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n-factorization Property of Bilinear Mappings

Sedigheh Barootkoob∗

Abstract. In this paper, we define a new concept of factoriza-
tion for a bounded bilinear mapping f : X × Y → Z, depended
on a natural number n and a cardinal number κ; which is called
n-factorization property of level κ. Then we study the relation be-
tween n-factorization property of level κ for X ∗ with respect to
f and automatically boundedness and w∗-w∗-continuity and also
strong Arens irregularity. These results may help us to prove some
previous problems related to strong Arens irregularity more easier
than old. These include some results proved by Neufang in [20]
and [22]. Some applications to certain bilinear mappings on con-
volution algebras, on a locally compact group, are also included.
Finally, some solutions related to the Ghahramani-Lau conjecture
is raised.

1. Introduction

The factorization property is one of the important properties of some
algebraic structures, such as algebras, modules, and in general bilinear
mappings, which has a key role in other properties of the algebraic struc-
tures. For examples it is a useful property for studying the amenability
of groups [16, 23] and so group algebras [17], topological centers [4, 18]
and in particular Arens regularity [9, 11–13] and strong Arens irregular-
ity [20] of some module actions and Banach algebras, automatic bound-
edness [22] and automatic w∗-w∗-continuity [8, 20, 22] of some module
homomorphisms.

Cohen in [5], proved a factorization theorem for Banach algebras and
then Hewitt extends it to the modules [14]. Another version of this
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theorem which involves ’power-factorization’, due in [1, 2, 10], see also
[6, Theorem 2.9.24].

The special case of left (right) factorization property of the dual of a
Banach algebra via that Banach algebra and its relation with topological
centers is studied in [18]. A general factorization theorem depending on
a cardinal number κ was applied in [22] and [19, 20] for solving Hofmeier-
Wittstock’s conjecture [15] concerning the automatic boundedness and
Ghahramani-Lau’s conjecture [7], respectively. When κ = 1, then κ-
factorization property of the dual of a Banach algebra A is indeed the
usual right factorization of A∗ via A∗∗.

In this paper, we define a new concept of factorization for a bounded
bilinear mapping f : X ×Y → Z, depended on a natural number n and
a cardinal number κ; which is called n-factorization property of level
κ. Then we study the relation between n-factorization property of level
κ for X ∗ with respect to f and automatically boundedness and w∗-w∗-
continuity and also strong Arens irregularity. These results may help
us to prove some previous problems related to strong Arens irregularity
more easier than old. These include some results proved by Neufang
in [20] and [22]. Some applications to certain bilinear mappings on
convolution algebras, on a locally compact group, are also included.

Before prosesing, let us to recall some preliminaries. Let X ,Y and Z
be normed spaces and f : X × Y → Z be a bounded bilinear mapping.
Following [3], the adjoint f∗ : Z∗ ×X → Y∗ of f is defined by

⟨f∗(z∗, x), y⟩ = ⟨z∗, f(x, y)⟩ , (x ∈ X , y ∈ Y, z∗ ∈ Z∗).

Similarly we can define f∗∗ and f∗∗∗ by f∗∗ = (f∗)∗ and f∗∗∗ = (f∗∗)∗,
respectively. The bounded bilinear map f∗∗∗ is the unique extension of
f for which the maps

· 7→ f∗∗∗(·, y∗∗), · 7→ f∗∗∗(x, ·), (x ∈ X , y∗∗ ∈ Y∗∗),

are w∗-w∗-continuous. That is they are continuous when we consider the
domain and codomain of these linear maps with w∗-topology. Similarly,
f t∗∗∗t is the unique extension of f for which the maps

· 7→ f t∗∗∗t(x∗∗, ·), · 7→ f t∗∗∗t(·, y), (y ∈ Y, x∗∗ ∈ X ∗∗),

are w∗-w∗-continuous, where f t : Y×X → Z is the flip map of f defined
by f t(y, x) = f(x, y).

The topological centers Zℓ(f) and Zr(f) of f are defined by

Zℓ(f) = {x∗∗ ∈ X ∗∗;
Y∗∗ −→ Z∗∗

y∗∗ −→ f∗∗∗(x∗∗, y∗∗)
is w∗-w∗-continuous, }

and

Zr(f) = {y∗∗ ∈ Y∗∗;
X ∗∗ −→ Z∗∗

x∗∗ −→ f t∗∗∗t(x∗∗, y∗∗)
is w∗-w∗-continuous}.
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We say f is (Arens) regular if f∗∗∗ = f t∗∗∗t, or equivalently Zℓ(f) = X ∗∗

which is equivalent to Zr(f) = Y∗∗. The mapping f is said to be left
(respectively, right) strongly Arens irregular if Zℓ(f) = X (respectively,
Zr(f) = Y).

For the multiplication π : A×A → A of a Banach algebra A, π∗∗∗ and
πt∗∗∗t are called the first and second Arens products of A∗∗, respectively.
A is called strongly Arens irregular if and only if π is strongly Arens
irregular.

2. Results

We start with the following new definition.

Definition 2.1. Let f : X × Y → X be a bounded bilinear map. A
linear map T : X → X is called a Y-morphism for f if

T (f(x, y)) = f (T (x), y) , (x ∈ X , y ∈ Y).

Example 2.2. (i) If X is a right A-module, then every right A-
module morphism T on X (i.e. T (xa) = T (x)a for all x ∈
X , a ∈ A) is an A-morphism for the right module action πr :
X ×A → X .

(ii) Let X ,Y be normed spaces and fix λ ∈ Y∗. Then every linear
map from X into itself is a Y-morphism for fλ : X × Y → X ,
where fλ(x, y) = ⟨λ, y⟩x. Further, every linear map from X ∗

into itself is a Y∗∗-morphism for f∗∗tλ as well as a Y-morphism
for f t∗λ .

Let f : X × Y → X be a bilinear mapping. We are interested to
investigate the conditions that under which a Y∗∗-morphism T : X ∗ →
X ∗ for f∗∗t is automatically bounded and w∗-w∗-continuous. When f is
the product of a normed algebra A, then each A∗∗-morphism T : A∗ →
A∗ for f∗∗t is an A∗∗-morphism and some results of this paper change
to the results in [20]. First we present the following theorem about
w∗-w∗-continuity.

Theorem 2.3. Let X and Y be normed spaces and suppose that f :
X × Y → X be a left strongly Arens irregular bounded bilinear map.
Then

(i) Every bounded Y∗∗-morphism from X ∗ into itself, for f∗∗t, is
automatically w∗-w∗-continuous.

(ii) A bounded Y-morphism T : X ∗ → X ∗ for f t∗ is w∗-w∗-continuous
if T ∗ is a Y-morphism for f .

Proof. (i) Let (ψα) be a net in Y∗∗ which is w∗-convergent to ψ ∈ Y∗∗

and let h ∈ X ∗. Then

lim
α

⟨f∗∗∗(T ∗(x), ψα), h⟩ = lim
α

⟨T (f∗∗(ψα, h)), x⟩
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= lim
α

⟨f∗∗(ψα, T (h)), x⟩

= lim
α

⟨ψα, f
∗(T (h), x)⟩

= ⟨ψ, f∗(T (h), x)⟩
= ⟨f∗∗(ψ, T (h)), x⟩
= ⟨T (f∗∗(ψ, h)), x⟩
= ⟨f∗∗∗(T ∗(x), ψ), h⟩ .

It follows that T ∗(x) ∈ Zℓ(f) and by the left strong irregularity we get
T ∗(x) ∈ X .
Now, let (hα) be a net in X ∗ which is w∗-convergent to zero. Then

⟨T (hα), x⟩ = ⟨hα, T ∗(x)⟩ → 0,

and this says that T is w∗-w∗-continuous.
(ii) Let φ ∈ X ∗∗ and ψ ∈ Y∗∗ and consider the bounded nets (xα) and

(yβ) which are w∗-convergent to φ and ψ, respectively. Then we have

T ∗ (f∗∗∗(φ,ψ)) = w∗- lim
α
w∗- lim

β
T ∗ (f(xα, yβ))

= w∗- lim
α
w∗- lim

β
f (T ∗(xα), yβ))

= f∗∗∗ (T ∗(φ), ψ) .

Therefore, T ∗ is a Y∗∗-morphism for f∗∗∗. Further, for each h ∈ X ∗ we
have ⟨

f t∗∗∗t (T ∗(x), ψ) , h
⟩
=
⟨
ψ, f t∗∗ (T ∗(x), h)

⟩
= lim

β

⟨
T ∗(x), f t∗(h, yβ)

⟩
= lim

β

⟨
x, f t∗ (T (h), yβ)

⟩
= lim

β
⟨T (h), f(x, yβ)⟩

= ⟨f∗∗∗(x, ψ), T (h)⟩
= ⟨f∗∗∗ (T ∗(x), ψ) , h⟩ .

Similar to the proof of part (i) we conclude that T ∗(x) ∈ X and T is
w∗-w∗-continuous. □

The following definition, which is motivatied by [20, Definition 2.1],
introduces a certain factorization property for dual space of a Banach
space.

Definition 2.4. Let f : X × Y → Z be a bounded bilinear mapping
on normed spaces and let n ∈ N and κ be a cardinal number. We
say that X ∗ has an n-factorization property of level κ with respect to f
(property Fn

κ (f), for short) if for every family {hα}α∈I ⊆ Ball (X ∗) with
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card(I) = κ, there exist the families
{
ψi
α

}
in Ball (Y∗∗) and functionals

νi in Z∗, 1 ≤ i ≤ n, such that for every α,

n∑
i=1

f∗∗
(
ψi
α, ν

i
)
= hα.

Example 2.5. Let f :

[
C C
0 C

]
×
[
C
C

]
→
[
C
C

]
be defined by

f

([
a b
0 c

]
,

[
t
s

])
=

[
at+ bs
cs

]
. Then for each cardinal number κ,[

C C
0 C

]∗
has the property F 2

κ (f). But it doesn’t have the property

F 1
κ (f). Since it is easy to verify that f∗∗

([
t
s

]
,

[
k
l

])
=

[
tk sk
0 sl

]
and so for each

{[
aα bα
0 cα

]}
of cardinality κ with |aα|+|bα|+|cα| ≤ 1,

for each α, we have[
aα bα
0 cα

]
= f∗∗

([
aα
bα

]
,

[
1
1

])
+ f∗∗

([
0

cα − bα

]
,

[
0
1

])
.

But if it has the property F 1
κ (f), then[

aα bα
0 cα

]
= f∗∗

([
kα
lα

]
,

[
t
s

])
=

[
kαt lαt
0 lαs

]
.

That is bα
cα

= t
s is constant, which is impossible for many examples.

Remark 2.6. (i) If A is a Banach algebra and π is the multipli-
cation of A, then the 1-factorization property of level κ with
respect to π (πt) for A∗, is the left (right) A∗∗-factorization
property of level κ, as introduced in [20].

(ii) If m > n and X ∗ has the property Fn
κ (f), then it has the prop-

erty Fm
κ (f). Since for every family {hα}α∈I ⊆ Ball(X ∗) with

card(I) = κ, there exist the families {ψi
α} in Ball(Y∗∗) and

functionals νi in Z∗, 1 ≤ i ≤ n, such that for every α,

hα =

n∑
i=1

f∗∗(ψi
α, ν

i)

=

n∑
i=1

f∗∗(ψi
α, ν

i) +

m∑
i=n+1

f∗∗(0, 0).
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Also if κ > κ′ and X ∗ has the property Fn
κ (f), then it has the

property Fn
κ′(f). Since for every family {hα}α∈J ⊆ Ball(X ∗)

with card(J) = κ′, we can consider a family {hβ}β∈I ⊆ Ball(X ∗)
with card(I) = κ such that {hα} is a subnet of {hβ} which fac-
tors.

Theorem 2.7. Let f : X × Y → X be a bounded bilinear mapping on
normed spaces and X ∗ has the property Fm

κ (f), for some m ∈ N and κ ≥
ℵ0. Then every Y∗∗-morphism T : X ∗ → X ∗ for f∗∗t is automatically
bounded.

Proof. If T is not bounded, then for each n ∈ N there is an element
hn ∈ Ball(X ∗) such that ∥T (hn)∥ ≥ n. On the other hand, since X ∗

has the property Fm
κ (f) there exist the families {ψi

n} ∈ Ball(Y∗∗) and

hi ∈ X ∗ such that for each n ∈ N, hn =
m∑
i=1

f∗∗(ψi
n, h

i). It follows that,

for each n ∈ N,

n ≤ ∥T (hn)∥

≤

∥∥∥∥∥T
(

m∑
i=1

f∗∗
(
ψi
n, h

i
))∥∥∥∥∥

=

∥∥∥∥∥
m∑
i=1

f∗∗
(
ψi
n, T (h

i)
)∥∥∥∥∥

≤
m∑
i=1

∥f∗∗∥
∥∥T (hi)∥∥ ,

which is a contradiction. □

We also quote the following definition from [21].

Definition 2.8. Let X be a Banach space and κ ≥ ℵ0 be a cardinal
number.

(i) A functional Φ ∈ X ∗∗ is called w∗-κ-continuous if for all nets
(xα)α∈I ⊆ Ball(X ∗) of cardinality ℵ0 ≤ |I| ≤ κ with xα →w∗

0,
we have ⟨Φ, xα⟩ → 0.

(ii) We say that X has the Mazur property of level κ (propertyMκ,
for short) if every w∗-κ-continuous functional in X ∗∗ actually is
w∗-continuous, that is, an element of X .

The following result investigates the strong Arens irregularity of f :
X × Y → Z under certain conditions.

Theorem 2.9. Let f : X×Y → Z be a bounded bilinear map on normed
spaces.
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(i) If X has the property Mκ and X ∗ has the property Fn
κ (f), for

some n ∈ N and κ ≥ ℵ0, then f is left strongly Arens irregular.
(ii) If Y has the property Mκ and Y∗ has the property Fn

κ (f
t), for

some n ∈ N and κ ≥ ℵ0, then f is right strongly Arens irregular.

Proof. (i) Let ϕ ∈ Zℓ(f) and (hα) be a net of cardinality κ in Ball(X ∗)
such that hα →w∗

0, since X has the property Mκ, it suffices to show that
⟨ϕ, hα⟩ is convergent to zero.
Since X ∗ has the property Fn

κ (f), there exist the nets
(
ψi
α

)
in Ball (Y∗∗)

and νi in Z∗ such that for each α,
n∑

i=1
f∗∗

(
ψi
α, νi

)
= hα.

Let
(⟨
ϕ, hαβ

⟩)
be a convergent subnet. Since nBall (Y∗∗) is w∗-

compact and

{
n∑

i=1
ψi
αβ

}
⊆ nBall (Y∗∗) there is a subnet

{
n∑

i=1
ψi
αβγ

}
γ

,

w∗-converging to an element ψ ∈ Y∗∗. On the other hand, sinceBall (Y∗∗)
is w∗-compact, by a similar method as above there are subnets{

ψ1
αβγλ1

}
λ1

,

{
ψ2
αβγλ1λ2

}
λ2

, . . . ,

{
ψn
αβγλ1···λn

}
λn

,

which are w∗-convergent to ψ1, ψ2, . . . , ψn, respectively. Now{
n∑

i=2
ψi
αβγλ1

}
λ1

is w∗-convergent to ψ − ψ1,{
n∑

i=3
ψi
αβγλ1λ2

}
λ2

is w∗-convergent to ψ − ψ1 − ψ2,

and by continuing this argument,

{
ψi
αβγλ1···λn

}
λn

is w∗-convergent to

ψn = ψ −
n−1∑
i=1

ψi. So ψ =
n∑

i=1
ψi and after passing to subnets we can

assume ψi
αβγ

→w∗
ψi for each i = 1, . . . , n.

Now we have for each x ∈ X ,⟨
n∑

i=1

f∗∗(ψi, νi), x

⟩
=

n∑
i=1

⟨ψi, f
∗(νi, x)⟩

=
n∑

i=1

lim
γ

⟨
ψi
αβγ

, f∗(νi, x)
⟩

= lim
γ

⟨
n∑

i=1

f∗∗
(
ψi
αβγ

, νi

)
, x

⟩
= lim

γ

⟨
hαβγ

, x
⟩
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= 0.

Hence, from ϕ ∈ Zℓ(f) we get

lim
β

⟨
ϕ, hαβ

⟩
= lim

γ

⟨
ϕ, hαβγ

⟩
= lim

γ

⟨
ϕ,

n∑
i=1

f∗∗
(
ψi
αβγ

, νi

)⟩

=

n∑
i=1

lim
γ

⟨
f∗∗∗

(
ϕ, ψi

αβγ

)
, νi

⟩
=

n∑
i=1

⟨f∗∗∗(ϕ, ψi), νi⟩

=

⟨
ϕ,

n∑
i=1

f∗∗(ψi, νi)

⟩
= 0.

Therefore, every convergent subnet converges to zero, and so ⟨ϕ, hα⟩ is
convergent to zero.

(ii) follows from (i) and the fact that Zℓ

(
f t
)
= Zr(f). □

Corollary 2.10. Let κ ≥ ℵ0, X and Y be normed spaces and f : X ×
Y → X be a bilinear mapping. If X has the property Mκ and X ∗ has
the property Fn

κ (f), for some n ∈ N, then every left Y∗∗-morphism T :
X ∗ → X ∗ for f∗∗t is automatically bounded and w∗-w∗-continuous.

Proof. Apply Theorems 2.7, 2.9 and 2.3. □

3. Aplications to Convolution Algebras

Let G be a locally compact group. The least cardinality of a compact
covering of G is called the compact covering number of G and is denoted
by κ(G). Also the least cardinality of an open basis at the neutral
element of G is called the local weight of G and will be denoted by χ(G).

For every infinite locally compact groupG, we have |G| = κ(G)2χ(G) [16].
In this section, G is a locally compact non-compact group with a

compact covering number κ(G) and so κ(G) ≥ ℵ0. We study the factor-
ization property of level κ(G) with respect to certain bilinear mappings
for dual of a convolution algebra.

Example 3.1. Define f : L1(G) × M(G) → M(G) by f(g, µ) = g ∗
µ (g ∈ L1(G), µ ∈M(G)). For a family {hi}i∈I ⊆ Ball(L∞(G)) of car-
dinality κ(G), let φi be a Hann Banach extension of hi to M(G), (i ∈
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I). Mimic the methods of [20, Theorem 3.2], set

h :=
∑
α

∑
i

i
(
δy−1(α,i)

)
□χK(α,i)φi ∈M(G)∗, (w∗-limits),

and

ψj := w∗- lim
β→F

i
(
δy(β,j)

)
∈ Ball (M(G)∗∗) , (j ∈ I),

where F is an ultrafilter on I which dominates the order filter and □
is denoted for the second adjoint of the convolution of M(G). Also in
the sequel the first adjoint of the convolution of M(G) is denoted by □.
Now, we see in [20, Theorem 3.2] that for each j ∈ I, ψj□h = φj and so
for every g ∈ L1(G) and every j ∈ I,

⟨f∗∗ (ψj , h) , g⟩ = ⟨ψj , f
∗(h, g)⟩

= lim
β→F

⟨
f∗(h, g), i

(
δy(β,j)

)⟩
= lim

β→F

⟨
h, f

(
g, i
(
δy(β,j)

))⟩
= lim

β→F

⟨
h, g ∗ i

(
δy(β,j)

)⟩
= lim

β→F

⟨
h□g, i

(
δy(β,j)

)⟩
= ⟨ψj , h□g⟩
= ⟨ψj□h, g⟩
= ⟨φj , g⟩
= ⟨hj , g⟩ .

Therefore, L∞(G) has the property F 1
κ(G)(f). On the other hand, since

L1(G) has the Mazur property of level κ(G).ℵ0 = κ(G) [16, Theorem
3.4], Theorem 2.9 and Corollary 2.10 imply that f is left strongly Arens
irregular and every M(G)∗∗-morphism on L∞(G) for f∗∗t is automati-
cally bounded and w∗-w∗-continuous.

For another examples we conclude with some hereditary properties.
In this direction, consider normed spaces X ,Y,Z and W and bounded
bilinear mappings f : X × Y → Z and h : X × Y → W and a bounded
linear mapping g : Z → W such that gf = h. Then since for each
ψ ∈ Y∗∗ and η ∈ W∗ we have

h∗∗(ψ, η) = f∗∗ (ψ, g∗(η)) ,

so, if for some positive integer n, X ∗ has the property Fn
κ (h), then it

has the property Fn
κ (f). In particular, if X ∗ has the property Fn

κ (h)
and M,N are subspaces of X ,W, respectively, and f : M×Y → N is
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a bilinear mapping such that

f(m, y) = h(m, y), (m ∈ M, y ∈ Y),

then M∗ has the property Fn
κ (f). Since for the identity mapping i :

Y → Y and the inclusion mappings j : M → X and k : N → W, we
have k ◦ f = h ◦ (j× i) and it is easy to check that M∗ has the property
Fn
κ (h ◦ (j × i)).
Similar to the above, in the case where g is one-to-one (and so g∗

is onto) and X ∗ has the property Fn
κ (f), we can conclude that it has

also the property Fn
κ (gf). In particular if Z is a subspace of W with

inclusion mapping J and X ∗ has the property Fn
κ (f), then X ∗ has the

property Fn
κ (Jf).

This results give some another examples of dual spaces which have
the factorization property with respect to a bounded bilinear mapping.
Some of these examples are going in the following. In particular, we find
an easier proof for example 3.1.

Example 3.2. (i) Define T : L1(G)×L1(G) → L1 (G×G) and Θ :
L1(G)× L1(G) →M (G×G) by Θ = JT and [T (f, g)] (x, y) =
f(x)g(y), where f, g ∈ L1(G), x, y ∈ G and J is the inclu-
sion mapping from L1 (G×G) into M (G×G). Also define
S : L1 (G×G) → L1(G) by S(F )(x) =

∫
F
(
xy, y−1

)
dy, for

every F ∈ L1 (G×G). Then since ST is nothing else than the
convolution h on L1(G) and Theorem 2.1 of [22] implies that
L∞(G) has the property F 1

κ(G)(h), we conclude that L∞(G)

has property F 1
κ(G)(T ) and so thr property F 1

κ(G)(Θ). On the

other hand, L1(G) has the Mazur property of level κ(G) so
T and Θ are left strongly Arens irregular and every L1(G)∗∗-
morphism from L∞(G) into itself, for T ∗∗t or Θ∗∗t, is automat-
ically bounded and w∗-w∗-continuous.

(ii) Let f : M(G) ×M(G) → M(G) be the convolution on M(G)
and g : L1(G) ×M(G) → L1(G) be its restriction, then since
M(G)∗ has the property F 1

κ(G)(f) [20, Theorem 3.2], therefore

L∞(G) has the property F 1
κ(G)(g). Now since L1(G) has the

property Mκ(G), therefore g is left strongly Arens irregular and

every M(G)∗∗- morphism on L∞(G), for g∗∗t, is automatically
bounded and w∗-w∗- continuous.

Also, if h is the convolution on L1(G), then since L∞(G) has
the property F 1

κ(G)(h) and since L1(G) has the property Mκ(G),

therefore L1(G) is strongly Arens irregular and every L1(G)∗∗-
module morphism on L∞(G) is automatically bounded and w∗-
w∗- continuous, which is the results of [20] and [22].
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4. A Problem Concerning to the Conjecture by
Ghahramani-Lau

In section 1 we saw that the property Fn
κ (f) implies the property

Fm
κ (f), for each n ≤ m. But as we see in Example 2.5, the converse

is not true. Neufang in [20] shown that for every locally compact non-
compact group G,M(G)∗ has theM(G)∗∗-factorization property of level
κ(G) and then he concludes that M(G) is strongly irregular for some
classes of locally compact groups. The results of this paper show that
we don’t need this type of factorization in general and for studying the
strong Arens irregularity of a Banach algebra A it is only required to
factor a family with a linear span. Indeed, it is required to study the
property Fn

κ (f) for some n, instead of Fκ(f), where f is the product of
A.

Question 4.1. Does for each non-discrete locally compact group G,
M(G)∗ have the property Fn

|G| with respect to the convolution of M(G),

for some natural number n?

If the answer is positive, then we can conclude the Ghahramani-Lau
conjecture. That is for each locally compact group G, M(G) is strongly
Arens irregular. Since when G is discrete and compact, it is finite and
so M(G) is self-adjoint and so strongly Arens irregular. If G is discrete

and non-compact, then κ(G) ≥ 2χ(G) and so M(G) is strongly Arens
irregular [20, Theorem 3.5]. When G is non-discrete, then |G| ≥ ℵ0

and so it has the Mazur property of level |G|ℵ0 = |G|, [20, Proposition
3.4]. So if this conjecture is positive, then Theorem 2.9 implies the
Ghahramani-Lau conjecture.

Question 4.2. Does the dual of the triangular Banach algebra T =[
M(G) M(G)

0 L1(G)

]
with the usual matrix operation π have the property

Fn
|G|(π), for some n ∈ N?

If it has an affirmative answer, then similar to the method of Exam-
ple 2.5, we can show that M(G)∗ has the property F 2n

|G| with respect

to the convolution and then by the above discussion we conclude the
Ghahramani-Lau conjecture.
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