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Integral Operators on the Besov Spaces and Subclasses of
Univalent Functions

Zahra Orouji1∗ and Ali Ebadian2

Abstract. In this note, we study the integral operators Iγ,αg and
Jγ,α
g of an analytic function g on convex and starlike functions of

a complex order. Then, we investigate the same operators on H∞

and Besov spaces.

1. Introduction

Let D = {z ∈ C : |z| < 1} be the unit disk in the plane C, and
H(D) := {g : D −→ C | g is analytic}. Also, let A be the subclass of
H(D), which its elements are of the from

g(z) = z +

∞∑
n=2

anz
n.

Suppose that S∗(α) is the famous subclass of A, which is starlike of order
α (0 ≤ α < 1). Indeed, g ∈ S∗(α) is equivalent to Re(zg′(z)/g(z)) > α
in D. Similarly, we have g ∈ K(α) if and only if

Re

(
1 +

zg′′(z)

g′(z)

)
> α, (z ∈ D),

where K(α) is the subclass of A contained in the convex functions of
order α.
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As usual, we write S∗ = S∗(0) and K = K(0). For 0 ̸= b ∈ C, the
subclasses of A, S∗

b and Kb, are defined by

S∗
b =

{
g ∈ A : Re

{
1 +

1

b

(
zg′(z)

g(z)
− 1

)}
> 0, (z ∈ D)

}
,

and

Kb =

{
g ∈ A : Re

{
1 +

1

b

(
zg′′(z)

g′(z)

)}
> 0, (z ∈ D)

}
.

Then, we can see that for 0 ≤ α < 1,

S∗
1−α = S∗(α), K1−α = K(α).

We refer to [3, 11, 12] for some important results.
For some real number β and non-zero complex number b, we introduce

a subclass of H(D), P (β, b), as follows:

P (β, b) :=

{
g ∈ H(D) : Re

{
1

b

(
zg′(z)

g(z)

)}
≥ β and g(0) = 1

}
.

For example, 1
1−z and 1

1+z belong to P (−1
2 , 1).

Let g ∈ H(D) be locally univalent. Let

Sg(z) =

(
g′′(z)

g′(z)

)′
− 1

2

(
g′′(z)

g′(z)

)2

,

denote the Schwarzian derivative of g, and let

∥Sg∥ = sup
z∈D

(
1− |z|2

)2 |Sg(z)|,
which denotes its Schwarzian norm.

If g ∈ K and h(z) = 1 + zg′′(z)
g′(z) , then Reh(z) > 0 (z ∈ D), so h is

subordinate to λ(z) = 1+z
1−z , where λ is the half-plan mapping. Therefore,

h(z) = λ(φ(z)) for some Schwarz function φ, and we have

zg′′(z)

g′(z)
=

1 + φ(z)

1− φ(z)
− 1

=
2φ(z)

1− φ(z)
,

with the notation ψ(z) = φ(z)
z , where ψ is analytic and satisfies |ψ(z)| ≤

1 in D. Then it can be written as follows:
g′′(z)

g′(z)
=

2ψ(z)

1− zψ(z)
.(1.1)
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Hence, the Schwarzian derivative of g can be written in the following
form:

Sg(z) =

(
g′′(z)

g′(z)

)′
− 1

2

(
g′′(z)

g′(z)

)2

=
2ψ′(z)

(1− zψ(z))2
.

Then, we obtain

|Sg(z)| ≤
2

(1− |z|2)2
.(1.2)

By the inequality (1.2), the Schwarzian norm ∥Sg∥ of the convex map-
ping is not greater than 2. If the convex mapping g is bounded, then
∥Sg∥ < 2 (see [10]).

Finally, let g ∈ H(D). We consider two integral operators on H(D),
as follows:

Iγ,αg (h)(z) =

∫ z

0
h′(w)gγ(w)wα−1dw, (z ∈ D),

and

Jγ,α
g (h)(z) =

∫ z

0
h(w)(g′(w))γwα−1dw, (z ∈ D),

where γ, α > 0.
Integral operators play an important role in various fields (see [4, 8]).

If γ = α = 1, then I1,1g (h) = Ig(h) and J1,1
g (h) = Jg(h), which are

Alexander operators. These integral operators have been investigated
by many authors [7, 9, 13, 14].

In this note, we study Iγ,αg and Jγ,α
g operators on K, K(α) and S∗

b .
Here, we obtain the necessary and sufficient conditions such that Iγ,αg (D)
and Jγ,α

g (D) are bounded, Furthermore, we obtain the sufficient condi-
tions such that |SIγ,αg

| < 2.

2. Integral Operators on K(α) and S∗(α)

Now, we verify the integral operators, Iγ,αg and Jγ,α
g , on K(α) and

S∗(α).

Lemma 2.1. (i) Let α > 0, γ > 0, β ≥ 0 and 0 ̸= b ∈ C, where
(α− 1)Reb ≥ 0. If g ∈ P (β, b), then Iγ,αg is an operator on Kb.

(ii) Let γ > 0, 0 ≤ α < 1 and β ∈ R, where 1 ≤ 2α+βγ < 2. If g ∈
P (β, 1), then Iγ,αg is an operator from K(α) to K(2α+βγ− 1).
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Proof. (i) Let h ∈ Kb. Then, for z ∈ D,

Re

{
1 +

1

b

z(Iγ,αg h)′′(z)

(Iγ,αg h)′(z)

}(2.1)

= Re

{
1 +

1

b

z(zα−1h′′(z)gγ(z) + γzα−1h′(z)g′(z)gγ−1(z))

zα−1h′(z)gγ(z)

}
+Re

{
1

b

z(α− 1)zα−2h′(z)gγ(z)

zα−1h′(z)gγ(z)

}
= (α− 1)Re

(
1

b

)
+Re

{
1 +

1

b

(
zh′′(z)

h′(z)

)}
+ γRe

{
1

b

(
zg′(z)

g(z)

)}
.

By this hypothesis and (2.1), we obtain

Re

{
1 +

1

b

(
z(Iγ,αg h)′′(z)

(Iγ,αg h)′(z)

)}
> 0.

Therefore, Iγ,αg h ∈ Kb for all h ∈ Kb.
(ii) We can prove this part in a similar manner as the proof of part

(i).
□

Lemma 2.2. Let α > 0, 0 ̸= b ∈ C and 0 < γ < αRe(1b ). If g ∈ Kb,
then Jγ,α

g is an operator from S∗
b to Kb.

Proof. Let h ∈ S∗
b , then for z ∈ D,

Re

{
1 +

1

b

z(Jγ,α
g h)′′(z)

(Jγ,α
g h)′(z)

}
= Re

{
1 +

1

b

z(zα−1h′(z)(g′(z))γ + γzα−1h(z)g′′(z)(g′(z))α−1)

zα−1h(z)(g′(z))γ

}
+Re

{
1

b

z(α− 1)zα−2h(z)(g′(z))γ

zα−1h(z)(g′(z))γ

}
= Re

{
1 +

1

b

(
zh′(z)

h(z)

)
+
γ

b

(
zg′′(z)

g′(z)

)
+
α− 1

b

}
= Re

{
1 +

1

b

(
zh′(z)

h(z)
− 1

)}
+ γRe

{
1 +

1

b

(
zg′′(z)

g′(z)

)}
+ αRe

(
1

b

)
− γ.

By this hypothesis, we obtain Jγ,α
g h ∈ Kb. □

Theorem 2.3. Let γ > 0, 0 ≤ α < 1 and β ∈ R, where 1 ≤ 2α+βγ < 2.
Also, let g ∈ P (β, 1) and h ∈ K(α). Then, the image (Iγ,αg h)(D) is
bounded if and only if

lim sup
|z|→1

(1− |z|)
∣∣∣∣zh′′(z)h′(z)

+
γzg′(z)

g(z)
+ α+ 1

∣∣∣∣ < 1.
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Proof. By using Part (2) of Lemma 2.1, we have Iγ,αg h ∈ K. By replacing
g = Iγ,αg h in (1.1), then there exists ψ ∈ H(D) such that

(Iγ,αg h)′′(z)

(Iγ,αg h)′(z)
=

2ψ(z)

1− zψ(z)
.

Therefore

ψ(z) =

(Iγ,αg h)′′(z)

(Iγ,αg h)′(z)

2 +
z(Iγ,αg h)′′(z)

(Iγ,αg h)′(z)

=

h′′(z)
h′(z) + γg′(z)

g(z) + α−1
z

1 + α+ zh′′(z)
h′(z) + γzg′(z)

g(z)

.

Thus, we obtain
1− |z|

|1− zψ(z)|
=

1− |z|
2∣∣∣ zh′′(z)

h′(z) +
γzg′(z)
g(z)

+α+1
∣∣∣

(2.2)

=
1

2
(1− |z|)

∣∣∣∣1 + α+
zh′′(z)

h′(z)
+
γzg′(z)

g(z)

∣∣∣∣ .
By Theorem 2 in [10], we can conclude that the image (Iγ,αg h)(D) is
bounded if and only if

lim sup
|z|→1

1− |z|
|1− zψ(z)|

<
1

2
,

and so by (2.2), the proof is complete. □
Similarly, by using Lemma 2.2, the following theorem is achieved:

Theorem 2.4. Let 0 < γ < α, g ∈ K and h ∈ S∗. Then, the image
(Jγ,α

g h)(D) is bounded if and only if

lim sup
|z|→1

(1− |z|)
∣∣∣∣zh′(z)h(z)

+
γzg′′(z)

g′(z)
+ α+ 1

∣∣∣∣ < 1.

By using part 2 of Lemma 2.1, we can obtain the below result:
Corollary 2.5. Let γ > 0, 0 ≤ α < 1 and β ∈ R, where 1 ≤ 2α+βγ < 2.
If g ∈ P (β, 1) and h ∈ K(α), then ∥SIγ,αg h∥ ≤ 2.

And also, by Theorem 2.3, the below conclusion is gained:
Corollary 2.6. Let γ > 0, 0 ≤ α < 1 and β ∈ R, where 1 ≤ 2α+βγ < 2.
If

lim sup
|z|→1

(1− |z|)
∣∣∣∣zh′′(z)h′(z)

+
γzg′(z)

g(z)
+ α+ 1

∣∣∣∣ < 1,

then ∥SIγ,αg h∥ < 2.
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Finally, a similar corollary to those above is also true for the operator
Jγ,α
f h.

3. Integral Operators on Besov Spaces

We use dA(z) to denote the area measure of D which is normalized,
so the area of D is 1. We have

dA(z) =
1

π
dxdy

=
r

π
drdθ,

where z = x+ iy = reiθ and we set
dAα(z) = (α+ 1)(1− |z|2)αdA(z),

where α > −1. It is clear that if α is a real number then∫
D
(1− |z|2)αdA(z) <∞,

if and only if α > −1.
For 1 < p <∞ and δ ≥ 1, the Besov space Bp

δ is defined as the set of
all g ∈ H(D) such that

∥g∥Bp
δ
:= |g(0)|+

{
(p− 1)

∫
D
(1− |z|2)p−2|g′(z)|pdAδ(z)

} 1
p

<∞.

For simplicity, the space Bp
1 will be denoted by Bp. Many authors have

studied the properties of the Besov spaces [1, 2]. The space H∞ consists
of bounded analytic functions g in D where

∥g∥H∞ := lim
r→1−

(max
|z|≤r

|g(z)|) <∞.

In this section, we study two operators Iγ,αg and Jγ,α
g on H∞ and Besov

space Bp
δ .

Theorem 3.1. Let 1 < p < ∞ and δ ≥ 1. If g ∈ Bp
δ then Jγ,α

g is
bounded on H∞ and ∥Jγ,α

g ∥Bp
δ
≤ ∥g∥Bp

δ
where γ ≤ 1 and α ≥ 1.

Proof. Let ∥h∥H∞ = 1. Therefore,

∥Jγ,α
g ∥p

Bp
δ
= (p− 1)

∫
D
(1− |z|2)p−2|h(z)(g′(z))γzα−1|pdAδ(z)

≤ (p− 1)∥h∥pH∞

∫
D
(1− |z|2)p−2|(g′(z))γ |pdAδ(z)

≤
(
∥g∥Bp

δ
− |g(0)|

)p
<∞,

since γ ≤ 1 and α ≥ 1. □
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Theorem 3.2. Let 1 < p < ∞, δ ≥ 1 and g ∈ H∞. Then Iγ,αg ∈ Bp
δ ,

where α + γ ≥ 1. Moreover, ∥Iγ,αg ∥Bp
δ
≤ ∥Igγ∥H∞, where I(z) = zα−1

(z ∈ D).

Proof. Suppose that g ∈ H∞. There exists a number N > 0 such that
|g(z)|
N < |z| (z ∈ D), thus,

|zα−1gγ(z)| ≤ Nγ , (z ∈ D),

where γ + α− 1 ≥ 0.
Therefore, zα−1gγ(z) ∈ H∞. Set I(z) = zα−1 (z ∈ D), so there exists

a number c > 0 such that ∥Igγ∥H∞ = c. Now, for any ∥h∥Bp
δ
= 1, we

have

∥Iγ,αg h∥p
Bp

δ
= (p− 1)

∫
D
(1− |z|2)p−2

∣∣h′(z)zα−1gγ(z)
∣∣p dAδ(z)

≤ cp(p− 1)

∫
D
(1− |z|2)p−2|h′(z)|pdAδ(z)

≤ cp∥h∥p
Bp

δ

= cp,

and the proof is complete. □

Let λ > 0 and g be a locally univalent function. Also let

B(λ) = {g ∈ H(D); ∥g
′′

g′
∥ ≤ 2λ},

where ∥∥∥∥g′′g′
∥∥∥∥ = sup

z∈D
(1− |z|2)

∣∣∣∣g′′(z)g′(z)

∣∣∣∣ ,
is the norm of the pre-Schwarzian derivative g′′

g′ of g. Kim and Sugawa
[5, 6] investigated the properties of the class B(λ).

Theorem 3.3. Let 1 < p <∞, δ > 1 and λ < 1. Therefore, B(λ) ⊆ Bp
δ .

Proof. Let |z| = t < 1 and g ∈ B(λ). Then we have

log

∣∣∣∣g′(z)g′(0)

∣∣∣∣ ≤ ∣∣∣∣log g′(z)g′(0)

∣∣∣∣
=

∣∣∣∣∫ z

0

g′′(w)

g′(w)
dw

∣∣∣∣
≤ t

∫ 1

0

∣∣∣∣g′′(rz)g′(rz)

∣∣∣∣ dr
≤ t

∫ 1

0

2λ

1− t2r2
dr
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= 2λ log

√
1 + t

1− t
.

This implies

|g′(z)| ≤ |g′(0)|
(
1 + t

1− t

)λ

, (|z| = t < 1),(3.1)

therefore by using relationship (3.1), we can obtain

sup
z∈D

(1− |z|2)|g′(z)| ≤ |g′(0)| sup
0<t<1

(1− t2)

(
1 + t

1− t

)λ

(3.2)

≤ 21+λ|g′(0)| sup
0<t<1

(1− t)1−λ

= 21+λ|g′(0)|.

If we set m = 21+λ|g′(0)| and use relationship (3.2), it is deduced that∫
D
|g′(z)|p(1− |z|2)p−2dAδ(z) = (δ + 1)

∫
D
|g′(z)|p(1− |z|2)p+δ−2dA(z)

≤ (δ + 1)mp

∫
D
(1− |z|2)δ−2dA(z) <∞,

where δ > 1 and finally it is concluded that g ∈ Bp
δ . □

Theorem 3.4. Assume that α+ γ ≥ 1 and g ∈ H∞. Then the integral
operator Iγ,αg is compact from Bp

δ space to Bp
δ space where 1 < p < ∞

and δ ≥ 1.

Proof. Let g ∈ H∞ and (hn) be a sequence in Bp
δ such that hn → 0. For

n = 1, 2, 3, . . ., we have

∥Iγ,αg hn∥pBp
δ
= (p− 1)

∫
D
(1− |z|2)p−2|h′

n(z)g
γ(z)zα−1|pdAδ(z)

≤ ∥g∥γpH∞ · ∥hn∥pBp
δ
.

Since for hn → 0 on D, we have ∥hn∥Bp
δ
→ 0 and by considering n→ ∞

in the last inequality, we obtain that
lim
n→∞

∥Iγ,αg hn∥Bp
δ
= 0.

Therefore, Iγ,αg is compact. □

References

1. J.J. Donaire, D. Girela, and D. Vukotić, On the growth and range
of functions in Möbius invariant spaces, J. Anal. Math., 112(1)
(2010), pp. 237-260.



INTEGRAL OPERATORS ON THE BESOV SPACES AND · · · 69

2. J.J. Donaire, D. Girela, and D. Vukotic, On univalent functions in
some Mobius invariant spaces, J. Reine. Angew. Math., 553 (2002),
pp. 43-72.

3. A. Ebadian and J. Sokół, Volterra type operator on the convex
functions, Hacet. J. Math. Stat., 47(1) (2018), pp. 57-67.

4. C. Hammond, The norm of a composition operator with linear
symbol acting on the Dirichlet space, J. Math. Anal. Appl., 303(2)
(2005), pp. 499-508.

5. Y.C. Kim and T. Sugawa, Growth and coefficient estimates for
uniformly locally univalent functions on the unit disk, Rocky Mt.
J. Math., 32 (2002), pp. 179-200.

6. Y.C. Kim and T. Sugawa, Uniformly locally univalent functions
and Hardy spaces, J. Math. Anal. Appl., 353(1) (2009), pp. 61-67.

7. S. Li, Volterra composition operators between weighted bergman
spaces and bloch type spaces, J. Korean Math. SOC., 45(1) (2008),
pp. 229-248.

8. S. Li and S. Stević, Integral type operators from mixed-norm spaces
to α-Bloch spaces, Integr. Transf. Spec. F., 18(7) (2007), pp. 485-
493.

9. S. Li and S. Stević, Products of integral-type operators and com-
position operators between bloch-type spaces, J. Math. Anal. Appl.,
349(2) (2009), pp. 596-610.

10. Z. Nehari, A property of convex conformal maps, J. Anal. Math.,
30(1) (1976), pp. 390-393.

11. Z. Orouji and R. Aghalary, The norm estimates of pre-schwarzian
derivatives of spirallike functions and uniformly convex alpha-
spirallike functions, Sahand Commun. Math. Anal., 12(1) (2018),
pp. 89-96.

12. M. Taati, S. Moradi, and S. Najafzadeh, Some properties and re-
sults for certain subclasses of starlike and convex functions, Sahand
Commun. Math. Anal.,7(1) (2017), pp. 1-15.

13. J. Xiao, Holomorphic Q classes, Lecture notes in mathematics,
2001.

14. K. Zhu, Operator theory in function spaces, MR 92c, 47031, 1990.

1 Department of Mathematics, Faculty of Science, Urmia University,
Urmia, Iran.

Email address: z.orouji@urmia.ac.ir
2 Department of Mathematics, Faculty of Science, Urmia University,

Urmia, Iran.
Email address: a.ebadian@urmia.ac.ir


	1. Introduction
	2. Integral Operators on K() and S*()
	3. Integral Operators on Besov Spaces
	References

