On the Spaces of λ_{r}-almost Convergent and λ_{r}-almost Bounded Sequences

Sinan Ercan

Abstract

The aim of the present work is to introduce the concept of λ_{r}-almost convergence of sequences. We define the spaces $f\left(\lambda_{r}\right)$ and $f_{0}\left(\lambda_{r}\right)$ of λ_{r}-almost convergent and λ_{r}-almost null sequences. We investigate some inclusion relations concerning those spaces with examples and we determine the β - and γ-duals of the space $f\left(\lambda_{r}\right)$. Finally, we give the characterization of some matrix classes.

1. Preliminaries and Background

By w, we denote the space of all real or complex valued sequences. Any vector subspace of w is called sequence space. We write ℓ_{∞}, c, c_{0} for the classical sequence spaces of all bounded, convergent, null, respectively. Throughout this paper, we simply write $x=\left(x_{k}\right)$ instead of $x=\left(x_{k}\right)_{k=0}^{\infty}$ and $\mathbb{N}=\{0,1,2, \ldots\}$.

Let X be a sequence space. If X is a Banach space and

$$
\tau_{k}: X \rightarrow \mathbb{C}, \quad \tau_{k}(x)=x_{k}
$$

is a continuous for all $k \in \mathbb{N}, X$ is called a $B K$-space. The sequence spaces ℓ_{∞}, c and c_{0} are $B K$-spaces with the norm given by $\|x\|_{\infty}=$ $\sup \left|x_{k}\right|$ for all $k \in \mathbb{N}$.

A continuous linear functional ϕ on ℓ_{∞} is called a Banach limit if
(i) $\phi(x) \geq 0$ for $x=\left(x_{k}\right)$ and $x_{k} \geq 0$ for every k,
(ii) $\phi\left(x_{\sigma(k)}\right)=\phi\left(x_{k}\right)$, where σ is shift operator which is defined on w by $\sigma(k)=k+1$ and

2010 Mathematics Subject Classification. 46A45, 40C05.
Key words and phrases. Almost convergence, Matrix domain, β-, γ-duals, Matrix transformations.

Received: 21 July 2019, Accepted: 21 October 2019.
(iii) $\phi(e)=1$, where $e=(1,1,1, \ldots)$.

A sequence $x=\left(x_{k}\right) \in \ell_{\infty}$ is said to be almost convergent to the generalized limit α if all Banach limits of x are α and denoted by $f-\lim x=\alpha$. Lorentz [[7] introduced that $f-\lim x_{k}=\alpha$ uniformly in n if and only if

$$
\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{k=0}^{m} x_{k+n} \text { uniformly in } n .
$$

We denote the sets of all almost convergent sequences f by

$$
f=\left\{x=\left(x_{k}\right) \in w: \lim _{m \rightarrow \infty} t_{m n}(x)=\alpha \text { uniformly in } n\right\},
$$

where

$$
t_{m n}(x)=\sum_{k=0}^{m} \frac{1}{m+1} x_{k+n}, \quad t_{-1, n}=0 .
$$

It is well known that $c \subset f \subset \ell_{\infty}$ strictly hold. Since these inclusions, norms $\|\cdot\|_{f}$ and $\|.\|_{\ell_{\infty}}$ of the spaces f and ℓ_{∞} are equivalent, so the sets f and f_{0} are $B K$-spaces with the norm $\|x\|_{f}=\sup _{m, n}\left|t_{m n}(x)\right|$.

A matrix $A=\left(a_{n k}\right)$ is called a triangle if $a_{n k}=0$ for $k>n$ and $a_{n n}=0$ for all $n \in \mathbb{N}$. It is trivial that $A(B x)=(A B) x$ holds for the triangle matrices A, B and a sequence x. Further, a triangle matrix U uniquely has an inverse $U^{-1}=V$ which is also a triangle matrix. Then $x=U(V x)=V(U x)$ holds for all $x \in w$.

If A is an infinite matrix with complex entries $a_{n k}$ for $n, k \in \mathbb{N}$, then we write $A=\left(a_{n k}\right)$ instead of $A=\left(a_{n k}\right)_{n, k=0}^{\infty}$. Any sequence in the $n^{\text {th }}$ row of A is indicated by A_{n}, that is $A_{n}=\left(a_{n k}\right)_{k=0}^{\infty}$ for every $n \in \mathbb{N}$. If $x=\left(x_{k}\right) \in w$ then we define the A-transform of x as the sequence $A x=\left(A_{n}(x)\right)_{n=0}^{\infty}$, where

$$
\begin{equation*}
A_{n}(x)=\sum_{k=0}^{\infty} a_{n k} x_{k}, \tag{1.1}
\end{equation*}
$$

provided the series ($\mathbb{L} \mathbb{C}$) converges for $n \in \mathbb{N} . x=\left(x_{k}\right)$ is called A-summable to $a \in \mathbb{C}$ if $A x$ converges to a which is called A-limit of x. If $x \in X$ implies that $A x \in Y$, then we say that A defines a matrix mapping from X into Y and denote it by $A: X \rightarrow Y$. By $(X: Y)$ we mean the class of all infinite matrices such that $A: X \rightarrow Y$.

For an arbitrary sequence space X, the matrix domain of an infinite matrix A in X is defined by

$$
\begin{equation*}
X_{A}=\{x \in w: A x \in X\}, \tag{1.2}
\end{equation*}
$$

which is a sequence space. If A is triangle, then one can easily observe that the sequence spaces X_{A} and X are linearly isomorphic, i.e., $X_{A} \cong$ X.

Constructing a new sequence space X_{A} generated by the limitation matrix A from a sequence space X is the expansion or the contraction of the original space X. Using domain of a triangle matrix to construct a new sequence spaces was studied by many authors. (for instance [T]]-[IT])

2. On the Concept of λ_{r}-Summability

Let $\Lambda=\left\{\lambda_{k}: k=0,1, \ldots\right\}$ be a set which consists of strictly increasing sequence of positive numbers tending to ∞, that is $0<\lambda_{0}<\lambda_{1}<\cdots$ and $\lambda_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Throughout this paper, we assume that $r \geq 1$ is an integer. We define the infinite matrix $\Lambda^{r}=\left(\lambda_{n k}^{r}\right)$ by

$$
\lambda_{n k}^{r}= \begin{cases}\frac{\lambda_{k}-\lambda_{k-r}}{\lambda_{n}} ; & 0 \leq k \leq n \text { and } r \mid n-k, \\ 0 ; & \text { otherwise }\end{cases}
$$

for $n, k \in \mathbb{N}$. It is clear that the matrix Λ^{r} is a triangle, that is $\lambda_{n n} \neq 0$ and $\lambda_{n k}=0$ for $k>n, n=0,1,2, \ldots$.

We note that if we choose $r=1$ the Λ^{r} matrix reduces to the matrix Λ which is defined in [[12]. Also, if $r=1$ for the sequence $\lambda_{k}=k+r$ the Λ^{r} matrix is coincide with the matrix of Cesàro means given in [43] and [14].

Now, let $x=\left(x_{n}\right) \in w$ and $n \geq 1$. Then, we obtain that

$$
\begin{aligned}
x_{n}-\Lambda_{n}^{r}(x) & =\frac{1}{\lambda_{n}} \sum_{\substack{i=0 \\
r \mid n-i}}^{n}\left(\lambda_{i}-\lambda_{i-r}\right)\left(x_{n}-x_{i}\right) \\
& =\frac{1}{\lambda_{n}} \sum_{\substack{i=0 \\
r \mid n-i}}^{n}\left(\lambda_{i}-\lambda_{i-r}\right) \sum_{\substack{k=i+r \\
r \mid n-k}}^{n}\left(x_{k}-x_{k-r}\right) \\
& =\frac{1}{\lambda_{n}} \sum_{\substack{k=r \\
r \mid n-k}}^{n}\left(x_{k}-x_{k-r}\right) \sum_{\substack{i=0 \\
r \mid n-i}}^{k-r}\left(\lambda_{i}-\lambda_{i-r}\right) \\
& =\frac{1}{\lambda_{n}} \sum_{\substack{k=r \\
r \mid n-k}}^{n} \lambda_{k-r}\left(x_{k}-x_{k-r}\right) .
\end{aligned}
$$

Hence we have that

$$
\begin{equation*}
x_{n}-\Lambda_{n}^{r}(x)=S_{n}^{r}(x), \tag{2.1}
\end{equation*}
$$

for $n \in \mathbb{N}$. Here the sequence $S^{r}(x)=\left(S_{n}^{r}(x)\right)_{n=0}^{\infty}$ is defined by

$$
\begin{equation*}
S_{0}^{r}(x)=0 \text { and } S_{n}^{r}(x)=\frac{1}{\lambda_{n}} \sum_{\substack{k=r \\ r \mid n-k}}^{n} \lambda_{k-r}\left(x_{k}-x_{k-r}\right) . \tag{2.2}
\end{equation*}
$$

We have the following result from (L.T) and Lemma 2.2.
Theorem 2.1. For a sequence $x=\left(x_{k}\right) \in w$ with $a \in \mathbb{C}$, let $f-$ $\lim _{n \rightarrow \infty} x_{n}=a$. Then, $f-\lim _{n \rightarrow \infty} \Lambda_{n}^{r}(x)=a$ holds if and only if $S^{r}(x) \in f_{0}$. Proof. Firstly, we assume that $f-\lim _{n \rightarrow \infty} x_{n}=f-\lim _{n \rightarrow \infty} \Lambda_{n}^{r}(x)=a$. We have that the equality

$$
\begin{equation*}
\frac{1}{m+1} \sum_{k=0}^{m}\left[x_{n+k}-\Lambda_{n+k}^{r}(x)\right]=\frac{1}{m+1} \sum_{k=0}^{m} S_{n+k}^{r}(x), \tag{2.3}
\end{equation*}
$$

holds for all $m, n \in \mathbb{N}$. Since (2.3) tends to zero as $m \rightarrow \infty$ uniformly in n, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{m+1} \sum_{k=0}^{m} S_{n+k}^{r}(x)=0 \text { uniformly in } n .
$$

This means that $S^{r}(x) \in f_{0}$.
Conversely, assume that $S^{r}(x) \in f_{0}$ and let $f-\lim _{n \rightarrow \infty} x_{n}=a$. We have that

$$
\lim _{n \rightarrow \infty} \frac{1}{m+1} \sum_{k=0}^{m}\left[x_{n+k}-\Lambda_{n+k}^{r}(x)\right]=0
$$

from (2.3) as $m \rightarrow \infty$. Consequently, the desired result

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{k=0}^{m} x_{n+k} & =\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{k=0}^{m} \Lambda_{n+k}^{r}(x) \\
& =a
\end{aligned}
$$

is obtained.

3. The Spaces of λ_{r}-Almost Convergent and λ_{r}-Almost null Sequences

In this section, we introduce the following spaces as the sets of all $\lambda_{r^{-}}$ almost convergent sequences and λ_{r}-almost null sequences, respectively, that is

$$
\begin{aligned}
f\left(\lambda_{r}\right) & =\left\{x \in w: \lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{k=0}^{m} \Lambda_{n}^{r}(x)=l \text { uniformly in } n\right\}, \\
f_{0}\left(\lambda_{r}\right) & =\left\{x \in w: \lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{k=0}^{m} \Lambda_{n}^{r}(x)=0 \text { uniformly in } n\right\} .
\end{aligned}
$$

Using the notation of ($\mathbb{L} 2)$ we write again these spaces given above as the matrix domains of the triangle Λ^{r} in the spaces f and f_{0}, respectively, such that

$$
f\left(\lambda_{r}\right)=(f)_{\Lambda^{r}}, \quad f_{0}\left(\lambda_{r}\right)=\left(f_{0}\right)_{\Lambda^{r}} .
$$

Now we define the sequence $y=\left(y_{n}\right)$ which is connected with the sequence $x=\left(x_{k}\right)$ by the λ_{r}-transform, i.e.,

$$
\begin{align*}
y_{n} & =\Lambda_{n}^{r}(x) \tag{3.1}\\
& =\frac{1}{\lambda_{n}} \sum_{\substack{k=0 \\
r \mid n-k}}^{n}\left(\lambda_{k}-\lambda_{k-r}\right) x_{k},
\end{align*}
$$

for all $n \in \mathbb{N}$.
Theorem 3.1. The sequence spaces $f\left(\lambda_{r}\right)$ and $f_{0}\left(\lambda_{r}\right)$ are $B K$-spaces with the same norm given by

$$
\begin{align*}
\|x\|_{f\left(\lambda_{r}\right)} & =\left\|\Lambda^{r}(x)\right\|_{f} \tag{3.2}\\
& =\sup _{n, m \in \mathbb{N}}\left|t_{m n}\left(\Lambda^{r}(x)\right)\right|,
\end{align*}
$$

where

$$
\begin{aligned}
t_{m n}\left(\Lambda^{r}(x)\right) & =\frac{1}{m+1} \sum_{j=0}^{m} \Lambda_{n+j}^{r}(x) \\
& =\frac{1}{m+1} \sum_{j=0}^{m} \sum_{\substack{k=0 \\
r \mid n+j-k}}^{n+j} \frac{\lambda_{k}-\lambda_{k-r}}{\lambda_{n+j}} x_{k},
\end{aligned}
$$

for all $m, n \in \mathbb{N}$.
Proof. It is well known that f and f_{0} are $B K$-spaces with the norm $\|\cdot\|_{\infty}$. Also the matrix Λ^{r} is a triangle matrix. Hence $f\left(\lambda_{r}\right)$ and $f_{0}\left(\lambda_{r}\right)$ are $B K$-spaces endowed with the norm $\|\cdot\|_{f\left(\lambda_{r}\right)}$ from Theorem 4.3.2 given in [16].

Theorem 3.2. The sequence spaces $f\left(\lambda_{r}\right), f_{0}\left(\lambda_{r}\right)$ are norm isomorphic to the spaces f and f_{0}, respectively, that is $f\left(\lambda_{r}\right) \cong f$ and $f_{0}\left(\lambda_{r}\right) \cong f_{0}$.

Proof. To prove $f\left(\lambda_{r}\right) \cong f$ we need show the existence of a linear bijection between the spaces $f\left(\lambda_{r}\right)$ and f which preserves the norm. Let define T as (3.D), from $f\left(\lambda_{r}\right)$ to f by $x \rightarrow y=T x=\Lambda^{r}(x)$. The linearity of T is clear. Also $x=\theta$ whenever $T x=T \theta$ and hence T is injective.

Now, let $y=\left(y_{k}\right) \in f$ and $x=\left(x_{k}\right)$ defined by

$$
x_{k}= \begin{cases}-\frac{\lambda_{j}}{\lambda_{k}-\lambda_{k-r}}, & j=k-r, \\ \frac{\lambda_{j}}{\lambda_{k}-\lambda_{k-r}}, & j=k, \\ 0, & \text { otherwise } .\end{cases}
$$

for all $k \in \mathbb{N}$. Then we have

$$
\begin{aligned}
\sum_{\substack{k=0 \\
r \mid n+j-k}}^{n+j} \frac{\lambda_{k}-\lambda_{k-r}}{\lambda_{n+j}} x_{k} & =\sum_{\substack{k=0 \\
r \mid n+j-k}}^{n+j} \frac{\lambda_{k} y_{k}-\lambda_{k-r} y_{k-r}}{\lambda_{n+j}} \\
& =y_{n+j}
\end{aligned}
$$

which gives

$$
\frac{1}{m+1} \sum_{j=0}^{m} \sum_{\substack{k=0 \\ r \mid n+j-k}}^{n+j} \frac{\lambda_{k}-\lambda_{k-r}}{\lambda_{n+j}} x_{k}=\frac{1}{m+1} \sum_{j=0}^{m} y_{n+j}
$$

Hence,

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{j=0}^{m} \Lambda_{n+j}^{r}(x) & =\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{j=0}^{m} y_{n+j} \\
& =l \text { uniformly in } n .
\end{aligned}
$$

This means that $x \in f\left(\lambda_{r}\right)$ and T is surjective. T is also norm preserving from (3.2). The desired result is obtained.

We note that absolute property does not hold on the spaces $f\left(\lambda_{r}\right)$ and $f_{0}\left(\lambda_{r}\right)$, that is $\|x\|_{f\left(\lambda_{r}\right)} \neq\||x|\|_{f_{0}\left(\lambda_{r}\right)}$ for at least one sequence x in each of these spaces, where $|x|=\left(\left|x_{k}\right|\right)$. Consequently, these spaces are $B K$-spaces of non-absolute type. Further, $f\left(\lambda_{r}\right)$ and $f_{0}\left(\lambda_{r}\right)$ has no Schauder basis from Corollary 3.3 in [III] and Theorem 2.3 in [II8].

4. Some Inclusion Relations

Theorem 4.1. The inclusions $c\left(\lambda_{r}\right) \subset f\left(\lambda_{r}\right) \subset \ell_{\infty}\left(\lambda_{r}\right)$ strictly hold.
Proof. Let $x=\left(x_{k}\right)$ be a sequence in $c\left(\lambda_{r}\right)$. Then, $\Lambda^{r}(x) \in c$ and we know that the inclusion $c \subset f$ holds. Hence, $\Lambda^{r}(x) \in f$, that is $x \in f\left(\lambda_{r}\right)$. Now to prove strictness of the inclusion we give the following example.

Example 4.2. Consider the sequence $x=\left(x_{k}\right)$ defined by

$$
x_{k}=\left\{\begin{array}{cc}
(-1)^{k}, & \text { if } r \text { is even } \tag{4.1}\\
-\frac{\lambda_{k}+\lambda_{k-r}}{\lambda_{k}-\lambda_{k-r}}, & \text { if } r \text { is odd }
\end{array}\right.
$$

for all $k \in \mathbb{N}$. Then we have

$$
\begin{equation*}
\Lambda_{n}^{r}(x)=(-1)^{n} \tag{4.2}
\end{equation*}
$$

for all $n \in \mathbb{N}$. This means that $x \in c\left(\lambda_{r}\right)$. Further, we have

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{j=0}^{m} \Lambda_{n+j}^{r}(x) & =\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{j=0}^{m}(-1)^{n+j} \\
& =\lim _{m \rightarrow \infty} \frac{(-1)^{n}}{m+1}\left[\frac{1+(-1)^{m}}{2}\right] \\
& =0
\end{aligned}
$$

Hence $x \in f\left(\lambda_{r}\right)$ and the inclusion $c\left(\lambda_{r}\right) \subset f\left(\lambda_{r}\right)$ is strict.
Now we prove the inclusion $f\left(\lambda_{r}\right) \subset \ell_{\infty}\left(\lambda_{r}\right)$ holds. Let $y=\left(y_{k}\right) \in$ $f\left(\lambda_{r}\right)$. Then, since $\Lambda^{r}(y) \in f$ and $f \subset \ell_{\infty}$, we have $\Lambda^{r}(y) \in \ell_{\infty}$ and $f\left(\lambda_{r}\right) \subset \ell_{\infty}\left(\lambda_{r}\right)$ holds. To see strictness of this inclusion consider the sequence z defined in [IT] by $y=\Lambda^{r}(z)$, where

$$
y=(0,0,0, \ldots, 1, \ldots, 1, \ldots, 0, \ldots, 0, \ldots),
$$

and blocks of 0 's are increasing by factors of 100 and the blocks of 1 increasing by factors of 10 . This sequence is in ℓ_{∞} but not in f. Hence, $z \in \ell_{\infty}\left(\lambda_{r}\right) \backslash f\left(\lambda_{r}\right)$ and the inclusion $f\left(\lambda_{r}\right) \subset \ell_{\infty}\left(\lambda_{r}\right)$ is strict.

Theorem 4.3. The inclusion $f_{0}\left(\lambda_{r}\right) \subset f\left(\lambda_{r}\right)$ strictly holds.
Proof. Let $x=\left(x_{k}\right)$ be a sequence in $f_{0}\left(\lambda_{r}\right)$. Then, we have $\Lambda^{r}(x) \in f_{0}$. Since $f_{0} \subset f, \Lambda^{r}(x) \in f$ and $x \in f\left(\lambda_{r}\right)$. Consequently, $f_{0}\left(\lambda_{r}\right) \subset f\left(\lambda_{r}\right)$ holds. Now to see strictness of this inclusion consider $x=\left(x_{k}\right)$ defined by $x_{k}=1$ for all $k \in \mathbb{N}$. Obviously, $x \in f\left(\lambda_{r}\right)$ and we have

$$
\lim _{n \rightarrow \infty} \frac{1}{m+1} \sum_{j=0}^{m} \sum_{\substack{k=0 \\ r \mid n+j-k}}^{n+j} \frac{\lambda_{k}-\lambda_{k-r}}{\lambda_{n+j}} x_{k}=1 .
$$

Hence, $x \notin f_{0}\left(\lambda_{r}\right)$ and the inclusion $f_{0}\left(\lambda_{r}\right) \subset f\left(\lambda_{r}\right)$ is strict.
By taking into account $\lambda \in \Lambda$, we have $\lambda_{k+r} / \lambda_{k}>1$ for all $k \in$ \mathbb{N}. Hence, there are only two distinct cases of the sequence λ, either $\lim _{k \rightarrow \infty} \inf \lambda_{k+r} / \lambda_{k}=1$ or $\lim _{k \rightarrow \infty} \inf \lambda_{k+r} / \lambda_{k}>1$. Clearly, we obtain the following result:

Lemma 4.4. (i) $\lim _{k \rightarrow \infty} \inf \lambda_{k+r} / \lambda_{k}=1$ if and only if $\left(\frac{\lambda_{k}}{\lambda_{k}-\lambda_{k-r}}\right) \notin$ ℓ_{∞}.
(ii) $\lim _{k \rightarrow \infty} \inf \lambda_{k+r} / \lambda_{k}>1$ if and only if $\left(\frac{\lambda_{k}}{\lambda_{k}-\lambda_{k-r}}\right) \in \ell_{\infty}$.

Theorem 4.5. (i) The inclusions $f_{0} \subset f_{0}\left(\lambda_{r}\right)$ and $f \subset f\left(\lambda_{r}\right)$ strictly hold.
(ii) The equalities $f_{0}=f_{0}\left(\lambda_{r}\right)$ and $f=f\left(\lambda_{r}\right)$ hold if and only if $\Lambda^{r}(x) \in f_{0}$ for every x in the spaces $f\left(\lambda_{r}\right)$ and $f_{0}\left(\lambda_{r}\right)$, respectively.
Proof. (i) Let $x=\left(x_{k}\right) \in c$. We know that $c \subset f$ and Λ^{r} is regular, hence $x \in f, \Lambda^{r}(x) \in c$. Therefore, we obtain that $x \in f\left(\lambda_{r}\right)$ and the inclusion $f \subset f\left(\lambda_{r}\right)$ holds. To see strictness of this inclusion let define a sequence $x=\left(x_{k}\right)$ by (4.1) and suppose that $\lim _{k \rightarrow \infty} \inf \frac{\lambda_{k+r}}{\lambda_{k}}=1$. Since $x \notin \ell_{\infty}$, we obtain $x \notin f$. But $\Lambda^{r}(x) \in f$ and $x \in f\left(\lambda_{r}\right)$. This completes the proof. Similarly, one can prove that the inclusion $f_{0} \subset f_{0}\left(\lambda_{r}\right)$ strictly holds.
(ii) If we assume that $x \in f\left(\lambda_{r}\right)$, we have $S^{r}(x) \in f_{0}$. Hence,

$$
\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{k=0}^{m} S(x)_{n+k}=0
$$

Then, we have

$$
\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{k=0}^{m}\left[x_{n+k}-\Lambda_{n+k}^{r}(x)\right]=0
$$

from (22). This means that

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{k=0}^{m} x_{n+k} & =\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{k=0}^{m} \Lambda_{n+k}^{r}(x) \\
& =l \text { uniformly in } n .
\end{aligned}
$$

Hence, $f\left(\lambda_{r}\right) \subset f$. By combining the inclusion $f \subset f\left(\lambda_{r}\right)$ the equality $f\left(\lambda_{r}\right)=f$ is obtained.

Conversely, assume that the equality $f=f\left(\lambda_{r}\right)$ holds. By (ㄹ.2), we have $S^{r}(x) \in f_{0}$. Following similar way, the results which are concerning to $f_{0}\left(\lambda_{r}\right)$ will be obtained.

Theorem 4.6. Neither of the spaces ℓ_{∞} and $f\left(\lambda_{r}\right)$ includes the other.
Proof. Consider the sequences defined by $\lambda_{k}=k$ and $x_{k}=1 / r$. Then, since $\Lambda^{r}(x)=e \in f, x \in f\left(\lambda_{r}\right)$. It is obvious that $x \in \ell_{\infty} \cap f\left(\lambda_{r}\right)$. Now, consider the sequence x given by (14.1) and suppose that $\lim _{k \rightarrow \infty} \inf \frac{\lambda_{k+r}}{\lambda_{k}}=$ 1. Then, since $\Lambda^{r}(x)=(-1)^{n} \in f, x \in f\left(\lambda_{r}\right)$ but $x \notin \ell_{\infty}$. Further, let take $\lambda_{k}=k$ and define another sequence

$$
y=(0, \ldots, 0,1 / r, \ldots, 1 / r, 0, \ldots, 0,1 / r, \ldots, 1 / r, 0, \ldots, 0, \ldots),
$$

where the block's of 0 's are increasing by factors of 100 and the blocks of $1 / r$ are increasing by factors of 10 . Then,

$$
\Lambda^{r}(y)=(0, \ldots 0,1, \ldots, 1,0, \ldots, 0,1, \ldots, 1,0, \ldots, 0, \ldots) \notin f
$$

and $y \notin f\left(\lambda_{r}\right)$, where the blocks of 0's are increasing by factors of 100 and the blocks of 1 's are increasing by factors of 10 , but $y \in \ell_{\infty}$. This means that $y \in \ell_{\infty} \backslash f\left(\lambda_{r}\right)$. Hence the spaces ℓ_{∞} and $f\left(\lambda_{r}\right)$ overlap, but neither of them include each other.

5. The β - and γ-duals of the set $f\left(\lambda_{r}\right)$ and Some Certain Matrix Classes

In this section, we determine the β-, γ-duals of the space $f\left(\lambda_{r}\right)$. The β-, γ - duals of a sequence space μ are defined as followings;

$$
\begin{aligned}
& \mu^{\beta}=\left\{x=\left(x_{k}\right) \in w: x y=\left(x_{k} y_{k}\right) \in c s \text { for all } y=\left(y_{k}\right) \in \mu\right\} \\
& \mu^{\gamma}=\left\{x=\left(x_{k}\right) \in w: x y=\left(x_{k} y_{k}\right) \in \text { bs for all } y=\left(y_{k}\right) \in \mu\right\} .
\end{aligned}
$$

Then, we characterize some matrix transformations between $f\left(\lambda_{r}\right)$ and classical sequence spaces. Now we begin the following lemmas which will be used in the proof of our results.

Lemma $5.1([27]) . A=\left(a_{n k}\right) \in\left(f: \ell_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k}\right|<\infty . \tag{5.1}
\end{equation*}
$$

Lemma $5.2([[2]]) . A=\left(a_{n k}\right) \in(f: c)$ if and only if ([5.7]) holds and there are $\alpha, \alpha_{k} \in \mathbb{C}$ such that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} a_{n k}=\alpha_{k}, \tag{5.2}\\
& \lim _{n \rightarrow \infty} \sum_{k} a_{n k}=\alpha, \tag{5.3}\\
& \lim _{n \rightarrow \infty} \sum_{k}\left|\Delta\left(a_{n k}-\alpha_{k}\right)\right|=0 . \tag{5.4}
\end{align*}
$$

Lemma 5.3 ([22]). $A \in\left(\ell_{\infty}: f\right)$ if and only if ([5.7) holds and

$$
\begin{gather*}
f-\lim a_{n k}=\alpha_{k} \text { exists for each fixed } k, \tag{5.5}\\
\lim _{m \rightarrow \infty} \sum_{k}\left|a(n, k, m)-\alpha_{k}\right|=0 \text { uniformly in } n . \tag{5.6}
\end{gather*}
$$

Lemma 5.4 ([23]). $A \in(c: f)$ if and only if (5.7), ([5.3) hold and

$$
\begin{equation*}
f-\lim \sum_{k} a_{n k}=\alpha \tag{5.7}
\end{equation*}
$$

Lemma 5.5 ([22]). $A \in(f: f)$ if and only if (5.7), (5.3]), (5.7) hold and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sum_{k}\left|\Delta\left[a(n, k, m)-\alpha_{k}\right]\right|=0 \text { uniformly in } n . \tag{5.8}
\end{equation*}
$$

Theorem 5.6. The γ-dual of the space $f\left(\lambda_{r}\right)$ is the set $e_{1} \cap e_{2}$, where

$$
\begin{aligned}
& e_{1}=\left\{a=\left(a_{k}\right) \in w: \sup _{n \in \mathbb{N}} \sum_{k=0}^{n-1}\left|\bar{\Delta}_{r}\left(\frac{a_{k}}{\lambda_{k}-\lambda_{k-r}}\right) \lambda_{k}\right|<\infty\right\}, \\
& e_{2}=\left\{a=\left(a_{k}\right) \in w:\left(\frac{a_{n}}{\lambda_{n}-\lambda_{n-r}} \lambda_{n}\right) \in \ell_{\infty}\right\} .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
\sum_{k=0}^{n} a_{k} x_{k} & =\sum_{k=0}^{n} a_{k}\left[-\frac{\lambda_{k-r}}{\lambda_{k}-\lambda_{k-r}} y_{k-r}+\frac{\lambda_{k}}{\lambda_{k}-\lambda_{k-r}} y_{k}\right] \\
& =\sum_{k=0}^{n-1} \bar{\Delta}_{r}\left(\frac{a_{k}}{\lambda_{k}-\lambda_{k-r}}\right) \lambda_{k} y_{k}+\frac{a_{n}}{\lambda_{n}-\lambda_{n-r}} \lambda_{n} y_{n} \\
& =T_{n}(y)
\end{aligned}
$$

for all $n \in \mathbb{N}$. $T=\left(t_{n k}\right)$ is the matrix defined by

$$
t_{n k}= \begin{cases}\bar{\Delta}_{r}\left(\frac{a_{k}}{\lambda_{k}-\lambda_{k-r}} \%\right) \lambda_{k}, & \text { if } 0<k<n-1, \tag{5.9}\\ \frac{\lambda_{n}}{\lambda_{n}-\lambda_{n-r}} a_{n}, & \text { if } k=n, \\ 0, & \text { if } k>n .\end{cases}
$$

for all $k, n \in \mathbb{N}$. We deduce from $T_{n}(y)$ that $a x=\left(a_{k} x_{k}\right) \in b s$ whenever $x=\left(x_{k}\right) \in f\left(\lambda_{r}\right)$ if and only if $T y \in \ell_{\infty}$ whenever $y=\left(y_{k}\right) \in f$, where $T=\left(t_{n k}\right)$ is defined by (Б.प). Therefore, we obtain from Lemma 5.1 that $\left(f\left(\lambda_{r}\right)\right)^{\gamma}=e_{1} \cap e_{2}$.

Theorem 5.7. Define the sets e_{3} and e_{4} by

$$
\begin{aligned}
& e_{3}=\left\{a=\left(a_{k}\right) \in w:\left\{\frac{\lambda_{n}}{\lambda_{n}-\lambda_{n-r}} a_{n}\right\} \in c\right\}, \\
& e_{4}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k}\left|\Delta\left(t_{n k}-\alpha_{k}\right)\right|=0\right\},
\end{aligned}
$$

then $\left\{f\left(\lambda_{r}\right)\right\}^{\beta}=e_{3} \cap e_{4}$.
Proof. Take any $a=\left(a_{k}\right) \in w$. It is eaisly seen from $T_{n}(y)$ that $a x=$ $\left(a_{k} x_{k}\right) \in c s$ whenever $x=\left(x_{k}\right) \in f\left(\lambda_{r}\right)$ if and only if $T y \in c$ whenever $y=\left(y_{k}\right) \in f$. It is clear that the columns of the matrix T in lie c where $T=\left(t_{n k}\right)$ defined in (5.4). We have the consequence by Lemma 5.2 that $\left\{f\left(\lambda_{r}\right)\right\}^{\beta}=e_{3} \cap e_{4}$.

Theorem 5.8. Let assume that $A=\left(a_{n k}\right)$ and $B=\left(b_{n k}\right)$ are the infinite matrices which are connected with relation

$$
\begin{equation*}
\hat{a}_{n k}=b_{n k} \tag{5.10}
\end{equation*}
$$

$$
=\bar{\Delta}_{r}\left(\frac{a_{n k}}{\lambda_{k}-\lambda_{k-r}}\right) \lambda_{k}
$$

and μ is any given sequence space. Then, $A \in\left(f\left(\lambda_{r}\right): \mu\right)$ if and only if $B \in(f: \mu)$ and

$$
\begin{equation*}
\left\{\frac{\lambda_{n}}{\lambda_{n}-\lambda_{n-r}} a_{n k}\right\}_{k \in \mathbb{N}} \in c_{0} \tag{5.11}
\end{equation*}
$$

Proof. Firstly, keep in mind that the sequences f and $f\left(\lambda_{r}\right)$ are norm isomorphic. Then, we assume that $A \in\left(f\left(\lambda_{r}\right): \mu\right)$ and take any $y=$ $\left(y_{k}\right) \in f$. Then, $B \Lambda^{r}$ exists and $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{f\left(\lambda_{r}\right)\right\}^{\beta}$ which yields that $\left(b_{n k}\right)_{k \in \mathbb{N}} \in \ell_{1}$ for each $n \in \mathbb{N}$. Hence $B y$ exists for each $y \in f$ and thus letting $m \rightarrow \infty$ in the equality

$$
\begin{aligned}
\sum_{k=0}^{m} b_{n k} y_{k} & =\sum_{k=0}^{m}\left[\bar{\Delta}_{r}\left(\frac{a_{n k}}{\lambda_{k}-\lambda_{k-r}}\right) \lambda_{k}\right] \cdot\left(\sum_{\substack{i=0 \\
r \mid k-i}}^{k} \frac{\left(\lambda_{k}-\lambda_{k-r}\right)}{\lambda_{k}} x_{i}\right) \\
& =\sum_{k=0}^{m} a_{n k} x_{k}
\end{aligned}
$$

for all $n, m \in \mathbb{N}$. We have by (5. $B \in(f: \mu)$.

Conversely, suppose that (5 (1) holds for every fixed $k \in \mathbb{N}$ and $B \in$ $(f: \mu)$. Let take any $x=\left(x_{k}\right) \in f\left(\lambda_{r}\right)$. Then $A x$ exists. Further, we obtain

$$
\begin{aligned}
\sum_{k=0}^{m} a_{n k} x_{k} & =\sum_{k=0}^{m-1} \bar{\Delta}_{r}\left(\frac{a_{n k}}{\lambda_{k}-\lambda_{k-r}}\right) \lambda_{k} y_{k}+\frac{a_{n m}}{\lambda_{m}-\lambda_{m-r}} \lambda_{m} y_{m} \\
& =\sum_{k=0}^{m} b_{n k} y_{k}
\end{aligned}
$$

for all $n, m \in \mathbb{N}$, as $m \rightarrow \infty$, that $A x=B y$ and this shows that $A \in\left(f\left(\lambda_{r}\right): \mu\right)$.
Theorem 5.9. Let μ be any sequence space and assume that $A=\left(a_{n k}\right)$ and $E=\left(e_{n k}\right)$ are the infinite matrices which are connected by the relation

$$
e_{n k}=\sum_{\substack{j=0 \\ r \mid n-j}}^{n} \frac{\lambda_{j}-\lambda_{j-r}}{\lambda_{n}} a_{j k}
$$

for all $n, k \in \mathbb{N}$. Then $D \in\left(\mu: f\left(\lambda_{r}\right)\right)$ if and only if $E \in\left(\mu: f\left(\lambda_{r}\right)\right)$.

Proof. Let $x=\left(x_{k}\right) \in \mu$ and consider the following equality

$$
\sum_{\substack{j=0 \\ r \mid n-j}}^{n} \frac{\lambda_{j}-\lambda_{j-r}}{\lambda_{n}} \sum_{k=0}^{j} a_{j k} x_{k}=\sum_{k=0}^{j} e_{n k} x_{k},
$$

for $n \in \mathbb{N}$. Further, by letting $j \rightarrow \infty$,

$$
\sum_{\substack{j=0 \\ r \mid n-j}}^{n} \frac{\lambda_{j}-\lambda_{j-r}}{\lambda_{n}} \sum_{k=0}^{\infty} a_{j k} x_{k}=\sum_{k=0}^{\infty} e_{n k} x_{k}
$$

for $n \in \mathbb{N}$. Then, we have $\left\{\Lambda^{r}(A x)\right\}_{n}=(E x)_{n}$ for all $n \in \mathbb{N}$. Since $A x \in f\left(\lambda_{r}\right), E x \in f$ whenever $x \in \mu$. This completes the proof.

Corollary 5.10. The following statements hold:
(i) $A=\left(a_{n k}\right) \in\left(f\left(\lambda_{r}\right): \ell_{\infty}\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{f\left(\lambda_{r}\right)\right\}^{\beta}$ and (5.]) holds with $\hat{a}_{n k}$ instead of $a_{n k}$.
(ii) $A=\left(a_{n k}\right) \in\left(f\left(\lambda_{r}\right): c\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{f\left(\lambda_{r}\right)\right\}^{\beta}$ and (5.]), (5.9), (5.3), (5.4) hold with $\hat{a}_{n k}$ instead of $a_{n k}$.
(iii) $A=\left(a_{n k}\right) \in\left(\ell_{\infty}: f\left(\lambda_{r}\right)\right)$ if and only if (5.7), (5.5) and (5.6) hold with $e_{n k}$ instead of $a_{n k}$.
(iv) $A=\left(a_{n k}\right) \in\left(f: f\left(\lambda_{r}\right)\right)$ if and only if (5.7), (5.5), (5.7) and (5.8) hold with $e_{n k}$ instead of $a_{n k}$.
(v) $A=\left(a_{n k}\right) \in\left(c: f\left(\lambda_{r}\right)\right)$ if and only if (5.7), (5.5), (5.7) hold with $e_{n k}$ instead of $a_{n k}$.

Acknowledgment. The author would like to thank the referees for their valuable comments and suggestions which led to a number of improvements in this paper.

References

1. A. Sönmez, Almost convergence and triple band matrix, Math. Comput. Modelling, 57 (2013), pp. 2393-2402.
2. M. Candan, Almost convergence and double sequential band matrix, Acta. Math. Sci., 34 (2014), pp. 354-366.
3. M. Kirişci, Almost convergence and generalized weighted mean II, J. Inequal. Appl., 1 (2014), pp. 1-13.
4. M. Kirişci, Almost convergence and generalized weighted mean, In: AIP Conference Proceedings, AIP (2012), pp. 191-194.
5. M. Şengönül and K. Kayaduman, On the Riesz almost convergent sequences space, Abstr. Appl. Anal., 2012 (2012), Article ID 691694, 18 pages.

ON THE SPACES OF λ_{r}-ALMOST CONVERGENT AND λ_{r}-ALMOST ... 129
6. A. Karaisa and F. Özger, Almost difference sequence space derived by using a generalized weighted mean, J. Comput. Anal. Appl., 19 (2015), pp. 27-38.
7. F. Başar and R. Çolak, Almost-conservative matrix transformations, Turkish J. Math., 13 (1989), pp. 91-100.
8. M. Kirişci, On the spaces of Euler almost null and Euler almost convergent sequences, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat, 62 (2013), pp. 1-16.
9. Qamaruddin, S.A. Mohuiddine, Almost convergence and some matrix transformations, Filomat, 21 (2007), pp. 261-266.
10. M. Candan and K. Kayaduman, Almost convergent sequence space derived by generalized Fibonacci matrix and Fibonacci core, Brithish J. Math. Comput. Sci., 7 (2015), pp. 150-167.
11. F. Başar and M. Kirişçi, Almost convergence and generalized difference matrix, Comput. Math. Appl., 61 (2011), pp. 602-611.
12. M. Mursaleen and A. K. Noman, On the spaces of λ-convergent sequences and bounded sequences, Thai J. Math, 8 (2010), pp. 311329.
13. P.N. Ng and P.Y. Lee, Cesàro sequence spaces of non-absolute type, Comment. Math. Prace Mat., 20 (1978), pp. 429-433.
14. M. Şengönül and F. Başar, Some new Cesàro sequence spaces of non-absolute type which include the spaces c_{0} and c, Soochow J. Math., 31 (2005), pp. 107-119.
15. M. Yeşilkayagil and F. Başar, Space of A_{λ}-almost null and $A_{\lambda^{-}}$ almost convergent sequences, J. Egypt. Math. Soc., 23 (2015), pp. 119-126.
16. A. Wilansky, Summability Through Functional Analysis, in: NorthHolland Mathematics Studies, Elsevier Science Publishers, Amsterdam, New York, 1984.
17. G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80 (1948), pp. 167-190.
18. A. M. Jarrah and E. Malkowsky, BK spaces, bases and linear operators, Ren. Circ. Mat. Palermo II, 52 (1990), pp. 177-191.
19. H.I. Miller and C. Orhan, On almost convergent and statistically convergent subsequences, Acta Math. Hungar., 93 (2001), pp. 135151.
20. G.M. Petersen, Regular Matrix Transformations, McGraw-Hill, New York-Toronto-Sydney, 1970.
21. J.A. Sıddıqi, Infinite matrices summing every almost periodic sequences, Pac. J. Math., 39 (1971), pp. 235-251.
22. J.P. Duran, Infinite matrices and almost convergence, Math. Z., 128 (1972), pp. 75-83.
23. J.P. King, Almost summable sequences, Proc. Am. Math. Soc., 17 (1966), pp. 1219-1225.
24. F. Başar and İ. Solak, Almost-coercive matrix transformations, Rend. Mat. Appl., 11 (1991), pp. 249-256.
25. F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, Istanbul, 2012.
26. S. Nanda, Infinite matrices and almost convergence, J. Indian Math. Soc., 40 (1976), pp. 173-184.
27. P. Kórus, On Λ^{r}-strong convergence of numerical sequences and Fourier series, J. Class. Anal., 9 (2016), pp. 89-98.
28. S. Ercan, On λ_{r}-Convergence and λ_{r}-Boundedness, Journal of Advanced Physics, 7 (2018), pp. 123-129.

Department of Mathematics, Faculty of Science, Firat University, 23119, Elazig, Turkey.

E-mail address: sinanercan45gmail.com

