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On the Spaces of )\.-almost Convergent and ),.-almost
Bounded Sequences

Sinan Ercan

ABSTRACT. The aim of the present work is to introduce the con-
cept of Ar-almost convergence of sequences. We define the spaces
f (M) and fo (M) of Ar-almost convergent and A.-almost null se-
quences. We investigate some inclusion relations concerning those
spaces with examples and we determine the - and «-duals of the
space f (Ar). Finally, we give the characterization of some matrix
classes.

1. PRELIMINARIES AND BACKGROUND

By w, we denote the space of all real or complex valued sequences.
Any vector subspace of w is called sequence space. We write £, ¢,
co for the classical sequence spaces of all bounded, convergent, null,
respectively. Throughout this paper, we simply write x = () instead
of z = ()5 and N = {0,1,2,...}.

Let X be a sequence space. If X is a Banach space and

TkiX—>C, Tk<$):a}k

is a continuous for all k¥ € N, X is called a BK—space. The sequence
spaces /o, ¢ and ¢y are BK —spaces with the norm given by ||z|,, =
sup |xg| for all k£ € N.

k

A continuous linear functional ¢ on £, is called a Banach limit if
(i) ¢ (x) >0 for x = () and x > 0 for every k,
(i) ¢ (2,(k)) = ¢ (x1), where o is shift operator which is defined on
w by o (k) =k+ 1 and
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(iii) ¢ (e) =1, where e = (1,1,1,...).
A sequence x = (x) € { is said to be almost convergent to the general-
ized limit « if all Banach limits of  are a and denoted by f—limz = «.
Lorentz [['7] introduced that f —lim 2, = « uniformly in n if and only if
1
lim —— Z Zk1n uniformly in n.

m—oom + 1
+ k=0

m

We denote the sets of all almost convergent sequences f by
f= {x = (zg) € w: lim tn, (r) = a uniformly in n} ,
m—0o0

where
m

tmn (1') = kzo m:_ 1xk+n7 t—l,n =0.
It is well known that ¢ C f C f strictly hold. Since these inclusions,
norms |||, and |||, of the spaces f and { are equivalent, so the sets
fand fo are BK-spaces with the norm ||z ; = sup,, ;, [tmn (2)|-

A matrix A = (ank) is called a triangle if a,r, = 0 for & > n and
ann, = 0 for all n € N. It is trivial that A(Bx) = (AB)z holds for the
triangle matrices A, B and a sequence x. Further, a triangle matrix U
uniquely has an inverse U~! = V which is also a triangle matrix. Then
x=U(Vz)=V(Uz) holds for all z € w.

If A is an infinite matrix with complex entries a,j for n,k € N, then
we write A = (ank) instead of A = (ank), - Any sequence in the nth

row of A is indicated by A,, that is A, = (ank)pe, for every n € N.
If x = (z1) € w then we define the A-transform of = as the sequence

Az = (Ay (2))57 5, where
(1.1) Ay () = Zankajk,
k=0
provided the series () converges for n € N. z = (xp) is called

A—summable to a € C if Az converges to a which is called A—limit
of . If x € X implies that Ax € Y, then we say that A defines a matrix
mapping from X into Y and denote it by A : X — Y. By (X :Y) we
mean the class of all infinite matrices such that A: X — Y.

For an arbitrary sequence space X, the matrix domain of an infinite
matrix A in X is defined by

(1.2) Xa={rew: Az e X},

which is a sequence space. If A is triangle, then one can easily observe
that the sequence spaces X4 and X are linearly isomorphic, i.e., X4 &
X.
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Constructing a new sequence space X 4 generated by the limitation
matrix A from a sequence space X is the expansion or the contraction of
the original space X. Using domain of a triangle matrix to construct a
new sequence spaces was studied by many authors. (for instance [[]-[I5])

2. ON THE CONCEPT OF \,.-SUMMABILITY

Let A={\;:k=0,1,...} be a set which consists of strictly increas-
ing sequence of positive numbers tending to oo, that is0 < A\g < Ay < - -+
and Ay — 0o as k — oco. Throughout this paper, we assume that » > 1
is an integer. We define the infinite matrix A" = (A, ) by

- _{ M; 0<k<nand rln—k,
nk —

n

0; otherwise

for n, k € N. It is clear that the matrix A" is a triangle, that is A\, # 0
and A\, =0for k >n,n=0,1,2,....

We note that if we choose r = 1 the A" matrix reduces to the matrix
A which is defined in [I2]. Also, if » = 1 for the sequence A\ = k +r the
A" matrix is coincide with the matrix of Cesaro means given in [I3] and
[T4].

Now, let * = (z,,) € w and n > 1. Then, we obtain that

T — Ay (0) = 5- ; N = Nier) (0 — 25)
rin—i
1 n n
= )\7” Z (>\z )\ifr) Z (xk - xk—r)
i=0 k=i+r
rln—i rin—k
1 n k—r
= Y @k —ae) > (= Aiy)
" k=r =0
rln—k rln—i
1 n
=3 > e (Tp — To—r)
" k=r
rin—k
Hence we have that
(2.1) zn — Ay (2) = 5, (2),
for n € N. Here the sequence S” (z) = (S}, (z)),~, is defined by

1 n
(2.2) S (x) =0 and S} (2) = = > Neer (21 — pr) -
" k=r

rin—k
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We have the following result from (E1) and Lemma 2.2.

Theorem 2.1. For a sequence v = (z) € w with a € C, let f —
lim z, = a. Then, f— hm A7 () = a holds if and only if S" (x) € fo.

n—oo

Proof. Firstly, we assume that f — lim x, = f — lim A] () = a. We
n—oo

n—oo

have that the equality

1

2.3 — AT
(2:3) m+1k:O[£”+’c ek ( m+1z

holds for all m,n € N. Since (23) tends to zero as m — oo uniformly in
n, we have

m m

1 m
im —— ) S)
n—oom + 1 prd
This means that S” (z) € fo.

Conversely, assume that S™ (z) € fp and let f— lim z, = a. We have
n—oo
that

4k () = 0 uniformly in n.

m

. 1
i g k= A (2] =0
from (E23) as m — oo. Consequently, the desired result

m

is obtained. O

3. THE SPACES OF A~ALMOST CONVERGENT AND \,.-ALMOST NULL
SEQUENCES

In this section, we introduce the following spaces as the sets of all A,-
almost convergent sequences and \.-almost null sequences, respectively,
that is

1 m
f) = {x €w: lim —— ) AJ (z) =1 uniformly in n} ,

m—oom + 1
- k=0

— r . .
fo(Ar) = {xew n}gnoom_FlZA z) = 0 uniformly in n}
Using the notation of (I”2) we write again these spaces given above as the
matrix domains of the triangle A" in the spaces f and fy, respectively,
such that

FO)=Pars foAr) = (fo)pr
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Now we define the sequence y = (y,) which is connected with the
sequence = = (x) by the A\ -transform, i.e.,

(3.1) Yn = Ay, ()
1 n
=5 > k= Ner) Ty
" k=0
rin—k
for all n € N.

Theorem 3.1. The sequence spaces f (\.) and fo(A\,) are BK-spaces
with the same norm given by

(3.2) 2] 5,y = A" (@)]]
= sup [|tmn (A" (2))],
n,meN
where
b (N () = LS Ar (@)
mn (A7 (7)) = —m ntj (%
7=0
m n+j
1 Ak — A
= — Tk,
rln+j—k

for all m,n € N.

Proof. 1t is well known that f and fy are BK-spaces with the norm ||.| . .
Also the matrix A" is a triangle matrix. Hence f (\,) and fo (\,) are
BK-spaces endowed with the norm |||z, ) from Theorem 4.3.2 given
in [16). O

Theorem 3.2. The sequence spaces f (A.), fo (A) are norm isomorphic
to the spaces f and fo, respectively, that is f (A\) = f and fo (Ar) = fo.

Proof. To prove f(A.) = f we need show the existence of a linear bi-
jection between the spaces f ()\.) and f which preserves the norm. Let
define T' as (B), from f(A\;) to f by z — y = Ta = A" (z). The
linearity of T is clear. Also z = 6 whenever Tx = T0 and hence T is
injective.

Now, let y = (yx) € f and x = (x}) defined by
—#, j=k—m,
N i =k,
YRS VR .
0, otherwise.

T —
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for all k¥ € N. Then we have

n+j n+j

Z Ak — Ao—r oy = Z AWk — Ne—rYk—r

k=0 Antj k=0 Antj
rln+j—k rin+j—k

= Yn+j

which gives

e S VY 1 &
k= Nk—r o )
m-i—ljzg ; At k—m+1]§yn+g.

rint+j—k

Hence,

, 1
B Z Moy (@) = Jim 227 D v
= [ uniformly in n.

This means that € f () and T is surjective. T is also norm preserving
from (B2). The desired result is obtained. O

We note that absolute property does not hold on the spaces f (Ay)
and fo (Ar), that is [z ;o\ ) # [l|z]ll4(»,) for at least one sequence z
in each of these spaces, where || = (|xg|). Consequently, these spaces
are BK-spaces of non-absolute type. Further, f (\;) and fy (\;) has no
Schauder basis from Corollary 3.3 in [} and Theorem 2.3 in [I¥].

4. SOME INCLUSION RELATIONS
Theorem 4.1. The inclusions ¢ (Ay) C f (A) C loo (Ar) strictly hold.

Proof. Let © = (x) be a sequence in c¢(A,). Then, A" (z) € ¢ and
we know that the inclusion ¢ C f holds. Hence, A" (z) € f, that is
x € f(\). Now to prove strictness of the inclusion we give the following
example.

Example 4.2. Consider the sequence x = (x1) defined by
{ (=1)*,  if ris even
T =

Apt+Ak—r : :
D Ve vt if ris odd

(4.1)

for all k¥ € N. Then we have
(4.2) Ay (z) = (=1)"
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for all n € N. This means that x € ¢(\,). Further, we have

1 1 — ;
lim —— S AT, (2) = lim —— S (~1)"
m—oom + 1 J m—oo m, + 1 4
Jj=0 J=0
n m
L D[

Hence x € f (\;) and the inclusion ¢ (\,;) C f (\,) is strict.

Now we prove the inclusion f (A;) C £ (Ar) holds. Let y = (yx) €
f(A\). Then, since A" (y) € f and f C o, we have A" (y) € {o and
f(A) C Lo (Ar) holds. To see strictness of this inclusion consider the
sequence z defined in [19] by y = A" (z), where

=(0,0,0,...,1,...,1,...,0,...,0,...),

and blocks of 0’s are increasing by factors of 100 and the blocks of 1
increasing by factors of 10. This sequence is in ¢, but not in f. Hence,
2 € boo (Ar) \f (Ar) and the inclusion f (\;) C loo (Ar) is strict. O

Theorem 4.3. The inclusion fo(Ar) C f () strictly holds.

Proof. Let x = () be a sequence in fy (A.). Then, we have A (z) € fo.
Since fo C f, A" (z) € f and z € f(),). Consequently, fo (A:) C f(\)
holds. Now to see strictness of this inclusion consider x = (z}) defined
by z = 1 for all £ € N. Obviously, z € f (\;) and we have

m n+j

A = Ap—r
T}E&WJZO R
r|n+] k
Hence, z ¢ fo (\,) and the inclusion fy (\;) C f (\;) is strict. O

By taking into account A € A, we have A\gy,./A\p > 1 for all k €
N. Hence, there are only two distinct cases of the sequence A, either
lim inf Mgy /A = 1 or lim inf A\gy,/A\x > 1. Clearly, we obtain the
k—o00 k—o0

following result:

Lemma 4.4. (1) hm inf A\t /A = 1 if and only if (Ak by T) ¢
loo.
(ii) hm inf Mgy /A > 1 if and only if ( ) €l
Theorem 4.5. (i) The inclusions fo C fo(Ar) and f C f(\)

strictly hold.
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(ii) The equalities fo = fo (Ar) and f = f(\.) hold if and only if
A" (x) € fo for every x in the spaces f (A\,) and fo (N\.), respec-
tively.

Proof. (i) Let x = (xx) € ¢. We know that ¢ C f and A" is regular,
hence x € f, A" (x) € ¢. Therefore, we obtain that = € f (\,)
and the inclusion f C f(A,) holds. To see strictness of this
inclusion let define a sequence = (xy) by (E) and suppose

)";\:T = 1. Since = ¢ l, we obtain x ¢ f. But

A" (z) € f and x € f(\;). This completes the proof. Similarly,
one can prove that the inclusion fy C fo (A;) strictly holds.
(ii) If we assume that x € f (\.), we have S" (z) € fy. Hence,

1 m
lim —— " S(x),,4 = 0.
k=0

that lim inf
k—o0

m—oo m + 1

Then, we have
m

1
Ao k_0[$n+k = ALyr ()] =0
from (2Z22). This means that

m

1 L1
lim —— E Tptk = 7&1_1)1%0?_’_1 AL (2)
k=0 k=0

= [ uniformly in n.

Hence, f (\.) C f. By combining the inclusion f C f(\,) the
equality f (\,) = f is obtained.

Conversely, assume that the equality f = f(A,) holds. By
(232), we have S (z) € fo. Following similar way, the results

which are concerning to fy (\,) will be obtained.
Il

Theorem 4.6. Neither of the spaces s, and f (A\,) includes the other.

Proof. Consider the sequences defined by A\, = k and = = 1/r. Then,
since A" (z) =e € f,x € f(\). It is obvious that x € {xNf (A). Now,

consider the sequence z given by (1) and suppose that klim inf ’\f\—? =

—00
1. Then, since A" (z) = (=1)" € f, x € f(\) but = ¢ . Further, let
take A\ = k and define another sequence
y=1(0,...,0,1/r,...;1/r,0,...,0,1/r,...,1/r,0,...,0,...),
where the block’s of (0’s are increasing by factors of 100 and the blocks
of 1/r are increasing by factors of 10. Then,

A" (y)=(0,...0,1,...,1,0,...,0,1,...,1,0,...,0,...) ¢ f
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and y ¢ f(\,), where the blocks of 0’s are increasing by factors of 100
and the blocks of 1’s are increasing by factors of 10, but y € fo,. This
means that y € 5\ f (A\). Hence the spaces ¢, and f (\) overlap, but
neither of them include each other. U

5. THE f— AND y—DUALS OF THE SET f (\;) AND SOME CERTAIN
MATRIX CLASSES

In this section, we determine the (-, y-duals of the space f (A;). The
B-, v- duals of a sequence space u are defined as followings;
1’ ={x = (z3) € w:xy = (zpy) € cs for all y = (yp) € p}
p' ={z = (vg) € w:ay = (zxyx) € bs for all y = (yx) € p} .

Then, we characterize some matrix transformations between f ()
and classical sequence spaces. Now we begin the following lemmas which
will be used in the proof of our results.

Lemma 5.1 ([21]). A = (ank) € (f : boo) if and only if

(5.1) supz |ank| < oo.
neN "

Lemma 5.2 ([21]). A = (ank) € (f : ¢) if and only if () holds and
there are o, ay € C such that

(5.2) lim a,, = ag,
n—oo
(5.3) lim_ ;ank =a,
(5.4) Jingozk: |A (ank — ag)| = 0.
Lemma 5.3 ([22]). A € (U : f) if and only if (@) holds and
(5.5) [ —limay,, = ap exists for each fixed k,
(5.6) n}gnooz la (n, k,m) — ax| = 0 uniformly in n.

Lemma 5.4 ([23]). A € (c: f) if and only if (@), (BF) hold and
(5.7) f- limZank = a.
k

Lemma 5.5 ([22]). A € (f: f) if and only if (E2), (@), (1) hold

and

(5.8) lim Z |Aa (n,k,m) — ag]| =0 uniformly in n.
k

m— 00
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Theorem 5.6. The y—dual of the space f (\,) is the set e; Ney, where
n—1
e1 = {a: (ak) Ew:supz

B (55 ) ] < oo
neN =g Al = Aj—r

Qn,
ey = {CL: (ak) cw: (An—)\n_r)\n> Eﬂoo} .

- B Ak—r Ak
ATy = Z ar [— M — M\ Tyk—r + e — Mo yk]

k=0 k=0
n—1
— ak an
= A ———— ) A ————A\¥n
(Ak - )‘k—r> KUk F )\n - )\?’LfT Y
k=0
=T, (y)

for all n € N. T' = (t,,;) is the matrix defined by

A, (Akffk,7.%> ks ifo<k<n-—1,
(5.9t = Ao if k=n,

)\n_)\n—r an’

0 if k> n.

for all k,n € N. We deduce from T), (y) that ax = (axxy) € bs whenever
x = (x) € f(\) if and only if Ty € £ whenever y = (yx) € f, where
T = (tpk) is defined by (B9). Therefore, we obtain from Lemma 5.1
that (f (Ar))” = e1 Nes. O

Theorem 5.7. Define the sets es and ey by

—a=(@)ew: {2 abe
es=q0=(m) Ew: 3 —anp€cp,
e4:{a:(ak)Gw:nlgrolog\A(tnk—ak)]:O},

then {f (0\)}’ = e3 Ney.

Proof. Take any a = (ar) € w. It is eaisly seen from T, (y) that az =
(arxr) € cs whenever x = (zy) € f () if and only if Ty € ¢ whenever
y = (yx) € f. It is clear that the columns of the matrix T in lie ¢ where
T = (tnk) defined in (B9). We have the consequence by Lemma 5.2 that

{f ()} =esnes. O

Theorem 5.8. Let assume that A = (any) and B = (byy) are the infinite
matrices which are connected with relation

(5.10) Gnk = bk
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-~ Ank
Sy W L1 DY
<>\k—)\k—r> F

and u is any given sequence space. Then, A € (f (A\y) : ) if and only if
Be(f:p) and

A
(5.11) (25—} ca
)\n - )\n—r keN

Proof. Firstly, keep in mind that the sequences f and f ()\,) are norm
isomorphic. Then, we assume that A € (f (\;): p) and take any y =
(yx) € f. Then, BA" exists and {ank ey € {f (Ar)}? which yields that
(buk)pen € £1 for each n € N. Hence By exists for each y € f and thus
letting m — oo in the equality

= b o = A ank A i ()\k_>\k—r) )
> bk = (A, Me— A ) F| ZT”%
k=0 k=0 T i=0

rlk—i

m
= § AnkTE,
k=0

for all n,m € N. We have by (610) that By = Ax which gives the result
Be(f:p).

Conversely, suppose that (61) holds for every fixed k € N and B €
(f : p). Let take any x = (x) € f(\;). Then Az exists. Further, we
obtain

m m—1 a a
~ k
> apere =Y A, <)\kn> MYk + v Am¥m

k=0 k—0 - )\kfr A'm - )\m—'r
m
= btk
k=0
for all n,m € N, as m — oo, that Ax = By and this shows that
Ae(f(A):p). O
Theorem 5.9. Let ju be any sequence space and assume that A = (ang)
and E = (enr) are the infinite matrices which are connected by the
relation
n
)\j — )\j,r
o= 3 NN,
7=0
rln—j

for alln,k € N. Then D € (u: f(\)) if and only if E € (u: f(\)).
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Proof. Let x = (z1) € p and consider the following equality

n J

A= Ajer § _
P D BT prves
=0 n k=0 k=0

rln—j

for n € N. Further, by letting j — oo,

§=0 k=0 k=0

rln—j
for n € N. Then, we have {A" (Az)}, = (Ex), for all n € N. Since
Az € f(\), Ex € f whenever x € . This completes the proof. O

Corollary 5.10. The following statements hold:

(1) A = (any) € (f (N : foo) if and only if {an}yen € {f (A}
and (B12) holds with G,y instead of any.

(it) A= (ank) € (f (\r) : ) if and only if {ant }pey € {f (A)}° and
@), R), (13), (B2) hold with ayy instead of an.

(iii) A = (apk) € (loo : f(Nr)) if and only if (E2), (EA) and (E4)
hold with en instead of ang.

(iv) A = (ank) € (f: [ (M) if and only if B3), @&F), &) and
(B8) hold with e instead of apj.

(v) A = (ank) € (c: f(A)) if and only if @22), ), () hold

with enk instead of apy.
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