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First and Second Module Cohomology Groups for Non
Commutative Semigroup Algebras

Ebrahim Nasrabadi

Abstract. Let S be a (not necessarily commutative) Clifford semi-
group with idempotent set E. In this paper, we show that the first
(second) Hochschild cohomology group and the first (second) mod-
ule cohomology group of semigroup algbera ℓ1(S) with coefficients
in ℓ∞(S) (and also ℓ1(S)(2n−1) for n ∈ N) are equal.

1. Introduction

It is well known that, for every discrete group G, the group algebra
ℓ1(G) is always weakly amenable [9] (See [5]). It is also amenable if and
only if G is amenable [8]. Both of these facts fail for discrete semigroups
(for more details see [2]). Therefore, the difference between amenability
and weak amenability concepts is important for group algebras and semi-
group algebras. Amini in [1] and [2] by introducing concepts of module
and weak module amenability for Banach algebras, tried to make these
differences clearer. These concepts which are Banach module over an-
other Banach algebra with compatible actions, was introduced by Amini
in [1] and [2]. He showed that, inverse semigroup S with subsemigroup
E of idempotent elements is amenable if and only if semigroup algebra
ℓ1(S) is ℓ1(E)-module amenable, when ℓ1(E) acts on ℓ1(S) via

δe · δs = δs, δs · δe = δs ∗ δe = δse, (e ∈ E, s ∈ S),(1.1)
where δs and δe are the point masses at s ∈ S and e ∈ E, respectively.

After that, Amini and Bagha in [2], introduced the concept of weak
module amenability and showed that, for every commutative inverse
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semigroup S with idempodent set E, ℓ1(S) is always weakly ℓ1(E)-
module amenable, where module actions ℓ1(E) on ℓ1(S) are different
actions

δe · δs = δs · δe = δs ∗ δe = δse, (e ∈ E, s ∈ S).(1.2)
Then this idea has been expanded by author of the current paper along
with Pourabbas. They in [11] and [12], after introducing the concept
of module cohomology group for Banach algebras extended this result.
They showed that the first and second ℓ1(E)-module cohomology groups
of ℓ1(S) with coefficients in ℓ1(S)(2n−1) (n ∈ N), are zero and Banach
space, respectively, when ℓ1(S) is a Banach ℓ1(E)-bimodule with actions
(1.2).

Also, Shirinkalam, Pourabbas and Amini in [13] showed that first
(second) ℓ1(E)-module cohomology group of ℓ1(S) and first (second)
Hochschild cohomology group of ℓ1(GS) are equal, where GS is the maxi-
mal group homomorphic image of S and ℓ1(S) considered to be a Banach
ℓ1(E)-bimodule (not necessary commutative) with actions (1.1).

On the other hand, the author in [10] proved that for every commu-
tative inverse semigroup S with idempotent set E, there is no difference
between Hochschild and ℓ1(E)-module cohomology groups of ℓ1(S) with
coefficients in ℓ∞(S), when ℓ1(S) is a Banach ℓ1(E)-bimodule with ac-
tions (1.2).

In this paper, we show that for every Clifford semigroup S (which is
not necessarily commutative) with idempotent set E, the first (second)
Hochschild cohomology group and the first (second) ℓ1(E)-module co-
homology group of ℓ1(S) with coefficients in ℓ∞(S) (and also ℓ1(S)(2n−1)

for n ∈ N) are equal, when ℓ1(E) acts on ℓ1(S) by multiplication from
right and left. Indeed we prove that

Hk(ℓ1(S), ℓ1(S)(2n−1)) ' Hk
ℓ1(E)(ℓ

1(S), ℓ1(S)(2n−1)) (k = 1, 2;n ∈ N),

when ℓ1(S) is a Banach ℓ1(E)-bimodule with actions (1.2).
Bowling and Duncan in [3] and Gourdeau, Pourabbas and White

in [6] show that for every Clifford semigroup S, the first and second
Hochschild cohomology group of ℓ1(S) with coefficients in ℓ∞(S) (and
also ℓ1(S)(2n−1) for n ∈ N) are zero and Banach space, respectively.
Their results are along with our findings, improve Theorem 3.1 of [2],
Theorem 2.2 of [11] and Theorem 2.3 of [12].

2. preliminary

Let A and A be Banach algebras such that A is a Banach A-bimodule
and let X be a commutative Banach A-A-module with compatible ac-
tions (for more details see [1], [2], [10],[11] and [12]). An n-A-module
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map is a bounded mapping ϕ : An → X with the following properties;

ϕ(a1, a2, . . . , ai−1, b± c, ai+1, . . . , an)

= ϕ(a1, a2, . . . , ai−1, b, ai+1, . . . , an)

± ϕ(a1, a2, . . . , ai−1, c, ai+1, . . . , an),

ϕ(α · a1, a2, . . . , an) = α · ϕ(a1, a2, . . . , an),
ϕ(a1, a2, . . . , an · α) = ϕ(a1, a2, . . . , an) · α,

and

ϕ(a1, a2, . . . , ai · α, ai+1, . . . , an) = ϕ(a1, a2, . . . , ai, α · ai+1, . . . , an),

where a1, . . . , an, b, c ∈ A and α ∈ A. Note that, ϕ is not necessarily
n-linear but still its boundedness implies its norm continuity (since ϕ
preserves subtraction). We use the notation Cn

A(A,X) for the set of all
bounded (continuous) n-A-module maps from An to X.

Consider the A-module complex cochain

0 −→ X
δ0−→ C1

A(A,X)
δ1−→ C2

A(A,X)
δ2−→ · · · ,

where the map δ0 : X −→ C1
A(A,X) is given by δ0(x)(a) = a·x−x·a and

for n ∈ N, the n-coboundary operator δn : Cn
A(A,X) −→ Cn+1

A (A,X) is
given by

(δnϕ)(a1, . . . , an+1) = a1 · ϕ(a2, . . . , an+1)(2.1)

+
n∑

i=1

(−1)iϕ(a1, . . . , aiai+1, . . . an+1)

+ (−1)n+1ϕ(a1, . . . , an) · an+1,

for ϕ ∈ Cn
A(A,X) and a1, . . . , an+1 ∈ A. It is easy to see that δn+1 ◦δn =

0, for every n ∈ Z+. The space ker δn of all bounded n-A-module co-
cycles is denoted by Zn

A(A,X) and the space Im δn−1 of all bounded
n-A-module coboundaries is denoted by Bn

A(A,X). We also recall that
Bn
A(A,X) is included in Zn

A(A,X) and that the n-th A-module cohomol-
ogy group Hn

A(A,X) is defined by the quotient

Hn
AA,X) =

Zn
A(A,X)

Bn
A(A,X)

.

Remark 2.1. In the above notations, if A = C and module action is
scaler multiplication, the space ker δn of all bounded n-linear cocycles
is denoted by Zn(A,X) and the space Im δn−1 of all bounded n-linear
coboundaries is denoted by Bn(A,X). The n-th Hochschild cohomology
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group Hn(A,X) is defined by the quotient

Hn(A,X) =
Zn(A,X)

Bn(A,X)
.

Definition 2.2. A commutative Banach A-module algebra A is called
weak A-module amenable ((n)-weak A-module amenable) if H1

A(A,A
∗) =

0
(
H1

A(A,A
(n)) = 0

)
.

Definition 2.3. In the previous definition, if A = C and module action
is scaler multiplication, then A is called weak amenable and (n)-weak
amenable, respectively.

3. The First Module and Hochschild Cohomology Group

In this section, it is assumed that S is a (not necessarily commutative)
Clifford semigroup with idempotent set E. We recall that S is a Clifford
semigroup if it is an inverse semigroup with each idempotent central,
or equivalently, if it is a strong semilattice of group. So we can write
our Clifford semigroup as S = ∪{Ge : e ∈ E} where Ge is a group with
identity e, and GeGe′ ⊆ Gee′ for every e, e′ ∈ E. We know that ℓ1(S)
is a commutative Banach ℓ1(E)-bimodule with actions δs · δe = δe · δs =
δse (e ∈ E, s ∈ S), where δe and δs are the point masses at e and s,
respectively. From now on, we remove the dot for simplicity.
Remark 3.1. (i) Let X be a Banach ℓ1(S)-module. As usual, we

identify the element of S with point masses in ℓ1(S). Indeed, for
every λ ∈ C and s, t ∈ S, phrases λs, s+ t and st as elements of
ℓ1(S) means that λδs, δs+δt and δs ·δt. There is an obvious one-
one corresponding between C1(ℓ1(S), X)

(
C2(ℓ1(S), X)

)
and the

space of bounded functions from S (S × S) into X. Thus we
use the same notation for ψ ∈ C1(ℓ1(S), X)

(
ϕ ∈ C2(ℓ1(S), X)

)
and ψ as a function on S (ϕ as a function on S × S).

(ii) We know that functions of finite support are dense in semi-
group algebra ℓ1(S) , and on the other hand, every function of
finite support is a linear combination of point masses. There-
fore, because every ℓ1(E)-module map on ℓ1(S) is additive and
continuous, throughout this paper, we consider elements of S
as representative of elements of ℓ1(S).

Lemma 3.2. Every continuous ℓ1(E)-module map ψ : ℓ1(S) → ℓ∞(S)
is linear. In particular, Z1

ℓ1(E)(ℓ
1(S), ℓ∞(S)) ⊆ Z1(ℓ1(S), ℓ∞(S)).

Proof. Let λ ∈ C, g ∈ Ge ⊆ S and ϕ ∈ C1
ℓ1(E)(ℓ

1(S), ℓ∞(S)). Since
λe ∈ ℓ1(E), we have

ϕ(λg) = ϕ(λeg)
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= λeϕ(g)

= λϕ(eg)

= λϕ(g).

Thus, the result directly follows from Remark 3.1. □
Lemma 3.3. Suppose ψ ∈ C1(ℓ1(S), ℓ∞(S)) such that δ1ψ(g, h) = 0,
if g or h lies in E. Then ψ ∈ C1

ℓ1(E)(ℓ
1(S), ℓ∞(S)). In particular,

Z1(ℓ1(S), ℓ∞(S)) ⊆ Z1
ℓ1(E)(ℓ

1(S), ℓ∞(S)).

Proof. Let e ∈ E, we have
0 = δ1ψ(e, e)

= eψ(e)− ψ(e) + ψ(e)e

= 2eψ(e)− ψ(e).

So we get 2eψ(e) = ψ(e). But eψ(e) = e(2eψ(e)) = 2eψ(e). This shows
that eψ(e) = 0 and so ψ(e) = 0. Now for every e ∈ E and g ∈ S,

0 = δ1ψ(e, g)

= eψ(g)− ψ(eg) + ψ(e)g

= eψ(g)− ψ(eg),

that shows ψ(eg) = eψ(g). Similarly we can show that ψ(ge) = ψ(g)e
and the proof is complete. □
Theorem 3.4. Let S be a Clifford semigroup with idempotent set E.
Then

H1
ℓ1(E)(ℓ

1(S), ℓ∞(S)) = H1(ℓ1(S), ℓ∞(S)).

Proof. By Lemmas 3.2 and 3.3, we get
Z1
ℓ1(E)(ℓ

1(S), ℓ∞(S)) = Z1(ℓ1(S), ℓ∞(S)).

Therefore,

H1
ℓ1(E)(ℓ

1(S), ℓ∞(S)) =
Z1
ℓ1(E)(ℓ

1(S), ℓ∞(S))

B1
ℓ1(E)

(ℓ1(S), ℓ∞(S))

=
Z1(ℓ1(S), ℓ∞(S))

B1(ℓ1(S), ℓ∞(S))

= H1(ℓ1(S), ℓ∞(S)).

□
The next Corollary improves [2, Theorem 3.1] and [11, Theorem 2.4].

Corollary 3.5. Let S be a Clifford semigroup with idempotent set E.
Then ℓ1(S) is (2n− 1)-weak module amenable (as an ℓ1(E)-module).
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Proof. Apply Theorem 3.4 and [3, Theorem 2.1]. □

4. The Second Module and Hochschild Cohomology Group

In this section, similar to the previous section, it is assumed that S
is a Clifford semigroup (not necessarily commutative) with idempotent
set E. By (2.1), we note that the coboundary operators δ1 and δ2 are
given by

(δ1ψ)(a, b) = aψ(b)− ψ(ab) + ψ(a)b,

(δ2ϕ)(a, b, c) = aϕ(b, c)− ϕ(ab, c) + ϕ(a, bc)− ϕ(a, b)c,
(4.1)

for every a, b, c ∈ ℓ1(S), ψ ∈ C1(ℓ1(S), ℓ∞(S)) and ϕ ∈ C2(ℓ1(S), ℓ∞(S)).

Lemma 4.1. Every continuous ℓ1(E)-module map ϕ : ℓ1(S)× ℓ1(S) →
ℓ∞(S) is 2-linear. In particular, Z2

ℓ1(E)(ℓ
1(S), ℓ∞(S)) ⊆ Z2(ℓ1(S), ℓ∞(S)).

Proof. Proof of Lemma 3.2 can be applied to any component of a bilinear
map. □
Lemma 4.2. Suppose ϕ ∈ C2(ℓ1(S), ℓ∞(S)) such that (δ2ϕ)(g, h, k) = 0,
if any one of g, h, k lies in E and ϕ(g, h) = 0 if g, h or k lies in E and
ϕ(g, h) = 0 if g or h lies in E. Then ϕ ∈ C2

ℓ1(E)(ℓ
1(S), ℓ∞(S)).

Proof. Let e ∈ E and g, h ∈ S,
0 = (δ2ϕ)(e, g, h)

= eϕ(g, h)− ϕ(eg, h) + ϕ(e, gh)− ϕ(e, g)h

= eϕ(g, h)− ϕ(eg, h).

This implies that eϕ(g, h) = ϕ(eg, h). Similarly by applying the 2-
cocycle equations (δ2ϕ)(g, e, h) = 0 and (δ2ϕ)(g, h, e) = 0, we can show
that ϕ(ge, h) = ϕ(g, eh) and ϕ(g, he) = ϕ(g, h)e, respectively. □
Lemma 4.3. Let ϕ ∈ Z2(ℓ1(S), ℓ∞(S)). Then ϕ(g, h) = 0 if g or h lies
in E. Moreover, ϕ ∈ Z2

ℓ1(E)(ℓ
1(S), ℓ∞(S)).

Proof. Let ϕ ∈ Z2(ℓ1(S), ℓ∞(S)), by Theorem 2.5 of [4], ϕ = δψ1 on E
for some ψ1 ∈ C1(ℓ1(S), ℓ∞(S)). So if we define ϕ1 := ϕ − δ1ψ1, then
ϕ1(e1, e2) = 0 for every e1, e2 ∈ E. By Lemma 4.2 of [6], there exists a
ψ2 ∈ C1(ℓ1(S), ℓ∞(S)) such that (ϕ1 − δ1ψ2)(g, e) = 0 for every g ∈ S
and e ∈ E with eg = g. So if we define ϕ2 = ϕ1− δ1ψ2 and applying the
2-cocycle equation δ2ϕ2(e, g, h)(k) = 0 for e ∈ E and g, h, k ∈ S with
ge = g, we obtain (using ϕ2(g, e) = 0)

ϕ2(g, h)(k) = ϕ2(g, h)(ek).

Similarly ϕ2(g, h)(k) = ϕ2(g, h)(ek), whenever he = h. Now for g ∈ Ge1

and h ∈ Ge2 define ψ3(g)(h) = ϕ2(g, e
′)(h), where e′ = e1e2. Then
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Lemma 4.4 of [6] shows that (ϕ2 − δψ3)(g, e)(h) = 0 for every g, h ∈ S
and e ∈ E. This means that (ϕ2 − δψ3)|ℓ1(S)×ℓ1(E) = 0. Therefore,

(ϕ− δψ)(e, g) = 0,

where ψ = ψ1 + ψ2 + ψ3. Now by replacing ϕ by ϕ − δψ, we can
assume that ϕ(g, e) = 0, whenever e ∈ E and g ∈ S. Now with the same
argument above we have ϕ(g, h) = 0, if g or h lies in E. Finally, the map
ϕ satisfies the assumption of Lemma 4.2 and so ϕ ∈ Z1

ℓ1(E)(ℓ
1(S), ℓ∞(S)).

□

An alternate proof for Lemma 4.3 Let ϕ ∈ Z2(ℓ1(S), ℓ∞(S)).
We can simply check that the space Z1(ℓ1(S), ℓ∞(S)) is a commutative
Banach ℓ1(E)-bimodule with the actions

(e • φ)(g) := eφ(g), (φ • e)(g) := φ(eg)− φ(e)g,(4.2)

where e ∈ E, g ∈ S and φ ∈ Z1(ℓ1(S), ℓ∞(S)).
Define ψ ∈ C1(ℓ1(E),Z1(ℓ1(S), ℓ∞(S))) by:

(4.3) ψ(e)(g) := ϕ(e, g), (e ∈ E, g ∈ S).

By using of the 2-coboundary operator δ2 in (4.1) and actions (4.2), for
each e, e′ ∈ E and g ∈ S, we obtain

0 = (δ2ϕ)(e, e′, g)

= eϕ(e′, g)− ϕ(ee′, g) + ϕ(e, e′g)− ϕ(e, e′)g

= eψ(e′)(g)− ψ(ee′)(g) + ψ(e)(e′g)− ψ(e)(e′)g

= [e • ψ(e′)− ψ(ee′) + ψ(e) • e′](g).

This shows that ψ ∈ Z1(ℓ1(E),Z1(ℓ1(S), ℓ∞(S))). Since ℓ1(E) is com-
mutative and weak amenable (by [3, Lemma 1.1]), we have ψ = 0. That
means ϕ(e, g) = 0 for every e ∈ E and g ∈ S. Similarly we can show
that ϕ(g, e) = 0, which proves our claim. Finally, the map ϕ satisfies
the assumption of Lemma 4.2, and so ϕ ∈ Z1

ℓ1(E)(ℓ
1(S), ℓ∞(S)).

Lemma 4.4. B2
ℓ1(E)(ℓ

1(S), ℓ∞(S)) = B2(ℓ1(S), ℓ∞(S)).

Proof. Let ϕ ∈ B2(ℓ1(S), ℓ∞(S)), so ϕ ∈ Z2(ℓ1(S), ℓ∞(S)) and by Lemma 4.3
we get

ϕ(g, h) = 0,

if g or h lies in E. On the other hand, by assumption there exists
ψ ∈ C1(ℓ1(S), ℓ∞(S)) such that ϕ = δ1ψ. But the map ψ satisfies the
assumption of Lemma 3.3 and so ψ is a ℓ1(E)-module map. This implies
ϕ ∈ B2

ℓ1(E)(ℓ
1(S), ℓ∞(S)) and so

B2(ℓ1(S), ℓ∞(S)) ⊆ B2
ℓ1(E)(ℓ

1(S), ℓ∞(S)).
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The other inclusion is clear by Lemma 3.2 and the observation that
B2
ℓ1(E)(ℓ

1(S), ℓ∞(S)) = δ1(C1
ℓ1(E)(ℓ

1(S), ℓ∞(S)))

⊆ δ1(C1(ℓ1(S), ℓ∞(S)))

= B2(ℓ1(S), ℓ∞(S)).

□
Theorem 4.5. Let S be a Clifford semigroup with idempotent set E.
Then

H2
ℓ1(E)(ℓ

1(S), ℓ∞(S)) ' H2(ℓ1(S), ℓ∞(S)).

Proof. We define morphism
Γ : H2

ℓ1(E)(ℓ
1(S), ℓ∞(S)) → H2(ℓ1(S), ℓ∞(S))

ϕ+ B2
ℓ1(E)(ℓ

1(S), ℓ∞(S)) 7→ ϕ+ B2(ℓ1(S), ℓ∞(S)).

The morphism Γ is well-defined by Lemma 4.1, surjective by Lemma 4.3,
and injective by Lemma 4.4. Hence, by Lemma 0.5.9 of [7], Γ is a
topological isomorphism. □

We know that every commutative inverse semigroup is a Clifford semi-
group, so from [6], we have the following corollary which improves [12,
Theorem 2.3].

Corollary 4.6. Let S be a Clifford semigroup with idempotent set
E. Then H2

ℓ1(E)(ℓ
1(S), ℓ∞(S)) (H2

ℓ1(E)(ℓ
1(S), ℓ1(S)(2n−1))) is a Banach

space.

Acknowledgment. The author would like to express his deep grati-
tude to the referees for their careful reading of the earlier version of the
manuscript and several insightful comments.
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