Sahand Communications in Mathematical Analysis (SCMA) Vol. 17 No. 3 (2020), 117-130 http://scma.maragheh.ac.ir DOI: 10.22130/scma.2019.111716.644

On the Spaces of λ_r -almost Convergent and λ_r -almost Bounded Sequences

Sinan Ercan

ABSTRACT. The aim of the present work is to introduce the concept of λ_r -almost convergence of sequences. We define the spaces $f(\lambda_r)$ and $f_0(\lambda_r)$ of λ_r -almost convergent and λ_r -almost null sequences. We investigate some inclusion relations concerning those spaces with examples and we determine the β - and γ -duals of the space $f(\lambda_r)$. Finally, we give the characterization of some matrix classes.

1. Preliminaries and Background

By w, we denote the space of all real or complex valued sequences. Any vector subspace of w is called sequence space. We write ℓ_{∞} , c, c_0 for the classical sequence spaces of all bounded, convergent, null, respectively. Throughout this paper, we simply write $x = (x_k)$ instead of $x = (x_k)_{k=0}^{\infty}$ and $\mathbb{N} = \{0, 1, 2, \ldots\}$.

Let X be a sequence space. If X is a Banach space and

$$\tau_k: X \to \mathbb{C}, \qquad \tau_k(x) = x_k$$

is a continuous for all $k \in \mathbb{N}$, X is called a BK-space. The sequence spaces ℓ_{∞} , c and c_0 are BK-spaces with the norm given by $||x||_{\infty} = \sup_k |x_k|$ for all $k \in \mathbb{N}$.

A continuous linear functional ϕ on ℓ_∞ is called a Banach limit if

- (i) $\phi(x) \ge 0$ for $x = (x_k)$ and $x_k \ge 0$ for every k,
- (ii) $\phi(x_{\sigma(k)}) = \phi(x_k)$, where σ is shift operator which is defined on w by $\sigma(k) = k + 1$ and

²⁰¹⁰ Mathematics Subject Classification. 46A45, 40C05.

Key words and phrases. Almost convergence, Matrix domain, β -, γ -duals, Matrix transformations.

Received: 21 July 2019, Accepted: 21 October 2019.

(iii) $\phi(e) = 1$, where e = (1, 1, 1, ...).

A sequence $x = (x_k) \in \ell_{\infty}$ is said to be almost convergent to the generalized limit α if all Banach limits of x are α and denoted by $f - \lim x = \alpha$. Lorentz [17] introduced that $f - \lim x_k = \alpha$ uniformly in n if and only if

$$\lim_{m \to \infty} \frac{1}{m+1} \sum_{k=0}^{m} x_{k+n} \text{ uniformly in } n.$$

We denote the sets of all almost convergent sequences f by

$$f = \left\{ x = (x_k) \in w : \lim_{m \to \infty} t_{mn}(x) = \alpha \text{ uniformly in } n \right\},\$$

where

$$t_{mn}(x) = \sum_{k=0}^{m} \frac{1}{m+1} x_{k+n}, \quad t_{-1,n} = 0.$$

It is well known that $c \subset f \subset \ell_{\infty}$ strictly hold. Since these inclusions, norms $\|.\|_{f}$ and $\|.\|_{\ell_{\infty}}$ of the spaces f and ℓ_{∞} are equivalent, so the sets f and f_{0} are BK-spaces with the norm $\|x\|_{f} = \sup_{m,n} |t_{mn}(x)|$.

A matrix $A = (a_{nk})$ is called a triangle if $a_{nk} = 0$ for k > n and $a_{nn} = 0$ for all $n \in \mathbb{N}$. It is trivial that A(Bx) = (AB)x holds for the triangle matrices A, B and a sequence x. Further, a triangle matrix U uniquely has an inverse $U^{-1} = V$ which is also a triangle matrix. Then x = U(Vx) = V(Ux) holds for all $x \in w$.

If A is an infinite matrix with complex entries a_{nk} for $n, k \in \mathbb{N}$, then we write $A = (a_{nk})$ instead of $A = (a_{nk})_{n,k=0}^{\infty}$. Any sequence in the n^{th} row of A is indicated by A_n , that is $A_n = (a_{nk})_{k=0}^{\infty}$ for every $n \in \mathbb{N}$. If $x = (x_k) \in w$ then we define the A-transform of x as the sequence $Ax = (A_n(x))_{n=0}^{\infty}$, where

(1.1)
$$A_n(x) = \sum_{k=0}^{\infty} a_{nk} x_k$$

provided the series (1.1) converges for $n \in \mathbb{N}$. $x = (x_k)$ is called A-summable to $a \in \mathbb{C}$ if Ax converges to a which is called A-limit of x. If $x \in X$ implies that $Ax \in Y$, then we say that A defines a matrix mapping from X into Y and denote it by $A : X \to Y$. By (X : Y) we mean the class of all infinite matrices such that $A : X \to Y$.

For an arbitrary sequence space X, the matrix domain of an infinite matrix A in X is defined by

(1.2)
$$X_A = \{x \in w : Ax \in X\},\$$

which is a sequence space. If A is triangle, then one can easily observe that the sequence spaces X_A and X are linearly isomorphic, i.e., $X_A \cong X$.

Constructing a new sequence space X_A generated by the limitation matrix A from a sequence space X is the expansion or the contraction of the original space X. Using domain of a triangle matrix to construct a new sequence spaces was studied by many authors. (for instance [1]-[15])

2. On the Concept of λ_r -summability

Let $\Lambda = \{\lambda_k : k = 0, 1, ...\}$ be a set which consists of strictly increasing sequence of positive numbers tending to ∞ , that is $0 < \lambda_0 < \lambda_1 < \cdots$ and $\lambda_k \to \infty$ as $k \to \infty$. Throughout this paper, we assume that $r \ge 1$ is an integer. We define the infinite matrix $\Lambda^r = (\lambda_{nk}^r)$ by

$$\lambda_{nk}^{r} = \begin{cases} \frac{\lambda_{k} - \lambda_{k-r}}{\lambda_{n}}; & 0 \le k \le n \text{ and } r | n - k; \\ 0; & \text{otherwise} \end{cases}$$

for $n, k \in \mathbb{N}$. It is clear that the matrix Λ^r is a triangle, that is $\lambda_{nn} \neq 0$ and $\lambda_{nk} = 0$ for $k > n, n = 0, 1, 2, \dots$

We note that if we choose r = 1 the Λ^r matrix reduces to the matrix Λ which is defined in [12]. Also, if r = 1 for the sequence $\lambda_k = k + r$ the Λ^r matrix is coincide with the matrix of Cesàro means given in [13] and [14].

Now, let $x = (x_n) \in w$ and $n \ge 1$. Then, we obtain that

$$x_n - \Lambda_n^r (x) = \frac{1}{\lambda_n} \sum_{\substack{i=0\\r|n-i}}^n (\lambda_i - \lambda_{i-r}) (x_n - x_i)$$
$$= \frac{1}{\lambda_n} \sum_{\substack{i=0\\r|n-i}}^n (\lambda_i - \lambda_{i-r}) \sum_{\substack{k=i+r\\r|n-k}}^n (x_k - x_{k-r})$$
$$= \frac{1}{\lambda_n} \sum_{\substack{k=r\\r|n-k}}^n (x_k - x_{k-r}) \sum_{\substack{i=0\\r|n-i}}^{k-r} (\lambda_i - \lambda_{i-r})$$
$$= \frac{1}{\lambda_n} \sum_{\substack{k=r\\r|n-k}}^n \lambda_{k-r} (x_k - x_{k-r}).$$

Hence we have that

(2.1)
$$x_n - \Lambda_n^r(x) = S_n^r(x),$$

for $n \in \mathbb{N}$. Here the sequence $S^{r}(x) = (S_{n}^{r}(x))_{n=0}^{\infty}$ is defined by

(2.2)
$$S_0^r(x) = 0$$
 and $S_n^r(x) = \frac{1}{\lambda_n} \sum_{\substack{k=r \ r \mid n-k}}^n \lambda_{k-r} (x_k - x_{k-r}).$

SINAN ERCAN

We have the following result from (2.1) and Lemma 2.2.

Theorem 2.1. For a sequence $x = (x_k) \in w$ with $a \in \mathbb{C}$, let $f - \lim_{n \to \infty} x_n = a$. Then, $f - \lim_{n \to \infty} \Lambda_n^r(x) = a$ holds if and only if $S^r(x) \in f_0$. *Proof.* Firstly, we assume that $f - \lim_{n \to \infty} x_n = f - \lim_{n \to \infty} \Lambda_n^r(x) = a$. We have that the equality

(2.3)
$$\frac{1}{m+1}\sum_{k=0}^{m} \left[x_{n+k} - \Lambda_{n+k}^{r} \left(x \right) \right] = \frac{1}{m+1}\sum_{k=0}^{m} S_{n+k}^{r} \left(x \right),$$

holds for all $m, n \in \mathbb{N}$. Since (2.3) tends to zero as $m \to \infty$ uniformly in n, we have

$$\lim_{n \to \infty} \frac{1}{m+1} \sum_{k=0}^{m} S_{n+k}^{r}(x) = 0 \text{ uniformly in } n.$$

This means that $S^r(x) \in f_0$.

Conversely, assume that $S^r(x) \in f_0$ and let $f - \lim_{n \to \infty} x_n = a$. We have that

$$\lim_{n \to \infty} \frac{1}{m+1} \sum_{k=0}^{m} \left[x_{n+k} - \Lambda_{n+k}^{r} \left(x \right) \right] = 0,$$

from (2.3) as $m \to \infty$. Consequently, the desired result

$$\lim_{m \to \infty} \frac{1}{m+1} \sum_{k=0}^{m} x_{n+k} = \lim_{m \to \infty} \frac{1}{m+1} \sum_{k=0}^{m} \Lambda_{n+k}^{r}(x)$$
$$= a$$

is obtained.

3. The Spaces of λ_r -almost Convergent and λ_r -almost null Sequences

In this section, we introduce the following spaces as the sets of all λ_r -almost convergent sequences and λ_r -almost null sequences, respectively, that is

$$f(\lambda_r) = \left\{ x \in w : \lim_{m \to \infty} \frac{1}{m+1} \sum_{k=0}^m \Lambda_n^r(x) = l \text{ uniformly in } n \right\},$$
$$f_0(\lambda_r) = \left\{ x \in w : \lim_{m \to \infty} \frac{1}{m+1} \sum_{k=0}^m \Lambda_n^r(x) = 0 \text{ uniformly in } n \right\}.$$

Using the notation of (1.2) we write again these spaces given above as the matrix domains of the triangle Λ^r in the spaces f and f_0 , respectively, such that

$$f(\lambda_r) = (f)_{\Lambda^r}, \qquad f_0(\lambda_r) = (f_0)_{\Lambda^r}.$$

Now we define the sequence $y = (y_n)$ which is connected with the sequence $x = (x_k)$ by the λ_r -transform, i.e.,

(3.1)
$$y_n = \Lambda_n^r (x)$$
$$= \frac{1}{\lambda_n} \sum_{\substack{k=0\\r|n-k}}^n (\lambda_k - \lambda_{k-r}) x_k,$$

for all $n \in \mathbb{N}$.

Theorem 3.1. The sequence spaces $f(\lambda_r)$ and $f_0(\lambda_r)$ are BK-spaces with the same norm given by

(3.2)
$$\|x\|_{f(\lambda_r)} = \|\Lambda^r(x)\|_f$$
$$= \sup_{n,m\in\mathbb{N}} |t_{mn}(\Lambda^r(x))|,$$

where

$$t_{mn} \left(\Lambda^{r} \left(x\right)\right) = \frac{1}{m+1} \sum_{j=0}^{m} \Lambda^{r}_{n+j} \left(x\right)$$
$$= \frac{1}{m+1} \sum_{j=0}^{m} \sum_{\substack{k=0\\r|n+j-k}}^{n+j} \frac{\lambda_{k} - \lambda_{k-r}}{\lambda_{n+j}} x_{k},$$

for all $m, n \in \mathbb{N}$.

Proof. It is well known that f and f_0 are BK-spaces with the norm $\|.\|_{\infty}$. Also the matrix Λ^r is a triangle matrix. Hence $f(\lambda_r)$ and $f_0(\lambda_r)$ are BK-spaces endowed with the norm $\|.\|_{f(\lambda_r)}$ from Theorem 4.3.2 given in [16].

Theorem 3.2. The sequence spaces $f(\lambda_r)$, $f_0(\lambda_r)$ are norm isomorphic to the spaces f and f_0 , respectively, that is $f(\lambda_r) \cong f$ and $f_0(\lambda_r) \cong f_0$.

Proof. To prove $f(\lambda_r) \cong f$ we need show the existence of a linear bijection between the spaces $f(\lambda_r)$ and f which preserves the norm. Let define T as (3.1), from $f(\lambda_r)$ to f by $x \to y = Tx = \Lambda^r(x)$. The linearity of T is clear. Also $x = \theta$ whenever $Tx = T\theta$ and hence T is injective.

Now, let $y = (y_k) \in f$ and $x = (x_k)$ defined by

$$x_k = \begin{cases} -\frac{\lambda_j}{\lambda_k - \lambda_{k-r}}, & j = k - r, \\ \frac{\lambda_j}{\lambda_k - \lambda_{k-r}}, & j = k, \\ 0, & \text{otherwise.} \end{cases}$$

for all $k \in \mathbb{N}$. Then we have

$$\sum_{\substack{k=0\\r|n+j-k}}^{n+j} \frac{\lambda_k - \lambda_{k-r}}{\lambda_{n+j}} x_k = \sum_{\substack{k=0\\r|n+j-k}}^{n+j} \frac{\lambda_k y_k - \lambda_{k-r} y_{k-r}}{\lambda_{n+j}}$$
$$= y_{n+j}$$

which gives

$$\frac{1}{m+1} \sum_{j=0}^{m} \sum_{\substack{k=0\\r|n+j-k}}^{n+j} \frac{\lambda_k - \lambda_{k-r}}{\lambda_{n+j}} x_k = \frac{1}{m+1} \sum_{j=0}^{m} y_{n+j}.$$

Hence,

$$\lim_{m \to \infty} \frac{1}{m+1} \sum_{j=0}^{m} \Lambda_{n+j}^{r}(x) = \lim_{m \to \infty} \frac{1}{m+1} \sum_{j=0}^{m} y_{n+j}$$
$$= l \text{ uniformly in } n.$$

This means that $x \in f(\lambda_r)$ and T is surjective. T is also norm preserving from (3.2). The desired result is obtained.

We note that absolute property does not hold on the spaces $f(\lambda_r)$ and $f_0(\lambda_r)$, that is $||x||_{f(\lambda_r)} \neq |||x|||_{f_0(\lambda_r)}$ for at least one sequence xin each of these spaces, where $|x| = (|x_k|)$. Consequently, these spaces are *BK*-spaces of non-absolute type. Further, $f(\lambda_r)$ and $f_0(\lambda_r)$ has no Schauder basis from Corollary 3.3 in [11] and Theorem 2.3 in [18].

4. Some Inclusion Relations

Theorem 4.1. The inclusions $c(\lambda_r) \subset f(\lambda_r) \subset \ell_{\infty}(\lambda_r)$ strictly hold.

Proof. Let $x = (x_k)$ be a sequence in $c(\lambda_r)$. Then, $\Lambda^r(x) \in c$ and we know that the inclusion $c \subset f$ holds. Hence, $\Lambda^r(x) \in f$, that is $x \in f(\lambda_r)$. Now to prove strictness of the inclusion we give the following example.

Example 4.2. Consider the sequence $x = (x_k)$ defined by

(4.1)
$$x_k = \begin{cases} (-1)^k, & \text{if } r \text{ is even} \\ -\frac{\lambda_k + \lambda_{k-r}}{\lambda_k - \lambda_{k-r}}, & \text{if } r \text{ is odd} \end{cases}$$

for all $k \in \mathbb{N}$. Then we have

(4.2)
$$\Lambda_n^r(x) = (-1)^n$$

for all $n \in \mathbb{N}$. This means that $x \in c(\lambda_r)$. Further, we have

$$\lim_{m \to \infty} \frac{1}{m+1} \sum_{j=0}^{m} \Lambda_{n+j}^{r}(x) = \lim_{m \to \infty} \frac{1}{m+1} \sum_{j=0}^{m} (-1)^{n+j}$$
$$= \lim_{m \to \infty} \frac{(-1)^{n}}{m+1} \left[\frac{1+(-1)^{m}}{2} \right]$$
$$= 0.$$

Hence $x \in f(\lambda_r)$ and the inclusion $c(\lambda_r) \subset f(\lambda_r)$ is strict.

Now we prove the inclusion $f(\lambda_r) \subset \ell_{\infty}(\lambda_r)$ holds. Let $y = (y_k) \in f(\lambda_r)$. Then, since $\Lambda^r(y) \in f$ and $f \subset \ell_{\infty}$, we have $\Lambda^r(y) \in \ell_{\infty}$ and $f(\lambda_r) \subset \ell_{\infty}(\lambda_r)$ holds. To see strictness of this inclusion consider the sequence z defined in [19] by $y = \Lambda^r(z)$, where

$$y = (0, 0, 0, \dots, 1, \dots, 1, \dots, 0, \dots, 0, \dots),$$

and blocks of 0's are increasing by factors of 100 and the blocks of 1 increasing by factors of 10. This sequence is in ℓ_{∞} but not in f. Hence, $z \in \ell_{\infty}(\lambda_r) \setminus f(\lambda_r)$ and the inclusion $f(\lambda_r) \subset \ell_{\infty}(\lambda_r)$ is strict. \Box

Theorem 4.3. The inclusion $f_0(\lambda_r) \subset f(\lambda_r)$ strictly holds.

Proof. Let $x = (x_k)$ be a sequence in $f_0(\lambda_r)$. Then, we have $\Lambda^r(x) \in f_0$. Since $f_0 \subset f$, $\Lambda^r(x) \in f$ and $x \in f(\lambda_r)$. Consequently, $f_0(\lambda_r) \subset f(\lambda_r)$ holds. Now to see strictness of this inclusion consider $x = (x_k)$ defined by $x_k = 1$ for all $k \in \mathbb{N}$. Obviously, $x \in f(\lambda_r)$ and we have

$$\lim_{n \to \infty} \frac{1}{m+1} \sum_{j=0}^{m} \sum_{\substack{k=0\\r|n+j-k}}^{n+j} \frac{\lambda_k - \lambda_{k-r}}{\lambda_{n+j}} x_k = 1.$$

Hence, $x \notin f_0(\lambda_r)$ and the inclusion $f_0(\lambda_r) \subset f(\lambda_r)$ is strict.

By taking into account $\lambda \in \Lambda$, we have $\lambda_{k+r}/\lambda_k > 1$ for all $k \in \mathbb{N}$. Hence, there are only two distinct cases of the sequence λ , either $\lim_{k\to\infty} \inf \lambda_{k+r}/\lambda_k = 1$ or $\lim_{k\to\infty} \inf \lambda_{k+r}/\lambda_k > 1$. Clearly, we obtain the following result:

Lemma 4.4. (i) $\lim_{k\to\infty} \inf \lambda_{k+r}/\lambda_k = 1$ if and only if $\left(\frac{\lambda_k}{\lambda_k-\lambda_{k-r}}\right) \notin \ell_{\infty}$. (ii) $\lim_{k\to\infty} \inf \lambda_{k+r}/\lambda_k > 1$ if and only if $\left(\frac{\lambda_k}{\lambda_k-\lambda_{k-r}}\right) \in \ell_{\infty}$. Theorem 4.5. (i) The inclusions $f_0 \subset f_0(\lambda_r)$ and $f \subset f(\lambda_r)$

Theorem 4.5. (i) The inclusions $f_0 \subset f_0(\lambda_r)$ and $f \subset f(\lambda_r)$ strictly hold.

SINAN ERCAN

- (ii) The equalities $f_0 = f_0(\lambda_r)$ and $f = f(\lambda_r)$ hold if and only if $\Lambda^r(x) \in f_0$ for every x in the spaces $f(\lambda_r)$ and $f_0(\lambda_r)$, respectively.
- Proof. (i) Let $x = (x_k) \in c$. We know that $c \subset f$ and Λ^r is regular, hence $x \in f$, $\Lambda^r(x) \in c$. Therefore, we obtain that $x \in f(\lambda_r)$ and the inclusion $f \subset f(\lambda_r)$ holds. To see strictness of this inclusion let define a sequence $x = (x_k)$ by (4.1) and suppose that $\lim_{k \to \infty} \inf \frac{\lambda_{k+r}}{\lambda_k} = 1$. Since $x \notin \ell_\infty$, we obtain $x \notin f$. But $\Lambda^r(x) \in f$ and $x \in f(\lambda_r)$. This completes the proof. Similarly, one can prove that the inclusion $f_0 \subset f_0(\lambda_r)$ strictly holds.
 - (ii) If we assume that $x \in f(\lambda_r)$, we have $S^r(x) \in f_0$. Hence,

$$\lim_{m \to \infty} \frac{1}{m+1} \sum_{k=0}^{m} S(x)_{n+k} = 0$$

Then, we have

$$\lim_{m \to \infty} \frac{1}{m+1} \sum_{k=0}^{m} [x_{n+k} - \Lambda_{n+k}^r(x)] = 0$$

from (2.2). This means that

$$\lim_{m \to \infty} \frac{1}{m+1} \sum_{k=0}^{m} x_{n+k} = \lim_{m \to \infty} \frac{1}{m+1} \sum_{k=0}^{m} \Lambda_{n+k}^{r} (x)$$
$$= l \text{ uniformly in } n.$$

Hence, $f(\lambda_r) \subset f$. By combining the inclusion $f \subset f(\lambda_r)$ the equality $f(\lambda_r) = f$ is obtained.

Conversely, assume that the equality $f = f(\lambda_r)$ holds. By (2.2), we have $S^r(x) \in f_0$. Following similar way, the results which are concerning to $f_0(\lambda_r)$ will be obtained.

Theorem 4.6. Neither of the spaces ℓ_{∞} and $f(\lambda_r)$ includes the other.

Proof. Consider the sequences defined by $\lambda_k = k$ and $x_k = 1/r$. Then, since $\Lambda^r(x) = e \in f$, $x \in f(\lambda_r)$. It is obvious that $x \in \ell_{\infty} \cap f(\lambda_r)$. Now, consider the sequence x given by (4.1) and suppose that $\lim_{k \to \infty} \inf \frac{\lambda_{k+r}}{\lambda_k} =$ 1. Then, since $\Lambda^r(x) = (-1)^n \in f$, $x \in f(\lambda_r)$ but $x \notin \ell_{\infty}$. Further, let take $\lambda_k = k$ and define another sequence

$$y = (0, \dots, 0, 1/r, \dots, 1/r, 0, \dots, 0, 1/r, \dots, 1/r, 0, \dots, 0, \dots),$$

where the block's of 0's are increasing by factors of 100 and the blocks of 1/r are increasing by factors of 10. Then,

 $\Lambda^{r}(y) = (0, \dots, 0, 1, \dots, 1, 0, \dots, 0, 1, \dots, 1, 0, \dots, 0, \dots) \notin f$

and $y \notin f(\lambda_r)$, where the blocks of 0's are increasing by factors of 100 and the blocks of 1's are increasing by factors of 10, but $y \in \ell_{\infty}$. This means that $y \in \ell_{\infty} \setminus f(\lambda_r)$. Hence the spaces ℓ_{∞} and $f(\lambda_r)$ overlap, but neither of them include each other.

5. The β - and γ -duals of the set $f(\lambda_r)$ and Some Certain Matrix Classes

In this section, we determine the β -, γ -duals of the space $f(\lambda_r)$. The β -, γ - duals of a sequence space μ are defined as followings;

$$\mu^{\beta} = \{ x = (x_k) \in w : xy = (x_k y_k) \in cs \text{ for all } y = (y_k) \in \mu \}$$

$$\mu^{\gamma} = \{ x = (x_k) \in w : xy = (x_k y_k) \in bs \text{ for all } y = (y_k) \in \mu \}.$$

Then, we characterize some matrix transformations between $f(\lambda_r)$ and classical sequence spaces. Now we begin the following lemmas which will be used in the proof of our results.

Lemma 5.1 ([21]). $A = (a_{nk}) \in (f : \ell_{\infty})$ if and only if

(5.1)
$$\sup_{n\in\mathbb{N}}\sum_{k}|a_{nk}|<\infty.$$

Lemma 5.2 ([21]). $A = (a_{nk}) \in (f:c)$ if and only if (5.1) holds and there are α , $\alpha_k \in \mathbb{C}$ such that

(5.2)
$$\lim_{n \to \infty} a_{nk} = \alpha_k,$$

(5.3)
$$\lim_{n \to \infty} \sum_{k} a_{nk} = \alpha,$$

(5.4)
$$\lim_{n \to \infty} \sum_{k} |\Delta (a_{nk} - \alpha_k)| = 0.$$

Lemma 5.3 ([22]). $A \in (\ell_{\infty} : f)$ if and only if (5.1) holds and

(5.5)
$$f - \lim a_{nk} = \alpha_k \text{ exists for each fixed } k,$$

(5.6)
$$\lim_{m \to \infty} \sum_{k} |a(n,k,m) - \alpha_k| = 0 \text{ uniformly in } n.$$

Lemma 5.4 ([23]). $A \in (c : f)$ if and only if (5.1), (5.5) hold and

(5.7)
$$f - \lim \sum_{k} a_{nk} = \alpha.$$

Lemma 5.5 ([22]). $A \in (f : f)$ if and only if (5.1), (5.5), (5.7) hold and

(5.8)
$$\lim_{m \to \infty} \sum_{k} |\Delta [a(n,k,m) - \alpha_k]| = 0 \text{ uniformly in } n$$

Theorem 5.6. The γ -dual of the space $f(\lambda_r)$ is the set $e_1 \cap e_2$, where

$$e_{1} = \left\{ a = (a_{k}) \in w : \sup_{n \in \mathbb{N}} \sum_{k=0}^{n-1} \left| \overline{\Delta}_{r} \left(\frac{a_{k}}{\lambda_{k} - \lambda_{k-r}} \right) \lambda_{k} \right| < \infty \right\},\$$
$$e_{2} = \left\{ a = (a_{k}) \in w : \left(\frac{a_{n}}{\lambda_{n} - \lambda_{n-r}} \lambda_{n} \right) \in \ell_{\infty} \right\}.$$

Proof.

$$\sum_{k=0}^{n} a_k x_k = \sum_{k=0}^{n} a_k \left[-\frac{\lambda_{k-r}}{\lambda_k - \lambda_{k-r}} y_{k-r} + \frac{\lambda_k}{\lambda_k - \lambda_{k-r}} y_k \right]$$
$$= \sum_{k=0}^{n-1} \overline{\Delta}_r \left(\frac{a_k}{\lambda_k - \lambda_{k-r}} \right) \lambda_k y_k + \frac{a_n}{\lambda_n - \lambda_{n-r}} \lambda_n y_n$$
$$= T_n \left(y \right)$$

for all $n \in \mathbb{N}$. $T = (t_{nk})$ is the matrix defined by

(5.9)
$$t_{nk} = \begin{cases} \bar{\Delta}_r \left(\frac{a_k}{\lambda_k - \lambda_{k-r}} \% \right) \lambda_k, & \text{if } 0 < k < n-1, \\ \frac{\lambda_n}{\lambda_n - \lambda_{n-r}} a_n, & \text{if } k = n, \\ 0, & \text{if } k > n. \end{cases}$$

for all $k, n \in \mathbb{N}$. We deduce from $T_n(y)$ that $ax = (a_k x_k) \in bs$ whenever $x = (x_k) \in f(\lambda_r)$ if and only if $Ty \in \ell_{\infty}$ whenever $y = (y_k) \in f$, where $T = (t_{nk})$ is defined by (5.9). Therefore, we obtain from Lemma 5.1 that $(f(\lambda_r))^{\gamma} = e_1 \cap e_2$.

Theorem 5.7. Define the sets e_3 and e_4 by

$$e_{3} = \left\{ a = (a_{k}) \in w : \left\{ \frac{\lambda_{n}}{\lambda_{n} - \lambda_{n-r}} a_{n} \right\} \in c \right\},\$$
$$e_{4} = \left\{ a = (a_{k}) \in w : \lim_{n \to \infty} \sum_{k} |\Delta (t_{nk} - \alpha_{k})| = 0 \right\},\$$

then $\{f(\lambda_r)\}^{\beta} = e_3 \cap e_4.$

Proof. Take any $a = (a_k) \in w$. It is easily seen from $T_n(y)$ that $ax = (a_k x_k) \in cs$ whenever $x = (x_k) \in f(\lambda_r)$ if and only if $Ty \in c$ whenever $y = (y_k) \in f$. It is clear that the columns of the matrix T in lie c where $T = (t_{nk})$ defined in (5.9). We have the consequence by Lemma 5.2 that $\{f(\lambda_r)\}^{\beta} = e_3 \cap e_4$.

Theorem 5.8. Let assume that $A = (a_{nk})$ and $B = (b_{nk})$ are the infinite matrices which are connected with relation

$$(5.10) \qquad \qquad \hat{a}_{nk} = b_{nk}$$

$$=\overline{\Delta}_r \left(\frac{a_{nk}}{\lambda_k - \lambda_{k-r}}\right) \lambda_k$$

and μ is any given sequence space. Then, $A \in (f(\lambda_r) : \mu)$ if and only if $B \in (f : \mu)$ and

(5.11)
$$\left\{\frac{\lambda_n}{\lambda_n - \lambda_{n-r}} a_{nk}\right\}_{k \in \mathbb{N}} \in c_0.$$

Proof. Firstly, keep in mind that the sequences f and $f(\lambda_r)$ are norm isomorphic. Then, we assume that $A \in (f(\lambda_r) : \mu)$ and take any $y = (y_k) \in f$. Then, $B\Lambda^r$ exists and $\{a_{nk}\}_{k \in \mathbb{N}} \in \{f(\lambda_r)\}^{\beta}$ which yields that $(b_{nk})_{k \in \mathbb{N}} \in \ell_1$ for each $n \in \mathbb{N}$. Hence By exists for each $y \in f$ and thus letting $m \to \infty$ in the equality

$$\sum_{k=0}^{m} b_{nk} y_k = \sum_{k=0}^{m} \left[\overline{\Delta}_r \left(\frac{a_{nk}}{\lambda_k - \lambda_{k-r}} \right) \lambda_k \right] \cdot \left(\sum_{\substack{i=0\\r|k-i}}^k \frac{(\lambda_k - \lambda_{k-r})}{\lambda_k} x_i \right)$$
$$= \sum_{k=0}^{m} a_{nk} x_k,$$

for all $n, m \in \mathbb{N}$. We have by (5.10) that By = Ax which gives the result $B \in (f : \mu)$.

Conversely, suppose that (5.11) holds for every fixed $k \in \mathbb{N}$ and $B \in (f : \mu)$. Let take any $x = (x_k) \in f(\lambda_r)$. Then Ax exists. Further, we obtain

$$\sum_{k=0}^{m} a_{nk} x_k = \sum_{k=0}^{m-1} \overline{\Delta}_r \left(\frac{a_{nk}}{\lambda_k - \lambda_{k-r}} \right) \lambda_k y_k + \frac{a_{nm}}{\lambda_m - \lambda_{m-r}} \lambda_m y_m$$
$$= \sum_{k=0}^{m} b_{nk} y_k$$

for all $n, m \in \mathbb{N}$, as $m \to \infty$, that Ax = By and this shows that $A \in (f(\lambda_r) : \mu)$.

Theorem 5.9. Let μ be any sequence space and assume that $A = (a_{nk})$ and $E = (e_{nk})$ are the infinite matrices which are connected by the relation

$$e_{nk} = \sum_{\substack{j=0\\r\mid n-j}}^{n} \frac{\lambda_j - \lambda_{j-r}}{\lambda_n} a_{jk},$$

for all $n, k \in \mathbb{N}$. Then $D \in (\mu : f(\lambda_r))$ if and only if $E \in (\mu : f(\lambda_r))$.

Proof. Let $x = (x_k) \in \mu$ and consider the following equality

$$\sum_{\substack{j=0\\r|n-j}}^{n} \frac{\lambda_j - \lambda_{j-r}}{\lambda_n} \sum_{k=0}^{j} a_{jk} x_k = \sum_{k=0}^{j} e_{nk} x_k,$$

for $n \in \mathbb{N}$. Further, by letting $j \to \infty$,

$$\sum_{\substack{j=0\\r|n-j}}^{n} \frac{\lambda_j - \lambda_{j-r}}{\lambda_n} \sum_{k=0}^{\infty} a_{jk} x_k = \sum_{k=0}^{\infty} e_{nk} x_k,$$

for $n \in \mathbb{N}$. Then, we have $\{\Lambda^r(Ax)\}_n = (Ex)_n$ for all $n \in \mathbb{N}$. Since $Ax \in f(\lambda_r), Ex \in f$ whenever $x \in \mu$. This completes the proof.

Corollary 5.10. The following statements hold:

- (i) $A = (a_{nk}) \in (f(\lambda_r) : \ell_{\infty})$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{f(\lambda_r)\}^{\beta}$ and (5.1) holds with \hat{a}_{nk} instead of a_{nk} .
- (ii) $A = (a_{nk}) \in (f(\lambda_r):c)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in \{f(\lambda_r)\}^{\beta}$ and (5.1), (5.2), (5.3), (5.4) hold with \hat{a}_{nk} instead of a_{nk} .
- (iii) $A = (a_{nk}) \in (\ell_{\infty} : f(\lambda_r))$ if and only if (5.1), (5.5) and (5.6) hold with e_{nk} instead of a_{nk} .
- (iv) $A = (a_{nk}) \in (f : f(\lambda_r))$ if and only if (5.1), (5.5), (5.7) and (5.8) hold with e_{nk} instead of a_{nk} .
- (v) $A = (a_{nk}) \in (c: f(\lambda_r))$ if and only if (5.1), (5.5), (5.7) hold with e_{nk} instead of a_{nk} .

Acknowledgment. The author would like to thank the referees for their valuable comments and suggestions which led to a number of improvements in this paper.

References

- A. Sönmez, Almost convergence and triple band matrix, Math. Comput. Modelling, 57 (2013), pp. 2393-2402.
- M. Candan, Almost convergence and double sequential band matrix, Acta. Math. Sci., 34 (2014), pp. 354-366.
- M. Kirişci, Almost convergence and generalized weighted mean II, J. Inequal. Appl., 1 (2014), pp. 1-13.
- 4. M. Kirişci, Almost convergence and generalized weighted mean, In: AIP Conference Proceedings, AIP (2012), pp. 191-194.
- M. Şengönül and K. Kayaduman, On the Riesz almost convergent sequences space, Abstr. Appl. Anal., 2012 (2012), Article ID 691694, 18 pages.

ON THE SPACES OF λ_r -ALMOST CONVERGENT AND λ_r -ALMOST ... 129

- A. Karaisa and F. Özger, Almost difference sequence space derived by using a generalized weighted mean, J. Comput. Anal. Appl., 19 (2015), pp. 27-38.
- F. Başar and R. Çolak, Almost-conservative matrix transformations, Turkish J. Math., 13 (1989), pp. 91-100.
- M. Kirişci, On the spaces of Euler almost null and Euler almost convergent sequences, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat, 62 (2013), pp. 1-16.
- Qamaruddin, S.A. Mohuiddine, Almost convergence and some matrix transformations, Filomat, 21 (2007), pp. 261-266.
- M. Candan and K. Kayaduman, Almost convergent sequence space derived by generalized Fibonacci matrix and Fibonacci core, Brithish J. Math. Comput. Sci., 7 (2015), pp. 150-167.
- F. Başar and M. Kirişçi, Almost convergence and generalized difference matrix, Comput. Math. Appl., 61 (2011), pp. 602-611.
- M. Mursaleen and A. K. Noman, On the spaces of λ-convergent sequences and bounded sequences, Thai J. Math, 8 (2010), pp. 311-329.
- P.N. Ng and P.Y. Lee, Cesàro sequence spaces of non-absolute type, Comment. Math. Prace Mat., 20 (1978), pp. 429-433.
- M. Şengönül and F. Başar, Some new Cesàro sequence spaces of non-absolute type which include the spaces c₀ and c, Soochow J. Math., 31 (2005), pp. 107-119.
- 15. M. Yeşilkayagil and F. Başar, Space of A_{λ} -almost null and A_{λ} almost convergent sequences, J. Egypt. Math. Soc., 23 (2015), pp. 119-126.
- A. Wilansky, Summability Through Functional Analysis, in: North-Holland Mathematics Studies, Elsevier Science Publishers, Amsterdam, New York, 1984.
- G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80 (1948), pp. 167-190.
- A. M. Jarrah and E. Malkowsky, *BK spaces, bases and linear operators*, Ren. Circ. Mat. Palermo II, 52 (1990), pp. 177-191.
- H.I. Miller and C. Orhan, On almost convergent and statistically convergent subsequences, Acta Math. Hungar., 93 (2001), pp. 135-151.
- G.M. Petersen, *Regular Matrix Transformations*, McGraw-Hill, New York-Toronto-Sydney, 1970.
- J.A. Sıddıqi, Infinite matrices summing every almost periodic sequences, Pac. J. Math., 39 (1971), pp. 235-251.
- J.P. Duran, Infinite matrices and almost convergence, Math. Z., 128 (1972), pp. 75-83.

SINAN ERCAN

- J.P. King, Almost summable sequences, Proc. Am. Math. Soc., 17 (1966), pp. 1219-1225.
- 24. F. Başar and İ. Solak, *Almost-coercive matrix transformations*, Rend. Mat. Appl., 11 (1991), pp. 249-256.
- 25. F. Başar, *Summability Theory and Its Applications*, Bentham Science Publishers, Istanbul, 2012.
- S. Nanda, Infinite matrices and almost convergence, J. Indian Math. Soc., 40 (1976), pp. 173-184.
- 27. P. Kórus, On Λ^r -strong convergence of numerical sequences and Fourier series, J. Class. Anal., 9 (2016), pp. 89-98.
- 28. S. Ercan, On λ_r -Convergence and λ_r -Boundedness, Journal of Advanced Physics, 7 (2018), pp. 123-129.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, FIRAT UNIVERSITY, 23119, ELAZIG, TURKEY.

E-mail address: sinanercan45gmail.com