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On the Spaces of λr-almost Convergent and λr-almost

Bounded Sequences

Sinan Ercan

Abstract. The aim of the present work is to introduce the con-
cept of λr-almost convergence of sequences. We define the spaces
f (λr) and f0 (λr) of λr-almost convergent and λr-almost null se-
quences. We investigate some inclusion relations concerning those
spaces with examples and we determine the β- and γ-duals of the
space f (λr). Finally, we give the characterization of some matrix
classes.

1. Preliminaries and Background

By w, we denote the space of all real or complex valued sequences.
Any vector subspace of w is called sequence space. We write ℓ∞, c,
c0 for the classical sequence spaces of all bounded, convergent, null,
respectively. Throughout this paper, we simply write x = (xk) instead
of x = (xk)

∞
k=0 and N = {0, 1, 2, . . .}.

Let X be a sequence space. If X is a Banach space and

τk : X → C, τk (x) = xk

is a continuous for all k ∈ N, X is called a BK−space. The sequence
spaces ℓ∞, c and c0 are BK−spaces with the norm given by ∥x∥∞ =
sup
k

|xk| for all k ∈ N.

A continuous linear functional ϕ on ℓ∞ is called a Banach limit if

(i) ϕ (x) ≥ 0 for x = (xk) and xk ≥ 0 for every k,
(ii) ϕ

(
xσ(k)

)
= ϕ (xk), where σ is shift operator which is defined on

w by σ (k) = k + 1 and

2010 Mathematics Subject Classification. 46A45, 40C05.
Key words and phrases. Almost convergence, Matrix domain, β-, γ-duals, Matrix

transformations.
Received: 21 July 2019, Accepted: 21 October 2019.
.

117

http://scma.maragheh.ac.ir


118 SINAN ERCAN

(iii) ϕ (e) = 1, where e = (1, 1, 1, . . .).

A sequence x = (xk) ∈ ℓ∞ is said to be almost convergent to the general-
ized limit α if all Banach limits of x are α and denoted by f− limx = α.
Lorentz [17] introduced that f − limxk = α uniformly in n if and only if

lim
m→∞

1

m+ 1

m∑
k=0

xk+n uniformly in n.

We denote the sets of all almost convergent sequences f by

f =
{
x = (xk) ∈ w : lim

m→∞
tmn (x) = α uniformly in n

}
,

where

tmn (x) =

m∑
k=0

1

m+ 1
xk+n, t−1,n = 0.

It is well known that c ⊂ f ⊂ ℓ∞ strictly hold. Since these inclusions,
norms ∥.∥f and ∥.∥ℓ∞ of the spaces f and ℓ∞ are equivalent, so the sets

f and f0 are BK-spaces with the norm ∥x∥f = supm,n |tmn (x)|.
A matrix A = (ank) is called a triangle if ank = 0 for k > n and

ann = 0 for all n ∈ N. It is trivial that A(Bx) = (AB)x holds for the
triangle matrices A, B and a sequence x. Further, a triangle matrix U
uniquely has an inverse U−1 = V which is also a triangle matrix. Then
x = U(V x) = V (Ux) holds for all x ∈ w.

If A is an infinite matrix with complex entries ank for n, k ∈ N, then
we write A = (ank) instead of A = (ank)

∞
n,k=0. Any sequence in the nth

row of A is indicated by An, that is An = (ank)
∞
k=0 for every n ∈ N.

If x = (xk) ∈ w then we define the A-transform of x as the sequence
Ax = (An (x))

∞
n=0, where

(1.1) An (x) =

∞∑
k=0

ankxk,

provided the series (1.1) converges for n ∈ N. x = (xk) is called
A−summable to a ∈ C if Ax converges to a which is called A−limit
of x. If x ∈ X implies that Ax ∈ Y , then we say that A defines a matrix
mapping from X into Y and denote it by A : X → Y . By (X : Y ) we
mean the class of all infinite matrices such that A : X → Y .

For an arbitrary sequence space X, the matrix domain of an infinite
matrix A in X is defined by

(1.2) XA = {x ∈ w : Ax ∈ X} ,
which is a sequence space. If A is triangle, then one can easily observe
that the sequence spaces XA and X are linearly isomorphic, i.e., XA

∼=
X.
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Constructing a new sequence space XA generated by the limitation
matrix A from a sequence space X is the expansion or the contraction of
the original space X. Using domain of a triangle matrix to construct a
new sequence spaces was studied by many authors. (for instance [1]-[15])

2. On the Concept of λr-summability

Let Λ = {λk : k = 0, 1, . . .} be a set which consists of strictly increas-
ing sequence of positive numbers tending to∞, that is 0 < λ0 < λ1 < · · ·
and λk → ∞ as k → ∞. Throughout this paper, we assume that r ≥ 1
is an integer. We define the infinite matrix Λr = (λr

nk) by

λr
nk =

{ λk−λk−r

λn
;

0;

0 ≤ k ≤ n and r|n− k,
otherwise

for n, k ∈ N. It is clear that the matrix Λr is a triangle, that is λnn ̸= 0
and λnk = 0 for k > n, n = 0, 1, 2, . . ..

We note that if we choose r = 1 the Λr matrix reduces to the matrix
Λ which is defined in [12]. Also, if r = 1 for the sequence λk = k+ r the
Λr matrix is coincide with the matrix of Cesàro means given in [13] and
[14].

Now, let x = (xn) ∈ w and n ≥ 1. Then, we obtain that

xn − Λr
n (x) =

1

λn

n∑
i=0

r|n−i

(λi − λi−r) (xn − xi)

=
1

λn

n∑
i=0

r|n−i

(λi − λi−r)

n∑
k=i+r
r|n−k

(xk − xk−r)

=
1

λn

n∑
k=r

r|n−k

(xk − xk−r)

k−r∑
i=0

r|n−i

(λi − λi−r)

=
1

λn

n∑
k=r

r|n−k

λk−r (xk − xk−r) .

Hence we have that

(2.1) xn − Λr
n (x) = Sr

n (x) ,

for n ∈ N. Here the sequence Sr (x) = (Sr
n (x))

∞
n=0 is defined by

(2.2) Sr
0 (x) = 0 and Sr

n (x) =
1

λn

n∑
k=r

r|n−k

λk−r (xk − xk−r) .
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We have the following result from (2.1) and Lemma 2.2.

Theorem 2.1. For a sequence x = (xk) ∈ w with a ∈ C, let f −
lim
n→∞

xn = a. Then, f − lim
n→∞

Λr
n (x) = a holds if and only if Sr (x) ∈ f0.

Proof. Firstly, we assume that f − lim
n→∞

xn = f − lim
n→∞

Λr
n (x) = a. We

have that the equality

(2.3)
1

m+ 1

m∑
k=0

[
xn+k − Λr

n+k (x)
]
=

1

m+ 1

m∑
k=0

Sr
n+k (x) ,

holds for all m,n ∈ N. Since (2.3) tends to zero as m → ∞ uniformly in
n, we have

lim
n→∞

1

m+ 1

m∑
k=0

Sr
n+k (x) = 0 uniformly in n.

This means that Sr (x) ∈ f0.
Conversely, assume that Sr (x) ∈ f0 and let f− lim

n→∞
xn = a. We have

that

lim
n→∞

1

m+ 1

m∑
k=0

[
xn+k − Λr

n+k (x)
]
= 0,

from (2.3) as m → ∞. Consequently, the desired result

lim
m→∞

1

m+ 1

m∑
k=0

xn+k = lim
m→∞

1

m+ 1

m∑
k=0

Λr
n+k (x)

= a

is obtained. □

3. The Spaces of λr-almost Convergent and λr-almost null
Sequences

In this section, we introduce the following spaces as the sets of all λr-
almost convergent sequences and λr-almost null sequences, respectively,
that is

f (λr) =

{
x ∈ w : lim

m→∞

1

m+ 1

m∑
k=0

Λr
n (x) = l uniformly in n

}
,

f0 (λr) =

{
x ∈ w : lim

m→∞

1

m+ 1

m∑
k=0

Λr
n (x) = 0 uniformly in n

}
.

Using the notation of (1.2) we write again these spaces given above as the
matrix domains of the triangle Λr in the spaces f and f0, respectively,
such that

f (λr) = (f)Λr , f0 (λr) = (f0)Λr .
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Now we define the sequence y = (yn) which is connected with the
sequence x = (xk) by the λr-transform, i.e.,

yn = Λr
n (x)(3.1)

=
1

λn

n∑
k=0

r|n−k

(λk − λk−r)xk,

for all n ∈ N.

Theorem 3.1. The sequence spaces f (λr) and f0 (λr) are BK-spaces
with the same norm given by

∥x∥f(λr)
= ∥Λr (x)∥f(3.2)

= sup
n,m∈N

|tmn (Λ
r (x))| ,

where

tmn (Λ
r (x)) =

1

m+ 1

m∑
j=0

Λr
n+j (x)

=
1

m+ 1

m∑
j=0

n+j∑
k=0

r|n+j−k

λk − λk−r

λn+j
xk,

for all m,n ∈ N.

Proof. It is well known that f and f0 are BK-spaces with the norm ∥.∥∞.
Also the matrix Λr is a triangle matrix. Hence f (λr) and f0 (λr) are
BK-spaces endowed with the norm ∥.∥f(λr)

from Theorem 4.3.2 given

in [16]. □

Theorem 3.2. The sequence spaces f (λr), f0 (λr) are norm isomorphic
to the spaces f and f0, respectively, that is f (λr) ∼= f and f0 (λr) ∼= f0.

Proof. To prove f (λr) ∼= f we need show the existence of a linear bi-
jection between the spaces f (λr) and f which preserves the norm. Let
define T as (3.1), from f (λr) to f by x → y = Tx = Λr (x). The
linearity of T is clear. Also x = θ whenever Tx = Tθ and hence T is
injective.

Now, let y = (yk) ∈ f and x = (xk) defined by

xk =


− λj

λk−λk−r
,

λj

λk−λk−r
,

0,

j = k − r,
j = k,
otherwise.
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for all k ∈ N. Then we have

n+j∑
k=0

r|n+j−k

λk − λk−r

λn+j
xk =

n+j∑
k=0

r|n+j−k

λkyk − λk−ryk−r

λn+j

= yn+j

which gives

1

m+ 1

m∑
j=0

n+j∑
k=0

r|n+j−k

λk − λk−r

λn+j
xk =

1

m+ 1

m∑
j=0

yn+j .

Hence,

lim
m→∞

1

m+ 1

m∑
j=0

Λr
n+j (x) = lim

m→∞

1

m+ 1

m∑
j=0

yn+j

= l uniformly in n.

This means that x ∈ f (λr) and T is surjective. T is also norm preserving
from (3.2). The desired result is obtained. □

We note that absolute property does not hold on the spaces f (λr)
and f0 (λr), that is ∥x∥f(λr)

̸= ∥|x|∥f0(λr)
for at least one sequence x

in each of these spaces, where |x| = (|xk|). Consequently, these spaces
are BK-spaces of non-absolute type. Further, f (λr) and f0 (λr) has no
Schauder basis from Corollary 3.3 in [11] and Theorem 2.3 in [18].

4. Some Inclusion Relations

Theorem 4.1. The inclusions c (λr) ⊂ f (λr) ⊂ ℓ∞ (λr) strictly hold.

Proof. Let x = (xk) be a sequence in c (λr). Then, Λr (x) ∈ c and
we know that the inclusion c ⊂ f holds. Hence, Λr (x) ∈ f , that is
x ∈ f (λr). Now to prove strictness of the inclusion we give the following
example.

Example 4.2. Consider the sequence x = (xk) defined by

(4.1) xk =

{
(−1)k , if r is even

−λk+λk−r

λk−λk−r
, if r is odd

for all k ∈ N. Then we have

(4.2) Λr
n (x) = (−1)n
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for all n ∈ N. This means that x ∈ c (λr). Further, we have

lim
m→∞

1

m+ 1

m∑
j=0

Λr
n+j (x) = lim

m→∞

1

m+ 1

m∑
j=0

(−1)n+j

= lim
m→∞

(−1)n

m+ 1

[
1 + (−1)m

2

]
= 0.

Hence x ∈ f (λr) and the inclusion c (λr) ⊂ f (λr) is strict.

Now we prove the inclusion f (λr) ⊂ ℓ∞ (λr) holds. Let y = (yk) ∈
f (λr). Then, since Λr (y) ∈ f and f ⊂ ℓ∞, we have Λr (y) ∈ ℓ∞ and
f (λr) ⊂ ℓ∞ (λr) holds. To see strictness of this inclusion consider the
sequence z defined in [19] by y = Λr (z), where

y = (0, 0, 0, . . . , 1, . . . , 1, . . . , 0, . . . , 0, . . .) ,

and blocks of 0’s are increasing by factors of 100 and the blocks of 1
increasing by factors of 10. This sequence is in ℓ∞ but not in f . Hence,
z ∈ ℓ∞ (λr) \f (λr) and the inclusion f (λr) ⊂ ℓ∞ (λr) is strict. □

Theorem 4.3. The inclusion f0 (λr) ⊂ f (λr) strictly holds.

Proof. Let x = (xk) be a sequence in f0 (λr). Then, we have Λ
r (x) ∈ f0.

Since f0 ⊂ f , Λr (x) ∈ f and x ∈ f (λr). Consequently, f0 (λr) ⊂ f (λr)
holds. Now to see strictness of this inclusion consider x = (xk) defined
by xk = 1 for all k ∈ N. Obviously, x ∈ f (λr) and we have

lim
n→∞

1

m+ 1

m∑
j=0

n+j∑
k=0

r|n+j−k

λk − λk−r

λn+j
xk = 1.

Hence, x /∈ f0 (λr) and the inclusion f0 (λr) ⊂ f (λr) is strict. □

By taking into account λ ∈ Λ, we have λk+r/λk > 1 for all k ∈
N. Hence, there are only two distinct cases of the sequence λ, either
lim
k→∞

inf λk+r/λk = 1 or lim
k→∞

inf λk+r/λk > 1. Clearly, we obtain the

following result:

Lemma 4.4. (i) lim
k→∞

inf λk+r/λk = 1 if and only if
(

λk
λk−λk−r

)
/∈

ℓ∞.

(ii) lim
k→∞

inf λk+r/λk > 1 if and only if
(

λk
λk−λk−r

)
∈ ℓ∞.

Theorem 4.5. (i) The inclusions f0 ⊂ f0 (λr) and f ⊂ f (λr)
strictly hold.
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(ii) The equalities f0 = f0 (λr) and f = f (λr) hold if and only if
Λr (x) ∈ f0 for every x in the spaces f (λr) and f0 (λr), respec-
tively.

Proof. (i) Let x = (xk) ∈ c. We know that c ⊂ f and Λr is regular,
hence x ∈ f , Λr (x) ∈ c. Therefore, we obtain that x ∈ f (λr)
and the inclusion f ⊂ f (λr) holds. To see strictness of this
inclusion let define a sequence x = (xk) by (4.1) and suppose

that lim
k→∞

inf
λk+r

λk
= 1. Since x /∈ ℓ∞, we obtain x /∈ f . But

Λr (x) ∈ f and x ∈ f (λr). This completes the proof. Similarly,
one can prove that the inclusion f0 ⊂ f0 (λr) strictly holds.

(ii) If we assume that x ∈ f (λr), we have Sr (x) ∈ f0. Hence,

lim
m→∞

1

m+ 1

m∑
k=0

S (x)n+k = 0.

Then, we have

lim
m→∞

1

m+ 1

m∑
k=0

[xn+k − Λr
n+k (x)] = 0

from (2.2). This means that

lim
m→∞

1

m+ 1

m∑
k=0

xn+k = lim
m→∞

1

m+ 1

m∑
k=0

Λr
n+k

(x)

= l uniformly in n.

Hence, f (λr) ⊂ f . By combining the inclusion f ⊂ f (λr) the
equality f (λr) = f is obtained.

Conversely, assume that the equality f = f (λr) holds. By
(2.2), we have Sr (x) ∈ f0. Following similar way, the results
which are concerning to f0 (λr) will be obtained.

□
Theorem 4.6. Neither of the spaces ℓ∞ and f (λr) includes the other.

Proof. Consider the sequences defined by λk = k and xk = 1/r. Then,
since Λr (x) = e ∈ f , x ∈ f (λr). It is obvious that x ∈ ℓ∞∩f (λr). Now,

consider the sequence x given by (4.1) and suppose that lim
k→∞

inf
λk+r

λk
=

1. Then, since Λr (x) = (−1)n ∈ f , x ∈ f (λr) but x /∈ ℓ∞. Further, let
take λk = k and define another sequence

y = (0, . . . , 0, 1/r, . . . , 1/r, 0, . . . , 0, 1/r, . . . , 1/r, 0, . . . , 0, . . .) ,

where the block’s of 0’s are increasing by factors of 100 and the blocks
of 1/r are increasing by factors of 10. Then,

Λr (y) = (0, . . . 0, 1, . . . , 1, 0, . . . , 0, 1, . . . , 1, 0, . . . , 0, . . .) /∈ f
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and y /∈ f (λr), where the blocks of 0’s are increasing by factors of 100
and the blocks of 1’s are increasing by factors of 10, but y ∈ ℓ∞. This
means that y ∈ ℓ∞\f (λr). Hence the spaces ℓ∞ and f (λr) overlap, but
neither of them include each other. □

5. The β− and γ−duals of the set f (λr) and Some Certain
Matrix Classes

In this section, we determine the β-, γ-duals of the space f (λr). The
β-, γ- duals of a sequence space µ are defined as followings;

µβ = {x = (xk) ∈ w : xy = (xkyk) ∈ cs for all y = (yk) ∈ µ}
µγ = {x = (xk) ∈ w : xy = (xkyk) ∈ bs for all y = (yk) ∈ µ} .

Then, we characterize some matrix transformations between f (λr)
and classical sequence spaces. Now we begin the following lemmas which
will be used in the proof of our results.

Lemma 5.1 ([21]). A = (ank) ∈ (f : ℓ∞) if and only if

(5.1) sup
n∈N

∑
k

|ank| < ∞.

Lemma 5.2 ([21]). A = (ank) ∈ (f : c) if and only if (5.1) holds and
there are α, αk ∈ C such that

lim
n→∞

ank = αk,(5.2)

lim
n→∞

∑
k

ank = α,(5.3)

lim
n→∞

∑
k

|∆(ank − αk)| = 0.(5.4)

Lemma 5.3 ([22]). A ∈ (ℓ∞ : f) if and only if (5.1) holds and

(5.5) f − lim ank = αk exists for each fixed k,

(5.6) lim
m→∞

∑
k

|a (n, k,m)− αk| = 0 uniformly in n.

Lemma 5.4 ([23]). A ∈ (c : f) if and only if (5.1), (5.5) hold and

(5.7) f − lim
∑
k

ank = α.

Lemma 5.5 ([22]). A ∈ (f : f) if and only if (5.1), (5.5), (5.7) hold
and

(5.8) lim
m→∞

∑
k

|∆[a (n, k,m)− αk]| = 0 uniformly in n.
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Theorem 5.6. The γ−dual of the space f (λr) is the set e1 ∩ e2, where

e1 =

{
a = (ak) ∈ w : sup

n∈N

n−1∑
k=0

∣∣∣∣∆r

(
ak

λk − λk−r

)
λk

∣∣∣∣ < ∞

}
,

e2 =

{
a = (ak) ∈ w :

(
an

λn − λn−r
λn

)
∈ ℓ∞

}
.

Proof.
n∑

k=0

akxk =

n∑
k=0

ak

[
− λk−r

λk − λk−r
yk−r +

λk

λk − λk−r
yk

]

=
n−1∑
k=0

∆r

(
ak

λk − λk−r

)
λkyk +

an
λn − λn−r

λnyn

= Tn (y)

for all n ∈ N. T = (tnk) is the matrix defined by

(5.9) tnk =


∆̄r

(
ak

λk−λk−r
%
)
λk,

λn
λn−λn−r

an,

0,

if 0 < k < n− 1,
if k = n,
if k > n.

for all k, n ∈ N. We deduce from Tn (y) that ax = (akxk) ∈ bs whenever
x = (xk) ∈ f (λr) if and only if Ty ∈ ℓ∞ whenever y = (yk) ∈ f , where
T = (tnk) is defined by (5.9). Therefore, we obtain from Lemma 5.1
that (f (λr))

γ = e1 ∩ e2. □
Theorem 5.7. Define the sets e3 and e4 by

e3 =

{
a = (ak) ∈ w :

{
λn

λn − λn−r
an

}
∈ c

}
,

e4 =

{
a = (ak) ∈ w : lim

n→∞

∑
k

|∆(tnk − αk)| = 0

}
,

then {f (λr)}β = e3 ∩ e4.

Proof. Take any a = (ak) ∈ w. It is eaisly seen from Tn (y) that ax =
(akxk) ∈ cs whenever x = (xk) ∈ f (λr) if and only if Ty ∈ c whenever
y = (yk) ∈ f . It is clear that the columns of the matrix T in lie c where
T = (tnk) defined in (5.9). We have the consequence by Lemma 5.2 that

{f (λr)}β = e3 ∩ e4. □
Theorem 5.8. Let assume that A = (ank) and B = (bnk) are the infinite
matrices which are connected with relation

ânk = bnk(5.10)
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= ∆r

(
ank

λk − λk−r

)
λk

and µ is any given sequence space. Then, A ∈ (f (λr) : µ) if and only if
B ∈ (f : µ) and

(5.11)

{
λn

λn − λn−r
ank

}
k∈N

∈ c0.

Proof. Firstly, keep in mind that the sequences f and f (λr) are norm
isomorphic. Then, we assume that A ∈ (f (λr) : µ) and take any y =

(yk) ∈ f . Then, BΛr exists and {ank}k∈N ∈ {f (λr)}β which yields that
(bnk)k∈N ∈ ℓ1 for each n ∈ N. Hence By exists for each y ∈ f and thus
letting m → ∞ in the equality

m∑
k=0

bnkyk =

m∑
k=0

[
∆r

(
ank

λk − λk−r

)
λk

]
.

 k∑
i=0

r|k−i

(λk − λk−r)

λk
xi


=

m∑
k=0

ankxk,

for all n,m ∈ N. We have by (5.10) that By = Ax which gives the result
B ∈ (f : µ).

Conversely, suppose that (5.11) holds for every fixed k ∈ N and B ∈
(f : µ). Let take any x = (xk) ∈ f (λr). Then Ax exists. Further, we
obtain

m∑
k=0

ankxk =
m−1∑
k=0

∆r

(
ank

λk − λk−r

)
λkyk +

anm
λm − λm−r

λmym

=

m∑
k=0

bnkyk

for all n,m ∈ N, as m → ∞, that Ax = By and this shows that
A ∈ (f (λr) : µ). □

Theorem 5.9. Let µ be any sequence space and assume that A = (ank)
and E = (enk) are the infinite matrices which are connected by the
relation

enk =
n∑

j=0

r|n−j

λj − λj−r

λn
ajk,

for all n, k ∈ N. Then D ∈ (µ : f (λr)) if and only if E ∈ (µ : f (λr)).
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Proof. Let x = (xk) ∈ µ and consider the following equality

n∑
j=0

r|n−j

λj − λj−r

λn

j∑
k=0

ajkxk =

j∑
k=0

enkxk,

for n ∈ N. Further, by letting j → ∞,

n∑
j=0

r|n−j

λj − λj−r

λn

∞∑
k=0

ajkxk =
∞∑
k=0

enkxk,

for n ∈ N. Then, we have {Λr (Ax)}n = (Ex)n for all n ∈ N. Since
Ax ∈ f (λr), Ex ∈ f whenever x ∈ µ. This completes the proof. □

Corollary 5.10. The following statements hold:

(i) A = (ank) ∈ (f (λr) : ℓ∞) if and only if {ank}k∈N ∈ {f (λr)}β
and (5.1) holds with ânk instead of ank.

(ii) A = (ank) ∈ (f (λr) : c) if and only if {ank}k∈N ∈ {f (λr)}β and
(5.1), (5.2), (5.3), (5.4) hold with ânk instead of ank.

(iii) A = (ank) ∈ (ℓ∞ : f (λr)) if and only if (5.1), (5.5) and (5.6)
hold with enk instead of ank.

(iv) A = (ank) ∈ (f : f (λr)) if and only if (5.1), (5.5), (5.7) and
(5.8) hold with enk instead of ank.

(v) A = (ank) ∈ (c : f (λr)) if and only if (5.1), (5.5), (5.7) hold
with enk instead of ank.
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