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On the Basicity of Systems of Sines and Cosines with a
Linear Phase in Morrey-Type Spaces

Fidan Seyidova

ABSTRACT. In this work systems of sines sin (n + 8)t, n=1,2,...,
and cosines cos(n—fB)t, n = 0,1,2,..., are considered, where
B € R—is a real parameter. The subspace M?® (0, ) of the Morrey
space LP® (0,7) in which continuous functions are dense is con-
sidered. Criterion for the completeness, minimality and basicity
of these systems with respect to the parameter 8 in the subspace
MP<(0,7), 1 < p < +oo, are found.

1. INTRODUCTION

When solving many partial differential equations of mixed or elliptic
types, the Fourier method yields spectral problems whose eigenfunctions
are systems of sines

(1.1) sin(n—pf8)t, né€N,
and cosines
(1.2) cos(n—pB)t, neZy (Zyx ={0}UN),

where 8 € R is some real parameter (for more details see [22-24, 28, 29]).
When substantiating a formal solution, it is required to study the basis
properties (completeness, minimality, basicity) of these systems in the
corresponding Banach spaces_of functions on the segment [0,7]. The
basis properties of systems (EI) and (@) are closely related to the
corresponding properties of systems of exponents

1.3 E :{ i(n—ﬁsign)t} ,
(1.3) B=1¢ ez
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(1.9 o {etpr,

n#0
in function spaces on the segment [—7, 7]. The study of the basis prop-
erties of systems ([L.3) and (@) in Lebesgue spaces of functions started
apparently with the work of Paley and Wiener [27] and N. Levinson [19].
The final results on the basicity of system (E) belong to M.I. Kadets
[16] (the Riesz basicity in Lg) and A. M. Sedletskii [30] (the basicity in
L,). Criterion regarding the basis properties of systems ([L.1]) and (E)
are obtained in the works of E.I. Moiseev [20, 21]. This direction was
developed in the works of B.T. Bilalov [2-5] regarding systems of a more
general form.

Recently, in connection with specific problems, interests in study-
ing various problems of modern mathematics in non-standard function
spaces has significantly increased. For more information on related is-
sues, see monographs [, 13-15, [17, 18]. The desire to study the differen-
tial equations describing the above mentioned problems in non-standard
Sobolev spaces required the study of the basis properties of systems ([L.1])
and ([.2) in the corresponding non-standard Lebesgue spaces of func-
tions. In [6-12, 25, 26], the basis properties of systems (@) and (Q)
were established in Lebesgue spaces of functions with a variable summa-
bility exponent and in Morrey-type spaces. In the work of B.T. Bilalov
[6] criteria regarding the basis properties of system ([L.3) in Morrey-type
spaces are_established. In [26], similar results were obtained for the
system ([L.4) in the same spaces.

In this paper, criteria for the basis properties of the system of sines
(L.1f) and cosines ([l.2) in Morrey-type spaces are established. In this
case, similar results regarding the systems of exponents ([l.3) and (]1.4)
in spaces MP® (—m, ) are used. The proposed approach differs from
the method used in the works of E.I. Moiseev [20, 21].

2. NEEDFUL INFORMATION

Let us first accept some standard notations. IN—is the set of natural
numbers; Z—are integers; [z] —is the integer part of number x.

Let’s define the Morrey space LP*® (a,b). It is a Banach space of all
measurable functions over (a,b) with the finite norm

1

a— p

1l oy = sup (|f| g If(t)lpdt) |
1C(a,b) I

where sup is taken over all intervals I C (a,b). For 0 < oy < ag <1
the following continuous embedding holds: LP% C LP%2, It is easy
to notice that LP! (a,b) = L, (a,b) and LP? (a,b) = Lo (a,b) are true.
Moreover, LP“ (a,b) C Ly (a,b), ¥p > 1, Va € [0,1]. It is known that
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LP* (a,b), 1 < p < +oo, a € (0,1), is not separable and C'[a, b] is not
dense in it. Let

MP (a,0) = {F € I (a,0) : |F (-+6) = £ )l pnagapy = 0,6 = 0}

As shown in [6], MP* (a,b), for 1 < p < 400, 0 < a < 1, is a separable
Banach space and C§° (a, b) (infinitely differentiable and finite supported
functions over (a, b)) is dense in it. When defining the space MP* (a,b),
the function f(-) is assumed to be extended outside the interval (a,b)
by zero.

We will also need the following well-known lemma

Lemma 2.1. Let f € MP*(a,b), 1 < p < 4+00,0 < a < 1, be an
arbitrary function. Then || fxEll oy — 0, as |[E] = 0, where E C
(a,b) is an arbitrary interval and |E| is its length.

We will essentially use the results of [6, 11, 26]. Let us represent these
results.

Theorem 2.2 ([6]). Let 2Ref+ 2 ¢ Z, 1 < p < 400, 0 < a < 1.
Then the system of exponents ([L.3) forms a basis for MP (—m, ) if

and only if d (Eg) = [2Re,3 + %} =0. Ford(Eg) <0 it is not complete,

but is minimal; and for d(Eg) > 0 it is complete but is not minimal in
MPe (=7, 7).

We will need the following

Definition 2.3. A sequence {z,},.n C X in a Banach space X is
called a defect system if after eliminating from it or attaching to it a
finite number of elements, it becomes complete and minimal in X and
we call this number the defect of the system and denote it d ({IL‘n}ne N).

From this definition and the proof of [, Theorem @], it follows that
the defect of the system Ej3 is equal to |d (Eg)| and more precisely, for
d(Eg) > 0 it contains d (Eg) superfluous elements and for d (Eg) < 0 it
is necessary to add |d (E3)| elements to it.

A similar result holds for the system of exponents (@)

Theorem 2.4 ([20]). Let 2Ref + 3 ¢ Z, 1 <p < 400, 0 < a < L.
System of exponents ([L.4) forms a basis for MP* (—m, ) if and only
if d(Eg) = 0. For d(Eg) < 0 it is not complete, but is minimal; for
d(Eg) > 0 it is complete, but is not minimal in it.

Multiply each member of the system Eg by a function Fg e3t and
transform

l’ 1 _ . . s
€2tE 62t {6 zﬁteznt; ezﬁte zkt}
n>0;k>1
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. 1 . . 1 .
{61(_5_§)t61kt; 6—2(—5—§)t6—zkt}
k>1

ei(nf/} sign n)t }

n#0

(& B’
where B =p+ % Following Definition @, we have

d(e5) = d(Ep)

= 2Reﬁ+a}
i p

- ZReB—I—a—l}
I p

— [2Ref + 2| — 1.

Thus, the defect of the system e; is equal to ‘d <6ﬂ~> ‘, where

™

d(eB) _ _2ReB+Z 1

As a result, we obtain the following;:

Corollary 2.5. Let 2Ref + % ¢ 7,1 <p<-+oo,0<a<1. Then the

system of exponent {e"(”_BSignn)t}n#O, forms a basis for MP* (—m,m) if

and only if dg = [2Reﬂ + %] = 1. For dg < 1 it is not complete, but is

minimal; and for dg > 1 it is complete, but is not minimal in it .

In order to obtain the main results, we essentially use the following
propositions, which are proved similar to the results in [25].
Consider the following unitary system of functions of the form

vE () =a(t)wi () £b(t)w, (1), neN,

n

where a (t),b(t) ,w; (t),w, (t) are some complex-valued functions given

on (0,7) and the associated with it double system
{AH) Wi (t); A(=t) Wn (=) }nen s

where
(1), te€l0,a],
(_t) ) te [_a7 ) )

tel0,qa],
w, (=t), te[-a,0).
Let us consider the following double system

Vaom = (A(t) Wy (1) ; A(—t) Wi, (—t)), n,m e N.
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The following proposition is true.

Proposition 2.6. The system {Van},cn (LU{Van},cy) forms a basis
for MP* (—m, ), 1 < p < 400, 0 < a < 1, if and only if each of the
systems {v;l },cn and {v, }en (systems LU {ot}, oy and {v; },cn)
forms a basis for MP* (0, 7).
From this proposition we directly obtain the following:
Corollary 2.7. System of exponents
EO = { i(nfﬂsignn)t} , 1U E9 ,
F=° k0 (LU Ep)
forms a basis for MP* (—m,7), 1 <p < 400, 0 < a <1, if and only if

systems of sines ([L.1)) and cosines {cos (n — B)t}, . (systems of sines
(@) and cosines 1 U {cos (n — B)t}, . ) form bases for MP< (0, ).

3. MAIN RESULTS

We will study the basis properties of systems of sines (@) and cosines
(@) in spaces MP“ (0, 7). Let

2Reﬁ+g¢Z,1 <p<+oo, O0<a<l.
p
Assume that d (Eg) = [2Reﬂ + %] =0, i.e. the inequalities

0<2Ref+ 2 <1,
p

hold. In this case, by [26, Theorem 2.2], the system of exponents (@)
forms a basis for MP“ (—m, 7). Then, as follows from Corollary R.7, the
system of sines ([L.1) forms a basis for MP% (0, 7). And now, let the
equality d (Eg) =1 hold, i.e. the inequalities

1 < 2Ref + a <2,
p
are fulfilled. In this case, by Corollary @, the system of exponents
{el(”*ﬁslgnn)t} forms a basis for MP“ (—m,7m) and as a result, by
n#0
the results of Corollary @, the system of sines (

MP> (0, ).
Therefore, under the condition

0<2Ref + & <2,
p

) forms a basis for

the system (@) forms a basis for MP (0, 7). Consider the case when
2Ref + % < 0, let, for example, the inequalities

2<2Ref+E<0 & 0<2Re(f+1)+2 <2
p p
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hold. Consider the system {sin (n — ) t},-, and transform it

{sin(n—(B+1)+1)t},59 = {sin(n— 1) t},>;,
where 81 = 6+ 1. Consequently, the following inequalities

0<2Re61+g<2,
D

hold and as a result the system {sin(n — ) t},-, forms a basis, and
therefore the system () is minimal, but is not complete in MP* (0, ).
Continuing this process, we obtain that for 2Ref + % < 0 the system
(IL.1) is minimal, but is not complete in MP“ (0, ).

With similar reasoning, it is proved that for 2Ref —}—% > 2, the system
(EI) is complete, but is not minimal in MP* (0, 7). So, the following
theorem is proved

Theorem 3.1. Let 2Ref —1—% ¢ 7,1 <p<+4o0,0<a<l. System of
sines (EI) forms a basis for MP* (0, ) if and only if [Reﬂ + %} = 0.
Moreover, for {Reﬁ + %] < 0 4t is not complete, but is minimal; and

for [Reﬁ + 2%} > 0 it is complete, but is not minimal in MP* (0, ).

We proceed to study the basis properties of the system of cosines

(3.1) {cos(n —B) t},cn-

Let 2Ref + ¢ Z and consider the case 1 < 2Ref + 2 < 2. In this
case, by Corollary @ the system EO forms a basis for MP* (=7, ),
1] < p< 400,00 < a <1 Then, accordlng to the results of Corollary

, the system of cosines (B.l)) forms a basis for MP“ (0,7). Consider
the case when the condition

2<2Reﬁ+%<3 N 0<2Re(5—1)+%<1,

holds. Then, as follows from Theorem @ the system of exponents
Ez_y forms a basis for MP® (—m, ) < 400, 0 < a < L
At the same time, as follows from Theorem the system 1U ngl
forms a basis for MP® (—m, 7). As a result the system of cosines 1 U
{cos(n — (B —1)) t},~, forms a basis for MP“ (0, ) and therefore the
system {cos (n — () t}, =, is minimal, but is not complete in MP< (0, ).
On the other hand it is obvious that an arbitrary function from
MP* (—7, ) can be expanded in an exponential system
{e—z‘ﬁt et Bt e—ikt} 7
n;k>0
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in the same space, where 5 = 8 — 1. Using this fact, it is easy to prove
that an arbitrary function from MP“ (0,7) can also be expanded in a
system of cosines

{COS (n — B) t}nzo = {cos(n —B) t},> -

Since the system {cos(n — ) t},~, is minimal, but incomplete in
MP2(0,7), it follows that the system {cos(n — ) t},~; is complete
and minimal and at the same time forms a basis for MP® (0, 7). Thus,
if the inequalities

1 < 2Ref + % <3,

hold, the system {cos (n — f3) t},~, forms a basis for A" (0, 7). Simi-
larly to the case of a system of sines, it is established that for 2Re5+% <
1 it is not complete, but is minimal; and for 2Ref + % > 3 is complete,
but is not minimal in MP (0, 7). So, the following theorem is true.

Theorem 3.2. Let 2Ref3 —1—% ¢ 7,1 <p<+o00,0<a<l. System
of cosines {cos (n — B)t}, 5, forms a basis in MP* (0, 7) if and only if

[Reﬂ + % — %} =0. For [Reﬁ + % — %} < 0 it is not complete, but it

1s minimal; for |Ref + % — %} > 0 it is complete, but is not minimal

in MP< (0, 7).
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