA_{\delta}(z) \right\}^{\frac{1}{p}} < \infty.$$

For simplicity, the space B_1^p will be denoted by B^p . Many authors have studied the properties of the Besov spaces [1, 2]. The space H^{∞} consists of bounded analytic functions g in \mathbb{D} where

$$||g||_{H^{\infty}} := \lim_{r \to 1^{-}} (\max_{|z| \le r} |g(z)|) < \infty.$$

In this section, we study two operators $I_g^{\gamma,\alpha}$ and $J_g^{\gamma,\alpha}$ on H^{∞} and Besov space B_{δ}^p .

Theorem 3.1. Let $1 and <math>\delta \ge 1$. If $g \in B^p_{\delta}$ then $J^{\gamma,\alpha}_g$ is bounded on H^{∞} and $\|J^{\gamma,\alpha}_g\|_{B^p_{\delta}} \le \|g\|_{B^p_{\delta}}$ where $\gamma \le 1$ and $\alpha \ge 1$.

Proof. Let $||h||_{H^{\infty}} = 1$. Therefore,

$$\begin{split} \|J_{g}^{\gamma,\alpha}\|_{B^{p}_{\delta}}^{p} &= (p-1)\int_{\mathbb{D}}(1-|z|^{2})^{p-2}|h(z)(g'(z))^{\gamma}z^{\alpha-1}|^{p}dA_{\delta}(z)\\ &\leq (p-1)\|h\|_{H^{\infty}}^{p}\int_{\mathbb{D}}(1-|z|^{2})^{p-2}|(g'(z))^{\gamma}|^{p}dA_{\delta}(z)\\ &\leq \left(\|g\|_{B^{p}_{\delta}}-|g(0)|\right)^{p} < \infty, \end{split}$$

since $\gamma \leq 1$ and $\alpha \geq 1$.

Theorem 3.2. Let $1 , <math>\delta \ge 1$ and $g \in H^{\infty}$. Then $I_g^{\gamma,\alpha} \in B_{\delta}^p$, where $\alpha + \gamma \ge 1$. Moreover, $\|I_g^{\gamma,\alpha}\|_{B_{\delta}^p} \le \|Ig^{\gamma}\|_{H^{\infty}}$, where $I(z) = z^{\alpha-1}$ $(z \in \mathbb{D})$.

Proof. Suppose that $g \in H^{\infty}$. There exists a number N > 0 such that $\frac{|g(z)|}{N} < |z| \ (z \in \mathbb{D})$, thus,

$$|z^{\alpha-1}g^{\gamma}(z)| \leq N^{\gamma}, \quad (z \in \mathbb{D}),$$

where $\gamma + \alpha - 1 \ge 0$.

Therefore, $z^{\alpha-1}g^{\gamma}(z) \in H^{\infty}$. Set $I(z) = z^{\alpha-1}$ $(z \in \mathbb{D})$, so there exists a number c > 0 such that $||Ig^{\gamma}||_{H^{\infty}} = c$. Now, for any $||h||_{B^p_{\delta}} = 1$, we have

$$\begin{split} \|I_{g}^{\gamma,\alpha}h\|_{B^{p}_{\delta}}^{p} &= (p-1)\int_{\mathbb{D}}(1-|z|^{2})^{p-2}\left|h'(z)z^{\alpha-1}g^{\gamma}(z)\right|^{p}dA_{\delta}(z)\\ &\leq c^{p}(p-1)\int_{\mathbb{D}}(1-|z|^{2})^{p-2}|h'(z)|^{p}dA_{\delta}(z)\\ &\leq c^{p}\|h\|_{B^{p}_{\delta}}^{p}\\ &= c^{p}, \end{split}$$

and the proof is complete.

Let $\lambda > 0$ and g be a locally univalent function. Also let

$$B(\lambda) = \{g \in H(\mathbb{D}); \|\frac{g''}{g'}\| \le 2\lambda\},\$$

where

$$\left\|\frac{g''}{g'}\right\| = \sup_{z \in \mathbb{D}} (1 - |z|^2) \left|\frac{g''(z)}{g'(z)}\right|,$$

is the norm of the pre-Schwarzian derivative $\frac{g''}{g'}$ of g. Kim and Sugawa [5, 6] investigated the properties of the class $B(\lambda)$.

Theorem 3.3. Let $1 , <math>\delta > 1$ and $\lambda < 1$. Therefore, $B(\lambda) \subseteq B^p_{\delta}$. Proof. Let |z| = t < 1 and $g \in B(\lambda)$. Then we have

$$\log \left| \frac{g'(z)}{g'(0)} \right| \le \left| \log \frac{g'(z)}{g'(0)} \right|$$
$$= \left| \int_0^z \frac{g''(w)}{g'(w)} dw \right|$$
$$\le t \int_0^1 \left| \frac{g''(rz)}{g'(rz)} \right| dr$$
$$\le t \int_0^1 \frac{2\lambda}{1 - t^2 r^2} dr$$

$$= 2\lambda \log \sqrt{\frac{1+t}{1-t}}.$$

This implies

(3.1)
$$|g'(z)| \le |g'(0)| \left(\frac{1+t}{1-t}\right)^{\lambda}, \quad (|z|=t<1),$$

therefore by using relationship (3.1), we can obtain

(3.2)
$$\sup_{z \in \mathbb{D}} (1 - |z|^2) |g'(z)| \le |g'(0)| \sup_{0 < t < 1} (1 - t^2) \left(\frac{1 + t}{1 - t}\right)^{\lambda} \le 2^{1 + \lambda} |g'(0)| \sup_{0 < t < 1} (1 - t)^{1 - \lambda} = 2^{1 + \lambda} |g'(0)|.$$

If we set $m = 2^{1+\lambda} |g'(0)|$ and use relationship (3.2), it is deduced that

$$\int_{\mathbb{D}} |g'(z)|^p (1-|z|^2)^{p-2} dA_{\delta}(z) = (\delta+1) \int_{\mathbb{D}} |g'(z)|^p (1-|z|^2)^{p+\delta-2} dA(z)$$
$$\leq (\delta+1)m^p \int_{\mathbb{D}} (1-|z|^2)^{\delta-2} dA(z) < \infty,$$

where $\delta > 1$ and finally it is concluded that $g \in B^p_{\delta}$.

Theorem 3.4. Assume that $\alpha + \gamma \geq 1$ and $g \in H^{\infty}$. Then the integral operator $I_g^{\gamma,\alpha}$ is compact from B_{δ}^p space to B_{δ}^p space where $1 and <math>\delta \geq 1$.

Proof. Let $g \in H^{\infty}$ and (h_n) be a sequence in B^p_{δ} such that $h_n \to 0$. For $n = 1, 2, 3, \ldots$, we have

$$\begin{aligned} \|I_{g}^{\gamma,\alpha}h_{n}\|_{B^{p}_{\delta}}^{p} &= (p-1)\int_{\mathbb{D}}(1-|z|^{2})^{p-2}|h_{n}^{'}(z)g^{\gamma}(z)z^{\alpha-1}|^{p}dA_{\delta}(z)\\ &\leq \|g\|_{H^{\infty}}^{\gamma p}\cdot\|h_{n}\|_{B^{p}_{\delta}}^{p}.\end{aligned}$$

Since for $h_n \to 0$ on $\overline{\mathbb{D}}$, we have $\|h_n\|_{B^p_{\delta}} \to 0$ and by considering $n \to \infty$ in the last inequality, we obtain that

$$\lim_{n \to \infty} \|I_g^{\gamma, \alpha} h_n\|_{B^p_\delta} = 0.$$

Therefore, $I_g^{\gamma,\alpha}$ is compact.

References

 J.J. Donaire, D. Girela, and D. Vukotić, On the growth and range of functions in Möbius invariant spaces, J. Anal. Math., 112(1) (2010), pp. 237-260.

- J.J. Donaire, D. Girela, and D. Vukotic, On univalent functions in some Mobius invariant spaces, J. Reine. Angew. Math., 553 (2002), pp. 43-72.
- A. Ebadian and J. Sokół, Volterra type operator on the convex functions, Hacet. J. Math. Stat., 47(1) (2018), pp. 57-67.
- C. Hammond, The norm of a composition operator with linear symbol acting on the Dirichlet space, J. Math. Anal. Appl., 303(2) (2005), pp. 499-508.
- Y.C. Kim and T. Sugawa, Growth and coefficient estimates for uniformly locally univalent functions on the unit disk, Rocky Mt. J. Math., 32 (2002), pp. 179-200.
- Y.C. Kim and T. Sugawa, Uniformly locally univalent functions and Hardy spaces, J. Math. Anal. Appl., 353(1) (2009), pp. 61-67.
- S. Li, Volterra composition operators between weighted bergman spaces and bloch type spaces, J. Korean Math. SOC., 45(1) (2008), pp. 229-248.
- S. Li and S. Stević, Integral type operators from mixed-norm spaces to α-Bloch spaces, Integr. Transf. Spec. F., 18(7) (2007), pp. 485-493.
- S. Li and S. Stević, Products of integral-type operators and composition operators between bloch-type spaces, J. Math. Anal. Appl., 349(2) (2009), pp. 596-610.
- Z. Nehari, A property of convex conformal maps, J. Anal. Math., 30(1) (1976), pp. 390-393.
- Z. Orouji and R. Aghalary, The norm estimates of pre-schwarzian derivatives of spirallike functions and uniformly convex alphaspirallike functions, Sahand Commun. Math. Anal., 12(1) (2018), pp. 89-96.
- M. Taati, S. Moradi, and S. Najafzadeh, Some properties and results for certain subclasses of starlike and convex functions, Sahand Commun. Math. Anal.,7(1) (2017), pp. 1-15.
- 13. J. Xiao, *Holomorphic Q classes*, Lecture notes in mathematics, 2001.
- 14. K. Zhu, Operator theory in function spaces, MR 92c, 47031, 1990.

 ${\it Email \ address: \tt z.orouji@urmia.ac.ir}$

Email address: a.ebadian@urmia.ac.ir

¹ Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.

 $^{^2}$ Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.