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Using Copulas to Model Dependence Between Crude Oil
Prices of West Texas Intermediate and Brent-Europe

Vadoud Najjari

ABSTRACT. In this study the main endeavor is to model depen-
dence structure between crude oil prices of West Texas Intermediate
(WTI) and Brent - Europe. The main activity is on concentrating
copula technique which is powerful technique in modeling depen-
dence structures. Beside several well known Archimedean copulas,
three new Archimedean families are used which have recently pre-
sented to the literature. Moreover, convex combination of these
copulas also are investigated on modeling of the mentioned depen-
dence structure. Modeling process is relied on 318 data which are
average of the monthly prices from Jun-1992 to Oct-2018.

1. INTRODUCTION

Providing a model for dependence structure between random vari-
ables plays an important role in any field of science. Of course correla-
tion is a scalar measure of dependence and it is not able to explain much
more about the dependence structure. Moreover, correlation is related
with linear dependency and cannot capture non-linear dependence rela-
tionships. Also we cannot rely on the correlation results if the related
random variables are not normal distributed.

Copulas allow us to combine univariate distributions to obtain a joint
distribution with a particular dependence structure. In this way, the
scaling and the shape are entirely determined by the marginals, while
the dependence relationship is entirely determined by the copula. To
see more related with correlation and dependence, readers are referred
to see Bertail et al. [4], Mari and Kotz [19], Song [26].
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During the recent decades, the use of copulas has been a powerful
technique in modeling dependence structure in many fields of science.
For example, McNeil et al. [8], Clemen and Reilly [5] and a lot of
other people used copulas in finance, Najjari et al. [21] applied copu-
las in meteorological data, Celebioglu [6], provided copulas in modeling
of students grades. Bacigdl and Komornikova [2] proposed copulas in
modeling dependence structure of geodetic data. Najjari et al. [20] used
copulas in modeling dependence between flood peak and volume. Many
other authors have been worked on copulas like, Genest and MacKay
[9, 10], Hua and Joe [14], among them.

Hui-Ming et al. [15], try on modelling dynamic dependence between
crude oil prices and Asia-Pacific stock market returns by using uncondi-
tional and conditional copula models. They show that time-varying cop-
ulas best capture the tail dependence and that taking the tail correlation
into account leads to improved accuracy of VaR estimates. Al-Harthy
et al. [1], prepared copulas to model dependence in petroleum decision
making. They, after providing several preliminaries, show that copula
technique has an important role in model dependency of the petroleum
industry as well as Envelope method and also Iman-Conover method.

In this study we use copulas to model the dependency between crude
oil prices of West Texas Intermediate (WTI) and Brent-Europe. We use
the mean of monthly prices from Jun-1992 to Oct-2018 which are 318
data. During process beside several well known Archimedean copulas,
we have also used three new Archimedean families which have recently
presented to the literature. These new families have trigonometric and
hyperbolic generators.

To estimate copulas parameters, we rely on nonparametric estimation
(Genest et al. [12]) and also maximum likelihood estimation. And to
select the right copula we use nonparametric and semi-parametric proce-
dure (Genest et al. [11, 12]), GOF test (Genest et al. [13]), also Akaike
information criterion (AIC) of maximum likelihood estimate goodness.

The rest of the paper is organized as follows. Section P is preliminaries.
Fitting copulas to data is discussed in Section B. Section @ describes
modeling of the mentioned crude oil prices by copulas and Section 77
summarizes the conclusion of our study.

2. PRELIMINARIES
A bivariate copula (or 2-copula) is a function C : [0, 1]? — [0, 1] which
satisfies:

(a) for every w,v in [0, 1], C(u,0) = 0 = C(0,v) and C(u,1) = u
and C(1,v) = v;
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(b) for every wuj,ug,v1,v2 in [0, 1] such that u; < ug and vy <
va, Vo(R) = C(ug,v2) — C(ug,v1) — C(uy,vz) + C(ug,v1) > 0
(in other word, for all rectangles R = [uy,us] X [v1,v2] whose
vertices lie in [0, 1], Vo(R) > 0).

Copulas are multivariate distributions (restricted to the unit hypercube)
in modeling the dependence structure between variables, irrespective of
their marginal distributions, readers are referred to see Schweizer [25].
One of the most important classes of copulas is known as Archimedean
copulas (AC) which are also used in this study to model the dependency
of the mentioned crude oil prices . These copulas are very easy to con-
struct, many parametric families belong to this class and have a great
variety of different dependence structures. In addition, the Archimedean
representation allows us to reduce the study of a multivariate copula to a
single univariate function. AC originally appeared not in statistics, but
rather in the study of probabilistic metric spaces, where they were stud-
ied as part of the development of a probabilistic version of the triangle
inequality. For details see Schweizer [25] and Nelsen [23].

Basic properties of AC are presented below and more information
could be found in Nelsen [23]. Let ¢ be a continuous, strictly decreasing
function from I to [0, 00] such that ¢(1) = 0. The pseudo-inverse of ¢
is the function [~ given by

(2.1) P11 :{ A

t < (0),
0, v(0) < 00.

t <

SIA

Copulas of the form C(u,v) = ¢l (p(u) 4+ ¢(v)), for every u,v in [0,1]
are called AC and the function ¢ is called a generator of the copula. If
©(0) = oo we say that ¢ is a strict generator. In this case, ol = (=1
and C(u,v) = "D (p(u) + p(v)) is said to be a strict Archimedean
copula.

3. FirTing CorPuLAS TO DATA

In this section we review several methods for identifying the right
copula that fits to data. Several methods of copulas parameters estima-
tion and identifying the right copula have been developed, including the
methods of concordance Genest et al.[11, [12], fully maximum likelihood
(ML), pseudo maximum likelihood (PML), Genest et al. [11], inference
function of margins (IFM), Joe [16, 17] and minimum distance (MD)
Tsukahara [27], etc. Nonetheless in this paper we rely on two methods
in estimating copulas parameters and also three criterion in identifying
the right copula which are reviewed in below subsections.
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3.1. Estimation of Copulas Parameters. In this study we review
two methods in estimating copulas parameters. First one is nonpara-
metric estimation which proposed by Genest et al. [12] and it is usually
estimated by dependence measures such as Kendall’s tau, Spearman’s
rho and Gini’s gamma. The second one is the estimating copula param-
eters by maximizing a pseudo log-likelihood function. Assume that we
have a random sample of bivariate observations (X;,Y;) for i = 1,....n
available and joint distribution function H has associated copula C, we
look for 6 which maximizes pseudo log-likelihood function

(3.1) L(0) =) log(cy(Fu(x), Gu(y)))
i=1

where F,, and G,, are defined similarly as follows

1 n
. n - i ’LS s Ly
(3.2) Fo(z) n+1;1f[X z,1,0]
and
0 0
(3.3) co(u,v) = %%Ce(uav)-

3.2. Identifying the Right Copula. In selecting the right copula we
use three methods which are reviewed in the following. Firstly, we review
nonparametric and semi-parametric procedures which are proposed by
Genest et al. [11,12]. Assume that we have a random sample of bivariate
observations (X;,Y;) for ¢ = 1,...,n available and joint distribution
function H has associated Archimedean copula C,, we wish to identify
the form of ¢. First to begin with, define an intermediate (unobserved)
random variable Z; = H(X;,Y;) that has distribution function K(z) =
Prob[Z; < z]. This distribution function is related to the generator of
an Archimedean copula through the expression,

(3.4) K(z)=Ky(2) =z — ;f,(é)).

In order to identify ¢,

(i) find Kendall’s tau using the usual (nonparametric or distribution-
free) estimate

n -1 n i—1
(3.5) = <2) SN sign((X: - X,)(Y: - ).
i=2 j=1

(ii) Construct a nonparametric estimation of K, as follows:
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e First, define the pseudo-observations,

n
(3.6) Zi=(n—1)"") if[X; < X; and ¥; < ¥;,1,0], i = 1,2,...,n.
j=1

e Second, construct the estimate of K,

n
(3.7) Kn(z) =n""> if[Z; < 2,1,0].
i=1
(ili) Now construct a parametric estimate K, by using (@) Il-
lustratively, 7, — 0, — @n(t) = K, (%), where subscript n
denotes estimation.

The step (3) is to be repeated for every copula family that we wish to
compare. The best choice of generator then corresponds to the para-
metric estimate K, (2), that most closely resembles the nonparametric
estimate K, (z). Measuring closeness can be done either by a (Lg-norm)
distance such as

1
(3.8) /O K, (2) — Ko (=),

or graphically by (i) plotting of z — K(z) versus z or (ii) correspond-
ing quantile-quantile (Q-Q) plots. We recall that Q-Q plots are used
to determine whether two data sets come from populations with a com-
mon distribution. If the points of the plot, which are formed from the
quantiles of the data, are roughly on a line with a slope of 1, then the
distributions are the same (see also [[]).

Akaike information criterion (AIC) is the second criterion which we
use it. We recall, it is defined by

(3.9) AIC = —2(log_ liklihood) + 2k,

where k is the number of parameters in the model. The lowest AIC
value means that the copula has the best fitness.

The third criterion which it is used in this study, is standard GOF test.
Readers are referred to see Najjari et al. [20, 24]. In using this method
the range of two variables transformed into four uniform intervals each,
therefore df = 9 and X(2).05,df = 16.9190 is the critical point. Matlab
software has been used in calculations.

4. MODELING DEPENDENCY OF THE CRUDE OIL PRICES

The main aim of this section is to model the dependency between
crude oil prices of West Texas Intermediate (WTI) and Brent-Europe
which are available online at Federal Reserve Bank of St. Louis®. We

1https ://research.stlouisfed.org/


https://research.stlouisfed.org/

54 V. NAJJARI

concentrate on the mean of monthly prices from Jun-1992 to Oct-2018
which are 318 data. Data set was tested for serial (temporal) inde-
pendence (not simply by checking significance of autocorrelations but)
primarily by a test based on empirical copulas which is described in Ko-
jadinovic and Yan [[18]. To avoid decision about univariate distributions,
the observations were transformed to unit interval by their correspond-
ing empirical distribution functions, see Figure E] for the resulting pairs.
Also Table P shows the estimated measures from data.
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FIGURE 1. Scatterplots of the crude oil prices of U:WTI
and V:Brent-Europe.

TABLE 1. Details of the selected copula families in this study

l Family “ Generator [ Kendall’s tau [ AL [ AU [ 0 interval ‘
Clayton Ik -1 e 27 | 0 ] 0.)
Gumbel (—Int)® o1 0 |2—27 [1,0)

0 -1 1
A12 (%1/; 1) ; 1—% 219 2—21 [1,00)
Al5 (1—ts)° L+ 1755 01 220 | [1,00)
— 1
cot-copula cot? (%) 1- 55 27 |2-278 | [l,00)
coth-copula || coth(ft) — coth(6) | 1+ 7 — %coth(@) %1 0 1, 00)
csch-copula || csch(t?) — csch(1) %;2 270 0 (0, 00)

Note: A12, A14 and A15 families are numbered as 4.2.12, 4.2.14 and 4.2.15 in Table
4.1 Nelsen’s book [23]

Copula families which are used in modeling dependency of the men-
tioned crude oil prices, are summarized in Table [ll. As it is seen, there
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TABLE 2. Estimated measures from data

l Data ‘ Kendall’s 7 ‘ Spearman’s p ‘ Gini’s ‘
[ Crude Oil Prices | 0.7802 | 0916 [ 0.7836 |

are three new Archimedean families which are recently presented to the
literature. cot-copula family has trigonometric generator and proposed
by Pirmoradian and Hamzah [24]. Also coth-copula and csch-copula
families have hyperbolic generators and have proposed by Najjari et al.
[20], Bal and Najjari [3] respectively.

As it was discussed in the Section B, to estimate copulas parameters,
we use nonparametric estimation (Genest et al. [12]) and_maximum
likelihood estimation. Note that all copulas families in Table [If have only
one parameter, so in the proposed nonparametric method by Genest et
al. [12] we just use Kendall’s 7 which its value calculated as 0.7802.

Table B consists of closeness measure and GOF test statistic values by
nonparametric estimation of copulas parameters. It is seen that A12 and
cot-copula families are in the minimum closeness to the mentioned crude
oil prices data by 0.0671 and 0.0867 values respectively. A12 and cot-
copula parameters nonparametric estimation values are 3.03 and 3.69
respectively. By the GOF test, since the critical point is X%.O&df =
16.9190, none of the mentioned copulas in Table [l are suitable to model
the dependency of crude oil prices data. It is notable that A12 and cot-
copula families have the minimum GOF test statistic vales which are
21.7133 and 19.1106 respectively.

TABLE 3. Results of the nonparametric estimation and
the GOF test

l Families l Parameter l d(Ky, Ky) l GOF ‘
Gumbel 4.55 0.1466 37.6212
Clayton 7.10 0.6562 126.7121
Al12 3.03 0.0671 21.7133
Al4 4.05 14.2561 31.7156
Al5 5.05 0.2217 53.9645
cot-copula 3.69 0.0867 19.1106
coth-copula 7.96 0.1786 61.5989
csch-copula 7.10 14.3396 126.4086

As convex combination of copulas are also copula, so we decided to
check it for several copula families in Table [l which seems they im-
prove fitness. Note that value of weight a (in the convex combination)
is arranged such that the GOF test statistic to get its minimum value.
Results of calculations are summarized in Table . It is seen that none
of the mentioned convex combination of copulas are suitable to model
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the dependency of crude oil prices data, but convex combinations have
improved GOF test statistic values. As an example, in 0.91 A1240.09
Al4 copula, GOF test value is 18.0486, while GOF test values for A12,
A14 (in Table E) are 21.7133 and 31.7156 respectively. Although the
mentioned convex combination is not a right copula to model the de-
pendency of crude oil prices data by GOF test, but its GOF test statistic
value is less than the GOF test statistic values of A12 and A14 families.

TABLE 4. Results of copulas convex combination by the
nonparametric estimation and the GOF test

a091+(1*a)092 ‘ 0, ‘ 0o ‘ a ‘ GOF ‘

Clayton, Gumbel 7.10 | 4.55 | 0.46 | 27.1601
Clayton, A12 7.10 | 3.03 | 0.01 | 21.6374
Clayton, Al4 7.10 | 4.05 | 0.92 | 28.7528

Clayton, csch-copula | 7.10 | 7.10 | 0.01 | 126.5237
Clayton, coth-copula | 7.10 | 7.96 | 0.31 | 51.8123
Clayton, cot-copula | 7.10 | 3.69 | 0.01 | 19.1840

Al12, A14 3.03 | 4.05 | 0.91 | 18.0486
A12, Gumbel 3.03 | 4.55 | 0.99 | 21.6785
A12, cot-copula 3.03 | 3.69 | 0.01 | 19.1789

Table B consists of Akaike information criterion and GOF test statistic
values by MLE of copulas parameters. MLE parameter of A15 family
are not available since it has not closed form in the second derivative.
csch-copula family with parameter 8 = 4.01 is selected as a right family
to the mentioned crude oil prices since it has the minimum AIC value
equal to -823.58. By the GOF test only Clayton family with parameter
0 = 4.96 is selected as a reight copula to model the dependency of crude
oil prices data.

TABLE 5. Results of the MLE estimation and GOF test

l Families l Parameter l AIC l GOF ‘
Gumbel 4.16 -610.55 | 29.0269
Clayton 4.96 -569.07 | 16.0366
Al12 2.99 -662.7 | 20.2576
Al4 3.73 -132.75 | 23.425
Al5 - - -
cot-copula 6.82 -376.12 | 98.5829
coth-copula 8.12 -633.2 | 68.9936
csch-copula 4.01 -823.58 | 29.6509

By considering convex combination of copulas by MLE of copulas
parameters, Table B shows there are several families which fit to model
the dependency of crude oil prices data. Convex combination of Clayton
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TABLE 6. Results of copulas convex combination by the
MLE estimation and the GOF test

l aCy, + (1 —a)Cy, [ 01 [ 0 [ a [ GOF ‘
Clayton, Gumbel 4.96 | 4.16 | 0.64 | 10.9009
Clayton, A12 4.96 | 2.99 | 0.69 | 9.2518
Clayton, A14 4.96 | 3.73 | 0.87 | 11.3295

Clayton, csch-copula | 4.96 | 6.82 | 0.90 | 16.1664
Clayton, coth-copula | 4.96 | 8.11 | 0.90 | 16.0820
Clayton, cot-copula | 4.96 | 4.01 | 0.96 | 16.0289

Al12, Al4 2.99 | 3.73 | 0.88 | 17.5999
A12, Gumbel 2.99 | 4.16 | 0.93 | 20.1785
A12, cot-copula 2.99 | 4.01 | 0.99 | 20.3172

copula by Gumbel, A12, Al4, csch-copula, coth-copula and cot-copula
families are again selected as right copulas to fit these data. It is seen
that 0.69Clayton+0.31A12 copula has the minimum GOF test statistic
value (=9.2518), so it is the best one to model the dependency of crude
oil prices data. Clearly, in the convex combination of copulas, quota
of the combined copulas are affected by the GOF test statistic values
in Table fl. As an example, in Table [, GOF test statistic values for
Clayton and A12 families are 16.0366 and 20.2576 respectively, hence in
the convex combination of them quota of the Clayton family is more than
A12 family. This fact in the convex combination of A12 and cot-copula
families is evident. By results of Table E, Table @, Table E and Table

we summarize that convex combination of copulas improves fitness of
them to model dependence of crude oil prices data.

5. CONCLUSION

By using copulas we try on modeling the dependency between crude
oil prices of West Texas Intermediate (WTI) and Brent-Europe. The
modeling is considered by several Archimedean copulas and also their
convex combinations. To estimate copulas parameters, we rely on non-
parametric estimation (Genest et al. [12]) and also maximum likelihood
estimation. And to select the right copula_we use nonparametric and
semi-parametric procedure (Genest et al. [11, 12]), GOF test (Genest
et al. [13]) and also Akaike information criterion (AIC). GOF test re-
sults show that by the nonparametric estimation, all of the selected AC
in Table B and also their convex combinations in Table fl are not able
to model the dependency of crude oil prices. While by the maximum
likelihood estimation, Clayton family in Table f and also convex combi-
nations of Clayton and several other families in Table B are able to model
the dependency of the mentioned crude oil prices. By results of Table
E, Table @, Table B and Table f we summarize that convex combination
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of the selected copulas improves fitness of them to model dependence of

the

10.

11.

12.

13.

14.

15.

crude oil prices data.
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