Integral Operators on the Besov Spaces and Subclasses of Univalent Functions

Zahra Orouji ${ }^{1 *}$ and Ali Ebadian ${ }^{2}$

Abstract

In this note, we study the integral operators $I_{g}^{\gamma, \alpha}$ and $J_{g}^{\gamma, \alpha}$ of an analytic function g on convex and starlike functions of a complex order. Then, we investigate the same operators on H^{∞} and Besov spaces.

1. Introduction

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the unit disk in the plane \mathbb{C}, and $H(\mathbb{D}):=\{g: \mathbb{D} \longrightarrow \mathbb{C} \mid g$ is analytic $\}$. Also, let A be the subclass of $H(\mathbb{D})$, which its elements are of the from

$$
g(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

Suppose that $S^{*}(\alpha)$ is the famous subclass of A, which is starlike of order $\alpha(0 \leq \alpha<1)$. Indeed, $g \in S^{*}(\alpha)$ is equivalent to $\operatorname{Re}\left(z g^{\prime}(z) / g(z)\right)>\alpha$ in \mathbb{D}. Similarly, we have $g \in K(\alpha)$ if and only if

$$
\operatorname{Re}\left(1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right)>\alpha, \quad(z \in \mathbb{D})
$$

where $K(\alpha)$ is the subclass of A contained in the convex functions of order α.

[^0]As usual, we write $S^{*}=S^{*}(0)$ and $K=K(0)$. For $0 \neq b \in \mathbb{C}$, the subclasses of A, S_{b}^{*} and K_{b}, are defined by

$$
S_{b}^{*}=\left\{g \in A: \operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z g^{\prime}(z)}{g(z)}-1\right)\right\}>0, \quad(z \in \mathbb{D})\right\},
$$

and

$$
K_{b}=\left\{g \in A: \operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right)\right\}>0, \quad(z \in \mathbb{D})\right\} .
$$

Then, we can see that for $0 \leq \alpha<1$,

$$
S_{1-\alpha}^{*}=S^{*}(\alpha), \quad K_{1-\alpha}=K(\alpha) .
$$

We refer to [3, 11, 12] for some important results.
For some real number β and non-zero complex number b, we introduce a subclass of $H(\mathbb{D}), P(\beta, b)$, as follows:

$$
P(\beta, b):=\left\{g \in H(\mathbb{D}): \operatorname{Re}\left\{\frac{1}{b}\left(\frac{z g^{\prime}(z)}{g(z)}\right)\right\} \geq \beta \text { and } g(0)=1\right\} .
$$

For example, $\frac{1}{1-z}$ and $\frac{1}{1+z}$ belong to $P\left(-\frac{1}{2}, 1\right)$.
Let $g \in H(\mathbb{D})$ be locally univalent. Let

$$
S_{g}(z)=\left(\frac{g^{\prime \prime}(z)}{g^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{g^{\prime \prime}(z)}{g^{\prime}(z)}\right)^{2}
$$

denote the Schwarzian derivative of g, and let

$$
\left\|S_{g}\right\|=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{2}\left|S_{g}(z)\right|,
$$

which denotes its Schwarzian norm.
If $g \in K$ and $h(z)=1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}$, then $\operatorname{Reh}(z)>0(z \in \mathbb{D})$, so h is subordinate to $\lambda(z)=\frac{1+z}{1-z}$, where λ is the half-plan mapping. Therefore, $h(z)=\lambda(\varphi(z))$ for some Schwarz function φ, and we have

$$
\begin{aligned}
\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)} & =\frac{1+\varphi(z)}{1-\varphi(z)}-1 \\
& =\frac{2 \varphi(z)}{1-\varphi(z)},
\end{aligned}
$$

with the notation $\psi(z)=\frac{\varphi(z)}{z}$, where ψ is analytic and satisfies $|\psi(z)| \leq$ 1 in \mathbb{D}. Then it can be written as follows:

$$
\begin{equation*}
\frac{g^{\prime \prime}(z)}{g^{\prime}(z)}=\frac{2 \psi(z)}{1-z \psi(z)} . \tag{1.1}
\end{equation*}
$$

Hence, the Schwarzian derivative of g can be written in the following form:

$$
\begin{aligned}
S_{g}(z) & =\left(\frac{g^{\prime \prime}(z)}{g^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{g^{\prime \prime}(z)}{g^{\prime}(z)}\right)^{2} \\
& =\frac{2 \psi^{\prime}(z)}{(1-z \psi(z))^{2}} .
\end{aligned}
$$

Then, we obtain

$$
\begin{equation*}
\left|S_{g}(z)\right| \leq \frac{2}{\left(1-|z|^{2}\right)^{2}} \tag{1.2}
\end{equation*}
$$

By the inequality (1.2), the Schwarzian norm $\left\|S_{g}\right\|$ of the convex mapping is not greater than 2. If the convex mapping g is bounded, then $\left\|S_{g}\right\|<2$ (see [10]).

Finally, let $g \in H(\mathbb{D})$. We consider two integral operators on $H(\mathbb{D})$, as follows:

$$
I_{g}^{\gamma, \alpha}(h)(z)=\int_{0}^{z} h^{\prime}(w) g^{\gamma}(w) w^{\alpha-1} d w, \quad(z \in \mathbb{D}),
$$

and

$$
J_{g}^{\gamma, \alpha}(h)(z)=\int_{0}^{z} h(w)\left(g^{\prime}(w)\right)^{\gamma} w^{\alpha-1} d w, \quad(z \in \mathbb{D})
$$

where $\gamma, \alpha>0$.
Integral operators play an important role in various fields (see [4, 8]). If $\gamma=\alpha=1$, then $I_{g}^{1,1}(h)=I_{g}(h)$ and $J_{g}^{1,1}(h)=J_{g}(h)$, which are Alexander operators. These integral operators have been investigated by many authors $[7,9,13,14]$.

In this note, we study $I_{g}^{\gamma, \alpha}$ and $J_{g}^{\gamma, \alpha}$ operators on $K, K(\alpha)$ and S_{b}^{*}. Here, we obtain the necessary and sufficient conditions such that $I_{g}^{\gamma, \alpha}(\mathbb{D})$ and $J_{g}^{\gamma, \alpha}(\mathbb{D})$ are bounded, Furthermore, we obtain the sufficient conditions such that $\left|S_{I_{g}^{\gamma, \alpha}}\right|<2$.

2. Integral Operators on $K(\alpha)$ and $S^{*}(\alpha)$

Now, we verify the integral operators, $I_{g}^{\gamma, \alpha}$ and $J_{g}^{\gamma, \alpha}$, on $K(\alpha)$ and $S^{*}(\alpha)$.

Lemma 2.1. (i) Let $\alpha>0, \gamma>0, \beta \geq 0$ and $0 \neq b \in \mathbb{C}$, where $(\alpha-1) \operatorname{Re} b \geq 0$. If $g \in P(\beta, b)$, then $I_{g}^{\gamma, \alpha}$ is an operator on K_{b}.
(ii) Let $\gamma>0,0 \leq \alpha<1$ and $\beta \in \mathbb{R}$, where $1 \leq 2 \alpha+\beta \gamma<2$. If $g \in$ $P(\beta, 1)$, then $I_{g}^{\gamma, \alpha}$ is an operator from $K(\alpha)$ to $K(2 \alpha+\beta \gamma-1)$.

Proof. (i) Let $h \in K_{b}$. Then, for $z \in \mathbb{D}$,

$$
\begin{align*}
\operatorname{Re} & \left\{1+\frac{1}{b} \frac{z\left(I_{g}^{\gamma, \alpha} h\right)^{\prime \prime}(z)}{\left(I_{g}^{\gamma, \alpha} h\right)^{\prime}(z)}\right\} \tag{2.1}\\
& =\operatorname{Re}\left\{1+\frac{1}{b} \frac{z\left(z^{\alpha-1} h^{\prime \prime}(z) g^{\gamma}(z)+\gamma z^{\alpha-1} h^{\prime}(z) g^{\prime}(z) g^{\gamma-1}(z)\right)}{z^{\alpha-1} h^{\prime}(z) g^{\gamma}(z)}\right\} \\
& +\operatorname{Re}\left\{\frac{1}{b} \frac{z(\alpha-1) z^{\alpha-2} h^{\prime}(z) g^{\gamma}(z)}{z^{\alpha-1} h^{\prime}(z) g^{\gamma}(z)}\right\} \\
& =(\alpha-1) \operatorname{Re}\left(\frac{1}{b}\right)+\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right)\right\}+\gamma \operatorname{Re}\left\{\frac{1}{b}\left(\frac{z g^{\prime}(z)}{g(z)}\right)\right\} .
\end{align*}
$$

By this hypothesis and (2.1), we obtain

$$
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z\left(I_{g}^{\gamma, \alpha} h\right)^{\prime \prime}(z)}{\left(I_{g}^{\gamma, \alpha} h\right)^{\prime}(z)}\right)\right\}>0 .
$$

Therefore, $I_{g}^{\gamma, \alpha} h \in K_{b}$ for all $h \in K_{b}$.
(ii) We can prove this part in a similar manner as the proof of part (i).

Lemma 2.2. Let $\alpha>0,0 \neq b \in \mathbb{C}$ and $0<\gamma<\alpha \operatorname{Re}\left(\frac{1}{b}\right)$. If $g \in K_{b}$, then $J_{g}^{\gamma, \alpha}$ is an operator from S_{b}^{*} to K_{b}.
Proof. Let $h \in S_{b}^{*}$, then for $z \in \mathbb{D}$,

$$
\begin{aligned}
& \operatorname{Re}\left\{1+\frac{1}{b} \frac{z\left(J_{g}^{\gamma, \alpha} h\right)^{\prime \prime}(z)}{\left(J_{g}^{\gamma, \alpha} h\right)^{\prime}(z)}\right\} \\
&= \operatorname{Re}\left\{1+\frac{1}{b} \frac{z\left(z^{\alpha-1} h^{\prime}(z)\left(g^{\prime}(z)\right)^{\gamma}+\gamma z^{\alpha-1} h(z) g^{\prime \prime}(z)\left(g^{\prime}(z)\right)^{\alpha-1}\right)}{z^{\alpha-1} h(z)\left(g^{\prime}(z)\right)^{\gamma}}\right\} \\
&+\operatorname{Re}\left\{\frac{1}{b} \frac{z(\alpha-1) z^{\alpha-2} h(z)\left(g^{\prime}(z)\right)^{\gamma}}{z^{\alpha-1} h(z)\left(g^{\prime}(z)\right)^{\gamma}}\right\} \\
&= \operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z h^{\prime}(z)}{h(z)}\right)+\frac{\gamma}{b}\left(\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right)+\frac{\alpha-1}{b}\right\} \\
&= \operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z h^{\prime}(z)}{h(z)}-1\right)\right\}+\gamma \operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right)\right\}+\alpha \operatorname{Re}\left(\frac{1}{b}\right)-\gamma .
\end{aligned}
$$

By this hypothesis, we obtain $J_{g}^{\gamma, \alpha} h \in K_{b}$.
Theorem 2.3. Let $\gamma>0,0 \leq \alpha<1$ and $\beta \in \mathbb{R}$, where $1 \leq 2 \alpha+\beta \gamma<2$. Also, let $g \in P(\beta, 1)$ and $h \in K(\alpha)$. Then, the image $\left(I_{g}^{\gamma, \alpha} h\right)(\mathbb{D})$ is bounded if and only if

$$
\limsup _{|z| \rightarrow 1}(1-|z|)\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}+\frac{\gamma z g^{\prime}(z)}{g(z)}+\alpha+1\right|<1 .
$$

Proof. By using Part (2) of Lemma 2.1, we have $I_{g}^{\gamma, \alpha} h \in K$. By replacing $g=I_{g}^{\gamma, \alpha} h$ in (1.1), then there exists $\psi \in H(\mathbb{D})$ such that

$$
\frac{\left(I_{g}^{\gamma, \alpha} h\right)^{\prime \prime}(z)}{\left(I_{g}^{\gamma, \alpha} h\right)^{\prime}(z)}=\frac{2 \psi(z)}{1-z \psi(z)}
$$

Therefore

$$
\begin{aligned}
\psi(z) & =\frac{\frac{\left(I_{g}^{\gamma, \alpha} h\right)^{\prime \prime}(z)}{\left(I g^{\prime}, \alpha^{\prime} h\right)^{\prime}(z)}}{2+\frac{z\left(I_{g}^{\gamma, \alpha} h\right)^{\prime \prime}(z)}{\left(I_{g}^{\gamma, \alpha} h\right)^{\prime}(z)}} \\
& =\frac{\frac{h^{\prime \prime}(z)}{h^{\prime}(z)}+\frac{\gamma g^{\prime}(z)}{g(z)}+\frac{\alpha-1}{z}}{1+\alpha+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}+\frac{\gamma z g^{\prime}(z)}{g(z)}} .
\end{aligned}
$$

Thus, we obtain

$$
\begin{align*}
\frac{1-|z|}{|1-z \psi(z)|} & =\frac{1-|z|}{\sqrt{\left.\frac{z^{\prime \prime}(z)}{h^{\prime}(z)}+\frac{\gamma z g^{\prime}(z)}{g(z)}+\alpha+1 \right\rvert\,}} \tag{2.2}\\
& =\frac{1}{2}(1-|z|)\left|1+\alpha+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}+\frac{\gamma z g^{\prime}(z)}{g(z)}\right|
\end{align*}
$$

By Theorem 2 in [10], we can conclude that the image $\left(I_{g}^{\gamma, \alpha} h\right)(\mathbb{D})$ is bounded if and only if

$$
\limsup _{|z| \rightarrow 1} \frac{1-|z|}{|1-z \psi(z)|}<\frac{1}{2},
$$

and so by (2.2), the proof is complete.
Similarly, by using Lemma 2.2, the following theorem is achieved:
Theorem 2.4. Let $0<\gamma<\alpha, g \in K$ and $h \in S^{*}$. Then, the image $\left(J_{g}^{\gamma, \alpha} h\right)(\mathbb{D})$ is bounded if and only if

$$
\limsup _{|z| \rightarrow 1}(1-|z|)\left|\frac{z h^{\prime}(z)}{h(z)}+\frac{\gamma z g^{\prime \prime}(z)}{g^{\prime}(z)}+\alpha+1\right|<1 .
$$

By using part 2 of Lemma 2.1, we can obtain the below result:
Corollary 2.5. Let $\gamma>0,0 \leq \alpha<1$ and $\beta \in \mathbb{R}$, where $1 \leq 2 \alpha+\beta \gamma<2$. If $g \in P(\beta, 1)$ and $h \in K(\alpha)$, then $\left\|S_{I_{g}^{\gamma, \alpha} h}\right\| \leq 2$.

And also, by Theorem 2.3, the below conclusion is gained:
Corollary 2.6. Let $\gamma>0,0 \leq \alpha<1$ and $\beta \in \mathbb{R}$, where $1 \leq 2 \alpha+\beta \gamma<2$. If

$$
\limsup _{|z| \rightarrow 1}(1-|z|)\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}+\frac{\gamma z g^{\prime}(z)}{g(z)}+\alpha+1\right|<1,
$$

then $\left\|S_{I_{g}^{\gamma, \alpha} h}\right\|<2$.

Finally, a similar corollary to those above is also true for the operator $J_{f}^{\gamma, \alpha} h$.

3. Integral Operators on Besov Spaces

We use $d A(z)$ to denote the area measure of \mathbb{D} which is normalized, so the area of \mathbb{D} is 1 . We have

$$
\begin{aligned}
d A(z) & =\frac{1}{\pi} d x d y \\
& =\frac{r}{\pi} d r d \theta
\end{aligned}
$$

where $z=x+i y=r e^{i \theta}$ and we set

$$
d A_{\alpha}(z)=(\alpha+1)\left(1-|z|^{2}\right)^{\alpha} d A(z)
$$

where $\alpha>-1$. It is clear that if α is a real number then

$$
\int_{\mathbb{D}}\left(1-|z|^{2}\right)^{\alpha} d A(z)<\infty
$$

if and only if $\alpha>-1$.
For $1<p<\infty$ and $\delta \geq 1$, the Besov space B_{δ}^{p} is defined as the set of all $g \in H(\mathbb{D})$ such that

$$
\begin{aligned}
\|g\|_{B_{\delta}^{p}} & :=|g(0)|+\left\{(p-1) \int_{\mathbb{D}}\left(1-|z|^{2}\right)^{p-2}\left|g^{\prime}(z)\right|^{p} d A_{\delta}(z)\right\}^{\frac{1}{p}} \\
& <\infty .
\end{aligned}
$$

For simplicity, the space B_{1}^{p} will be denoted by B^{p}. Many authors have studied the properties of the Besov spaces [1, 2]. The space H^{∞} consists of bounded analytic functions g in \mathbb{D} where

$$
\|g\|_{H^{\infty}}:=\lim _{r \rightarrow 1^{-}}\left(\max _{|z| \leq r}|g(z)|\right)<\infty .
$$

In this section, we study two operators $I_{g}^{\gamma, \alpha}$ and $J_{g}^{\gamma, \alpha}$ on H^{∞} and Besov space B_{δ}^{p}.
Theorem 3.1. Let $1<p<\infty$ and $\delta \geq 1$. If $g \in B_{\delta}^{p}$ then $J_{g}^{\gamma, \alpha}$ is bounded on H^{∞} and $\left\|J_{g}^{\gamma, \alpha}\right\|_{B_{\delta}^{p}} \leq\|g\|_{B_{\delta}^{p}}$ where $\gamma \leq 1$ and $\alpha \geq 1$.
Proof. Let $\|h\|_{H^{\infty}}=1$. Therefore,

$$
\begin{aligned}
\left\|J_{g}^{\gamma, \alpha}\right\|_{B_{\delta}^{p}}^{p} & =(p-1) \int_{\mathbb{D}}\left(1-|z|^{2}\right)^{p-2}\left|h(z)\left(g^{\prime}(z)\right)^{\gamma} z^{\alpha-1}\right|^{p} d A_{\delta}(z) \\
& \leq(p-1)\|h\|_{H}^{p} \int_{\mathbb{D}}^{p}\left(1-|z|^{2}\right)^{p-2}\left|\left(g^{\prime}(z)\right)^{\gamma}\right|^{p} d A_{\delta}(z) \\
& \leq\left(\|g\|_{B_{\delta}^{p}}-|g(0)|\right)^{p}<\infty,
\end{aligned}
$$

since $\gamma \leq 1$ and $\alpha \geq 1$.

Theorem 3.2. Let $1<p<\infty, \delta \geq 1$ and $g \in H^{\infty}$. Then $I_{g}^{\gamma, \alpha} \in B_{\delta}^{p}$, where $\alpha+\gamma \geq 1$. Moreover, $\left\|I_{g}^{\gamma, \alpha}\right\|_{B_{\delta}^{p}} \leq\left\|I g^{\gamma}\right\|_{H^{\infty}}$, where $I(z)=z^{\alpha-1}$ $(z \in \mathbb{D})$.
Proof. Suppose that $g \in H^{\infty}$. There exists a number $N>0$ such that $\frac{|g(z)|}{N}<|z|(z \in \mathbb{D})$, thus,

$$
\left|z^{\alpha-1} g^{\gamma}(z)\right| \leq N^{\gamma}, \quad(z \in \mathbb{D})
$$

where $\gamma+\alpha-1 \geq 0$.
Therefore, $z^{\alpha-1} g^{\gamma}(z) \in H^{\infty}$. Set $I(z)=z^{\alpha-1}(z \in \mathbb{D})$, so there exists a number $c>0$ such that $\left\|I g^{\gamma}\right\|_{H^{\infty}}=c$. Now, for any $\|h\|_{B_{\delta}^{p}}=1$, we have

$$
\begin{aligned}
\left\|I_{g}^{\gamma, \alpha} h\right\|_{B_{\delta}^{p}}^{p} & =(p-1) \int_{\mathbb{D}}\left(1-|z|^{2}\right)^{p-2}\left|h^{\prime}(z) z^{\alpha-1} g^{\gamma}(z)\right|^{p} d A_{\delta}(z) \\
& \leq c^{p}(p-1) \int_{\mathbb{D}}\left(1-|z|^{2}\right)^{p-2}\left|h^{\prime}(z)\right|^{p} d A_{\delta}(z) \\
& \leq c^{p}\|h\|_{B_{\delta}^{p}}^{p} \\
& =c^{p},
\end{aligned}
$$

and the proof is complete.
Let $\lambda>0$ and g be a locally univalent function. Also let

$$
B(\lambda)=\left\{g \in H(\mathbb{D}) ;\left\|\frac{g^{\prime \prime}}{g^{\prime}}\right\| \leq 2 \lambda\right\}
$$

where

$$
\left\|\frac{g^{\prime \prime}}{g^{\prime}}\right\|=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|\frac{g^{\prime \prime}(z)}{g^{\prime}(z)}\right|
$$

is the norm of the pre-Schwarzian derivative $\frac{g^{\prime \prime}}{g^{\prime}}$ of g. Kim and Sugawa [5, 6] investigated the properties of the class $B(\lambda)$.
Theorem 3.3. Let $1<p<\infty, \delta>1$ and $\lambda<1$. Therefore, $B(\lambda) \subseteq B_{\delta}^{p}$.
Proof. Let $|z|=t<1$ and $g \in B(\lambda)$. Then we have

$$
\begin{aligned}
\log \left|\frac{g^{\prime}(z)}{g^{\prime}(0)}\right| & \leq\left|\log \frac{g^{\prime}(z)}{g^{\prime}(0)}\right| \\
& =\left|\int_{0}^{z} \frac{g^{\prime \prime}(w)}{g^{\prime}(w)} d w\right| \\
& \leq t \int_{0}^{1}\left|\frac{g^{\prime \prime}(r z)}{g^{\prime}(r z)}\right| d r \\
& \leq t \int_{0}^{1} \frac{2 \lambda}{1-t^{2} r^{2}} d r
\end{aligned}
$$

$$
=2 \lambda \log \sqrt{\frac{1+t}{1-t}}
$$

This implies

$$
\begin{equation*}
\left|g^{\prime}(z)\right| \leq\left|g^{\prime}(0)\right|\left(\frac{1+t}{1-t}\right)^{\lambda}, \quad(|z|=t<1) \tag{3.1}
\end{equation*}
$$

therefore by using relationship (3.1), we can obtain

$$
\begin{align*}
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|g^{\prime}(z)\right| & \leq\left|g^{\prime}(0)\right| \sup _{0<t<1}\left(1-t^{2}\right)\left(\frac{1+t}{1-t}\right)^{\lambda} \tag{3.2}\\
& \leq 2^{1+\lambda}\left|g^{\prime}(0)\right| \sup _{0<t<1}(1-t)^{1-\lambda} \\
& =2^{1+\lambda}\left|g^{\prime}(0)\right| .
\end{align*}
$$

If we set $m=2^{1+\lambda}\left|g^{\prime}(0)\right|$ and use relationship (3.2), it is deduced that

$$
\begin{aligned}
\int_{\mathbb{D}}\left|g^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{p-2} d A_{\delta}(z) & =(\delta+1) \int_{\mathbb{D}}\left|g^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{p+\delta-2} d A(z) \\
& \leq(\delta+1) m^{p} \int_{\mathbb{D}}\left(1-|z|^{2}\right)^{\delta-2} d A(z)<\infty
\end{aligned}
$$

where $\delta>1$ and finally it is concluded that $g \in B_{\delta}^{p}$.
Theorem 3.4. Assume that $\alpha+\gamma \geq 1$ and $g \in H^{\infty}$. Then the integral operator $I_{g}^{\gamma, \alpha}$ is compact from B_{δ}^{p} space to B_{δ}^{p} space where $1<p<\infty$ and $\delta \geq 1$.
Proof. Let $g \in H^{\infty}$ and $\left(h_{n}\right)$ be a sequence in B_{δ}^{p} such that $h_{n} \rightarrow 0$. For $n=1,2,3, \ldots$, we have

$$
\begin{aligned}
\left\|I_{g}^{\gamma, \alpha} h_{n}\right\|_{B_{\delta}^{p}}^{p} & =(p-1) \int_{\mathbb{D}}\left(1-|z|^{2}\right)^{p-2}\left|h_{n}^{\prime}(z) g^{\gamma}(z) z^{\alpha-1}\right|^{p} d A_{\delta}(z) \\
& \leq\|g\|_{H^{\infty}}^{\gamma p} \cdot\left\|h_{n}\right\|_{B_{\delta}^{p}}^{p} .
\end{aligned}
$$

Since for $h_{n} \rightarrow 0$ on $\overline{\mathbb{D}}$, we have $\left\|h_{n}\right\|_{B_{\delta}^{p}} \rightarrow 0$ and by considering $n \rightarrow \infty$ in the last inequality, we obtain that

$$
\lim _{n \rightarrow \infty}\left\|I_{g}^{\gamma, \alpha} h_{n}\right\|_{B_{\delta}^{p}}=0
$$

Therefore, $I_{g}^{\gamma, \alpha}$ is compact.

References

1. J.J. Donaire, D. Girela, and D. Vukotić, On the growth and range of functions in Möbius invariant spaces, J. Anal. Math., 112(1) (2010), pp. 237-260.
2. J.J. Donaire, D. Girela, and D. Vukotic, On univalent functions in some Mobius invariant spaces, J. Reine. Angew. Math., 553 (2002), pp. 43-72.
3. A. Ebadian and J. Sokół, Volterra type operator on the convex functions, Hacet. J. Math. Stat., 47(1) (2018), pp. 57-67.
4. C. Hammond, The norm of a composition operator with linear symbol acting on the Dirichlet space, J. Math. Anal. Appl., 303(2) (2005), pp. 499-508.
5. Y.C. Kim and T. Sugawa, Growth and coefficient estimates for uniformly locally univalent functions on the unit disk, Rocky Mt. J. Math., 32 (2002), pp. 179-200.
6. Y.C. Kim and T. Sugawa, Uniformly locally univalent functions and Hardy spaces, J. Math. Anal. Appl., 353(1) (2009), pp. 61-67.
7. S. Li, Volterra composition operators between weighted bergman spaces and bloch type spaces, J. Korean Math. SOC., 45(1) (2008), pp. 229-248.
8. S. Li and S. Stević, Integral type operators from mixed-norm spaces to α-Bloch spaces, Integr. Transf. Spec. F., 18(7) (2007), pp. 485493.
9. S. Li and S. Stević, Products of integral-type operators and composition operators between bloch-type spaces, J. Math. Anal. Appl., 349(2) (2009), pp. 596-610.
10. Z. Nehari, A property of convex conformal maps, J. Anal. Math., 30(1) (1976), pp. 390-393.
11. Z. Orouji and R. Aghalary, The norm estimates of pre-schwarzian derivatives of spirallike functions and uniformly convex alphaspirallike functions, Sahand Commun. Math. Anal., 12(1) (2018), pp. 89-96.
12. M. Taati, S. Moradi, and S. Najafzadeh, Some properties and results for certain subclasses of starlike and convex functions, Sahand Commun. Math. Anal.,7(1) (2017), pp. 1-15.
13. J. Xiao, Holomorphic Q classes, Lecture notes in mathematics, 2001.
14. K. Zhu, Operator theory in function spaces, MR 92c, 47031, 1990.
[^1]
[^0]: 2020 Mathematics Subject Classification. 30C45, 30C80.
 Key words and phrases. Integral operators, Besov spaces, Convex functions of complex order, Starlike functions of complex order, Schwarzian norm.

 Received: 10 June 2019, Accepted: 22 October 2019.

 * Corresponding author.

[^1]: ${ }^{1}$ Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.

 Email address: z.orouji@urmia.ac.ir
 ${ }^{2}$ Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.

 Email address: a.ebadian@urmia.ac.ir

