Document Type: Research Paper

Author

Faculty of Mathematics Science and Statistics, University of Birjand, Birjand, 9717851367, Iran.

Abstract

‎Let $S$ be a (not necessarily commutative) Clifford semigroup with idempotent set $E$. In this paper, we show that the first (second) Hochschild cohomology group and the first (second) module cohomology group of  semigroup algbera $\ell^1(S)$ with coefficients in $\ell^\infty(S)$ (and also  $\ell^1(S)^{(2n-1)}$ for $n\in \mathbb{N}$) are equal.

Keywords

[1] M. Amini, Module amenability for semigroup algebras, Semigroup Forum., 69 (2004), pp. 243-254.

[2] M. Amini and D. E. Bagha, Weak module amenability for semigroup algebras, Semigroup Forum., 71 (2005), pp. 18-26.

[3] S. Bowling and J. Duncan, First order cohomology of Banach semigroup algebras, Semigroup Forum., 56 (1998), pp. 130-145.

[4] H.G. Dales and J. Duncan, Second order cohomology in groups of some semigroup algebras, (Banach Algebra 97 (Blaubeuren) Walter de Gruyter, Berlin), (1998), pp. 101-117.

[5] M. Despi´c and F. Ghahramani, Weak amenability of group algebras of locally compact groups, Canad. Math. Bull, 37 (1994), pp. 165-167.

[6] F. Gourdeau, A.R. Pourabbas and M.C. White, Simplicial cohomology of some semigroup algebras, Can. Math. Bull, 50 (2007), pp. 56-70.

[7] A.Y. Helemskii, The homology of Banach and topological algebras, Moscow Univ. Press. Moscow (1986); English transl, Kluwer Academic Publishers, Dordrecht, (1989)

[8] B.E. Johnson, Cohomology in Banach algebras, Mem. Am. Math. Soc, 127, 96 (1972)

[9] B.E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc, 23 , (1991), pp. 281-284.

[10] E. Nasrabadi, The equality of Hochschild cohomology group and module cohomology group for semigroup algebras, Bol. Soc. Paran. Mat., (2020), In press, DOI:10.5269/bspm.44931.

[11] E. Nasrabadi and A. Pourabbas, Module cohomology group of inverse semigroup algebras, Bull. Iranian Math. Soc., 37 , (2011), pp. 157-169.

[12] E. Nasrabadi and A. Pourabbas, Second module cohomology group of inverse semigroup algebras, Semigroup Fourm., 81 , (2010), pp. 269-278.

[13] A. Shirinkalam, A.R. Pourabbas and M. Amini, Module and Hochschild cohomology of certain semigroup algebras, Funct. Anal. Appl., 49 , (2015), pp. 315-318.