On Certain Generalized Bazilevic Type Functions Associated with Conic Regions

Khalida Inayat Noor ${ }^{1}$ and Shujaat Ali Shah ${ }^{2 *}$

Abstract. Let f and g be analytic in the open unit disc and, for $\alpha, \beta \geq 0$, let

$$
\begin{aligned}
J(\alpha, \beta, f, g)= & \frac{z f^{\prime}(z)}{f^{1-\alpha}(z) g^{\alpha}(z)}+\beta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-\beta(1-\alpha) \frac{z f^{\prime}(z)}{f(z)} \\
& -\alpha \beta \frac{z g^{\prime}(z)}{g(z)} .
\end{aligned}
$$

The main aim of this paper is to study the class of analytic functions which map $J(\alpha, \beta, f, g)$ onto conic regions. Several interesting problems such as arc length, inclusion relationship, rate of growth of coefficient and Growth rate of Hankel determinant will be discussed.

1. Introduction

Let \mathbf{A} denotes the class of functions f given by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are anlytic in $E=\{z:|z|<1\}$. Let

$$
P=\{p: \operatorname{Re}(p(z))>0, z \in E\}
$$

and

$$
\begin{equation*}
P\left(p_{\kappa}\right)=\left\{p \in \mathbf{A}: p(0)=1 \wedge p \prec p_{\kappa}\right\}, \tag{1.2}
\end{equation*}
$$

[^0]where $p_{\kappa}(z)$ are extremal functions for conic regions Ω_{κ}, where
\[

$$
\begin{equation*}
\Omega_{\kappa}=\left\{a+i b: a>\kappa \sqrt{(a-1)^{2}+b^{2}}\right\} . \tag{1.3}
\end{equation*}
$$

\]

The regions $\Omega_{\kappa}(\kappa=0)$ represents right half plane, $\Omega_{\kappa}(0<\kappa<1)$ represents hyperbola, $\Omega_{\kappa}(\kappa=1)$ represents a parabola and $\Omega_{\kappa}(\kappa>1)$ represents an ellipse. For $p_{\kappa}(z), \kappa \in[0, \infty)$ we refer [6, 7]. Clearly, $P\left(p_{\kappa}\right) \subset P(\alpha)$, where $\alpha=\frac{\kappa}{\kappa+1}$,

$$
P(\alpha)=\{p: \operatorname{Re}(p(z))>\alpha, z \in E\} .
$$

The class $P\left(p_{\kappa}\right)$ extended as follows 17;
Definition 1.1. Let $p \in \mathbf{A}$ in E with $p(0)=1$. Then $p \in P_{m}\left(p_{\kappa}\right)$, $m \geq 2, \kappa \in[0, \infty)$ if and only if

$$
\begin{equation*}
p(z)=\left(\frac{m}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{m}{4}-\frac{1}{2}\right) p_{2}(z), \tag{1.4}
\end{equation*}
$$

where $p_{1}, p_{2} \in P\left(p_{\kappa}\right)$. We note $P_{m}\left(p_{\kappa}\right) \subset P_{m}(\rho), \rho=\frac{\kappa}{\kappa+1}$ and this class has been studied in [18]. When $\kappa=0$, the class $P_{m}\left(p_{0}\right)=P_{m}$ which was introduced by Pinchuk in [19].

Related to the class $P_{m}\left(p_{\kappa}\right)$, we have:

$$
\begin{aligned}
& \kappa-U V_{m}=\left\{f \in A: \frac{\left(z f^{\prime}\right)^{\prime}}{f^{\prime}} \in P_{m}\left(p_{\kappa}\right) ; z \in E\right\} \\
& \kappa-U R_{m}=\left\{f \in A: \frac{z f^{\prime}}{f} \in P_{m}\left(p_{\kappa}\right) ; z \in E\right\} .
\end{aligned}
$$

Some special classes of these classes are as pointed out below.
(i) $0-U V_{m}=V_{m}$ and $0-U R_{m}=R_{m}$ which are respectively, the well-known classes [3] of functions with bounded boundary and bounded radius rotation. By choosing $m=2$, we obtain $V_{2}=C$, the class of convex functions and $R_{2}=S^{*}$ contains starlike functions.
(ii) $\kappa-U V_{2}=\kappa-U C V$ is the class of uniformly convex functions; see [7] and $\kappa-U R_{2}=\kappa-S T$ contain uniformly starlike functions [6].
Now we define:
Definition 1.2. Let $f \in A, \alpha, \beta \geq 0$. Then $f \in M_{g}(\alpha, \beta, \kappa)$ if and only if

$$
\begin{aligned}
J(\alpha, \beta, f, g)= & \frac{z f^{\prime}(z)}{f^{1-\alpha}(z) g^{\alpha}(z)}+\beta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-\beta(1-\alpha) \frac{z f^{\prime}(z)}{f(z)} \\
& -\alpha \beta \frac{z g^{\prime}(z)}{g(z)} .
\end{aligned}
$$

belongs to $P\left(p_{\kappa}\right)$ for some $g \in A$.
Special cases:
(i) For $\beta=0$ and $g \in \kappa-U R_{m}$, we have the class
$M_{g}(\alpha, 0, \kappa)=B_{m}(\alpha, \kappa)$ and when $m=2, \kappa=0, B_{2}(\alpha, 0)=$ $B(\alpha)$ is the well-known class of Bazilevic functions of type α, see [21].
(ii) For $\beta=0, \rho=\frac{\kappa}{\kappa+1}$ and $g \in R_{m}(\rho)$, we have $M_{g}(\alpha, 0, \kappa)=B_{m}(\alpha, \rho, \kappa)$ introduced by Noor et. al. [14].
(iii) With $g \in R_{m}, M_{g}(1,0,0)=T_{m}$, the class of generalized close-to-convex functions introduced and studied in [12]. For $m=$ 2, we have $T_{2}=K$, the well-known class of close-to-convex functions introduced in [8].
(iv) $M_{g}(0, \beta, 0)=M(\beta)$ is the class of β-starlike functions and in this case, $f \in M(\beta)$ implies

$$
\left\{(1-\beta) \frac{z f^{\prime}(z)}{f(z)}+\beta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\} \in P, \quad z \in E
$$

(v) $M_{g}(1,0, k)=\kappa-U C V$ is the class of k-uniformly convex functions, see [7].

2. Preliminary Results

Lemma 2.1 ([4]). Let $h \in P, z \in E$ and $z=r e^{i \phi}$. Then

$$
\int_{0}^{2 \pi}\left|h\left(r e^{i \phi}\right)\right|^{\eta} d \theta<c(\eta) \frac{1}{(1-r)^{\eta-1}}
$$

where $\eta>1$ and $c(\eta)$ is a constant depending only on λ.
Lemma $2.2(18])$. Let $g \in V_{m}(\rho)$. Then

$$
\begin{gather*}
g^{\prime}(z)=\left(g_{1}^{\prime}(z)\right)^{1-\rho}, \quad g_{1} \in V_{m} \tag{2.1}\\
\text { 3. MAIN RESULTS }
\end{gather*}
$$

Theorem 3.1. Let $g \in \kappa-U R_{m}$. Then, for $m \geq 2$ and $\kappa \geq 0$

$$
M_{g}(\alpha, \beta, \kappa) \subset M_{g}(\alpha, 0, \kappa)=B_{m}(\alpha, \kappa)
$$

Proof. Let

$$
\begin{equation*}
f \in M_{g}(\alpha, \beta, \kappa), \quad g \in \kappa-U R_{m} \tag{3.1}
\end{equation*}
$$

and let

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f^{(1-\alpha)}(z) g^{\alpha}(z)}=Q(z) \tag{3.2}
\end{equation*}
$$

We note that $Q(z)$ is analytic in E and $Q(0)=1$. By using (3.2), (3.1) and some simple calculations, we have

$$
\begin{equation*}
\left(Q(z)+\beta \frac{z Q^{\prime}(z)}{Q(z)}\right) \prec p_{\kappa}(z) . \tag{3.3}
\end{equation*}
$$

Now, due to result of Miller Mocanu [9], it follows from (3.3) that

$$
Q(z) \prec q_{k}(z) \prec p_{\kappa}(z),
$$

where

$$
q_{k}(z)=\left[\int_{0}^{1}\left(\exp \int_{0}^{t z} \frac{p_{\kappa}(\zeta)-1}{\zeta} d \zeta\right) d t\right]^{-1}
$$

is best dominant. Therefore it follows that $f \in B_{m}(\alpha, \kappa), z \in E$.
Remark 3.2. As a partial converse case, with $\kappa=0$,

$$
B_{m}(\alpha, 0) \subset M_{g}(\alpha, \beta, 0) \text { for }|z|<r_{\beta},
$$

where

$$
\begin{equation*}
r_{\beta}=\frac{1}{\left[2 \beta+\sqrt{4 \beta^{2}-2 \beta+1}\right]} . \tag{3.4}
\end{equation*}
$$

As a proof, let

$$
\frac{z f^{\prime}(z)}{f^{(1-\alpha)}(z) g^{\alpha}(z)}=H(z) .
$$

Then $Q \in P$. Now using distortion results for the class P, see [3], we have

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f^{(1-\alpha)}(z) g^{\alpha}(z)}+\beta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-\beta(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}-\alpha \beta \frac{z g^{\prime}(z)}{g(z)}\right\} \\
& \quad=\operatorname{Re}\left(H(z)+\beta \frac{z H^{\prime}(z)}{H(z)}\right)>0, \quad \text { for }|z|<r_{\beta},
\end{aligned}
$$

where r_{β} is given by (3.4).
As special case, if $f \in M(\beta)$ implies $f \in S^{*}$ for $|z|=r_{1}<\frac{1}{2+\sqrt{3}}$.
Theorem 3.3. Let $f \in B_{m}(\alpha, \kappa)$. Then, for $\alpha \in(0,1]$ and $\frac{\alpha(m+2)}{(\kappa+1)(2-\sigma)}>1$, we have

$$
\begin{equation*}
\underset{|z|=r}{L_{f}}=O(1) M_{r}^{(1-\alpha)}(f)\left(\frac{1}{1-r}\right)^{\gamma}, \gamma=\frac{\alpha}{\kappa+1}\left(\frac{m}{2}+1\right)+\sigma-1, \tag{3.5}
\end{equation*}
$$

where $M_{r}(f)=\max _{|z|=r}|f(z)|, \quad L_{|z|=r}$ the length of the image of the circle $|z|=r$ under f and $O(1)$ denotes a constant depending on κ, m and α.

Proof. As we know that, for $z=r e^{i \theta}, 0<r<1$

$$
\begin{equation*}
\underset{|z|=r}{L_{f}}=\int_{0}^{2 \pi}\left|z f^{\prime}(z)\right| d \theta \tag{3.6}
\end{equation*}
$$

Since $f \in B_{m}(\alpha, \kappa)$, we have

$$
\begin{equation*}
z f^{\prime}(z)=f^{(1-\alpha)}(z) g^{\alpha}(z) h(z) \tag{3.7}
\end{equation*}
$$

where $g \in k-U R_{m} \subset R_{m}\left(\frac{\kappa}{\kappa+1}\right), h \in P\left(p_{\kappa}\right)$. Using Lemma 2.2 and a result of Brannan [1] for the generalized case, we can write

$$
\begin{equation*}
\frac{g(z)}{z}=\frac{\left(\frac{g_{1}(z)}{z}\right)^{\left(\frac{1}{\kappa+1}\right)\left(\frac{m}{4}+\frac{1}{2}\right)}}{\left(\frac{g_{2}(z)}{z}\right)^{\left(\frac{1}{\kappa+1}\right)\left(\frac{m}{4}-\frac{1}{2}\right)}}, \quad g_{1}, g_{2} \in S^{*} \tag{3.8}
\end{equation*}
$$

Also $h \in P\left(p_{\kappa}\right)$ can be written as

$$
\begin{equation*}
h(z)=p^{\sigma}(z), \quad p \in P, \quad \sigma=\frac{2}{\pi} \tan ^{-1} \frac{1}{\kappa} \tag{3.9}
\end{equation*}
$$

From (3.6)-(3.9), we obtain

$$
\underset{|z|=r}{L_{f}} \leq \frac{M_{r}^{(1-\alpha)}(f)}{r^{\frac{\alpha}{\kappa+1}}} \int_{0}^{2 \pi}\left|\frac{\left(g_{1}(z)\right)^{\left(\frac{m}{4}+\frac{1}{2}\right)}}{\left(g_{2}(z)\right)^{\left(\frac{m}{4}-\frac{1}{2}\right)}}\right|^{\frac{\alpha}{\kappa+1}} \cdot|p(z)|^{\sigma} d \theta
$$

Using distortion result for starlike function $g_{2}(z)$, to get

$$
\begin{equation*}
\underset{f}{|z|=r} L_{f} \leq \frac{2^{\frac{\alpha}{\kappa+1}\left(\frac{m}{2}+1\right)} M_{r}^{(1-\alpha)}(f)}{r^{\frac{\alpha}{\kappa+1}\left(\frac{m}{4}+\frac{1}{2}\right)}} \int_{0}^{2 \pi}\left|g_{1}(z)\right|^{\frac{\alpha}{\kappa+1}\left(\frac{m}{4}+\frac{1}{2}\right)} \cdot|p(z)|^{\sigma} d \theta \tag{3.10}
\end{equation*}
$$

Using Holder's inequality, we note that

$$
\begin{align*}
\int_{0}^{2 \pi}\left|g_{1}(z)\right|^{\frac{\alpha}{\kappa+1}\left(\frac{m}{4}+\frac{1}{2}\right)} \cdot|p(z)|^{\sigma} d \theta \leq & \left(\int_{0}^{2 \pi}\left|g_{1}(z)\right|^{\frac{\alpha\left(\frac{m}{2}+1\right)}{(\kappa+1)(2-\sigma)}}\right)^{\frac{2-\sigma}{2}} \tag{3.11}\\
& \times\left(\int_{0}^{2 \pi}|p(z)|^{2}\right)^{\frac{\sigma}{2}} d \theta
\end{align*}
$$

Now, it is known [3] for $p \in P$ that

$$
\begin{equation*}
\int_{0}^{2 \pi}|p(z)|^{2} d \theta \leq \frac{1+3 r^{2}}{1-r^{2}} \tag{3.12}
\end{equation*}
$$

and subordination principle together with Lemma 2.1, gives us

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|g_{1}(z)\right|^{\frac{\alpha\left(\frac{m}{2}+1\right)}{(\kappa+1)(2-\sigma)}} d \theta \leq \int_{0}^{2 \pi}\left|\frac{r}{1-r e^{i \theta}}\right|^{\frac{\alpha\left(\frac{m}{2}+1\right)}{(\kappa+1)(2-\sigma)}} d \theta \tag{3.13}
\end{equation*}
$$

$$
\leq c(\alpha, m, \kappa)\left[\frac{1}{1-r}\right]^{\frac{\alpha(m+2)}{(\kappa+1)(2-\sigma)}-1}
$$

where $c(\alpha, m, \kappa)$ is a constant and $\frac{\alpha(m+2)}{(\kappa+1)(2-\sigma)}>1$. Thus, using (3.12)(3.13), we obtain from (3.10) that

$$
\underset{|z|=r}{L_{f}}=O(1) M_{r}^{(1-\alpha)}(f)\left(\frac{1}{1-r}\right)^{\gamma}, \quad \gamma=\frac{\alpha\left(\frac{m}{2}+1\right)}{(\kappa+1)}+\sigma-1 .
$$

Corollary 3.4. Let $\kappa=0 \Rightarrow \sigma=1$ and $\alpha=\frac{1}{2}$. Then, for $m>\left(\frac{1}{\alpha}-2\right)$ and $r_{0}=\frac{1}{1-r}$

$$
\underset{|z|=r}{L_{f}}=O(1) M_{r}^{(1-\alpha)}(f) r_{0}^{\alpha\left(\frac{m}{2}+1\right)}
$$

Corollary 3.5. Let $\kappa=1 \Rightarrow \sigma=\frac{1}{2}$. Then, for $m>\left(\frac{3}{\alpha}-2\right)$ and $r_{0}=\frac{1}{1-r}$

$$
\underset{|z|=r}{L_{f}}=O(1) M_{r}^{(1-\alpha)}(f) r_{0}^{\left[\alpha\left(\frac{m}{4}+\frac{1}{2}\right)-\frac{1}{2}\right]} .
$$

For $\alpha=1$, we have

$$
\underset{|z|=r}{L_{f}}=O(1) M_{r}^{(1-\alpha)}(f) r_{0}^{\frac{m}{4}} .
$$

Corollary 3.6. Let $\kappa=1, m=4, \sigma=1$ and $r_{0}=\frac{1}{1-r}$. Then $\alpha \in\left(\frac{1}{2}, 1\right]$ and we have

$$
\underset{|z|=r}{L_{f}}=O(1) M_{r}^{(1-\alpha)}(f) r_{0}^{\frac{3 \alpha-1}{2}} .
$$

The case when $\alpha>1$ is similar and is stated as following;
Theorem 3.7. Let $f \in B_{m}(\alpha, \kappa)$. Then, for $\alpha>1$ and $\frac{\alpha(m+2)}{(\kappa+1)(2-\sigma)}>1$, we have

$$
\begin{equation*}
\underset{\substack{|z|=r}}{L_{f}}=O(1) m_{r}^{(1-\alpha)}(f)\left(\frac{1}{1-r}\right)^{\gamma}, \gamma=\frac{\alpha}{\kappa+1}\left(\frac{m}{2}+1\right)+\sigma-1, \tag{3.14}
\end{equation*}
$$

where $m_{r}(f)=\min _{|z|=r}|f(z)|$ and $O(1)$ denotes a constant depending on κ, m and α.

Corollary 3.8. For $\kappa=0 \Rightarrow \sigma=1, \alpha=2$ and $r_{0}=\frac{1}{1-r}$, we have

$$
\underset{|z|=r}{L_{f}}=O(1) m_{r}^{(1-\alpha)}(f) r_{0}^{(m+2)}
$$

Corollary 3.9. For $\kappa=1 \Rightarrow \sigma=\frac{1}{2}, \alpha=2$ and $r_{0}=\frac{1}{1-r}$, we have

$$
\underset{f}{L_{f}}=O(1) m_{r}^{(1-\alpha)}(f) r_{0}^{\left(\frac{m}{2}+1\right)}
$$

Theorem 3.10. Let $f \in B_{m}(\alpha, \kappa)$. Then, for $\frac{\alpha(m+2)}{(\kappa+1)(2-\sigma)}>1$, we have

$$
a_{n}=\left\{\begin{array}{ll}
O(1) M^{1-\alpha}(f) n^{\gamma-1} ; & 0<\alpha \leq 1 \\
O(1) m^{1-\alpha}(f) n^{\gamma-1} ; & \alpha>1,
\end{array} \quad(n \rightarrow \infty)\right.
$$

where $M(f), m(f), \gamma$ and $O(1)$ are same as defined before.
Proof. With $z=r e^{i \theta}$, we use Cauchy Theorem to have

$$
\begin{align*}
n\left|a_{n}\right| & =\frac{1}{2 \pi r^{n}}\left|\int_{0}^{2 \pi} z f^{\prime}(z) e^{-\iota n \theta} d \theta\right| \tag{3.15}\\
& \leq \frac{1}{2 \pi r^{n}} \int_{0}^{2 \pi}\left|z f^{\prime}(z)\right| d \theta \\
& =\frac{1}{2 \pi r^{n}} L_{|z|=r}
\end{align*}
$$

We can easily obtain our required result from (3.5), (3.14) and (3.15).

4. Hankel Determinant Problem

Let $f \in \mathbf{A}$ and given by (1.1). Then for $q \geq 1, n \geq 1$, the q th hankel determinant $H_{q}(n)$ is defined as;

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \tag{4.1}\\
a_{n+1} & a_{n+2} & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
a_{n+q-1} & a_{n+q} & . . & a_{n+2 q-2}
\end{array}\right|
$$

Several authors have discussed rate of growth of $H_{q}(n)$ as $n \rightarrow \infty$ for well-known classes, see [10, 11, 13, 15, 16]. In [20] Pommerenke, studied it for starlike functions. Hayman [5] proved that $H_{2}(n)=O(1) \cdot n^{\frac{1}{2}}$ as $n \rightarrow \infty$ and f is univalent. The exponent $\frac{1}{2}$ is best possible and $O(1)$ is constant. Here we discuss this problem for $f \in B_{m}(\alpha, \kappa), m \geq 2, \kappa \geq 0$ as $n \rightarrow \infty$. To prove our main result of this section, we shall need the following two lemmas.

Lemma 4.1 (10). Let $f \in A$ and let the Hankel determinant of $f(z)$ be defined by (4.1). Then, writing $\Delta_{j}(n)=\Delta_{j}\left(n, z_{1}, f\right)$, we have

$$
H_{q}(n)=\left|\begin{array}{cccc}
\Delta_{2 q-2}(n) & \Delta_{2 q-3}(n+1) & \ldots & \Delta_{q-1}(n+q-1) \tag{4.2}\\
\Delta_{2 q-3}(n+1) & \Delta_{2 q-4}(n+2) & \ldots & \Delta_{q-2}(n+q) \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\Delta_{q-1}(n+q-1) & \Delta_{q-2}(n+q) & . . & \Delta_{0}(n+2 q-2)
\end{array}\right|
$$

where, with $\Delta_{0}\left(n, z_{1}, f\right)=a_{n}$, we define for $j \geq 1$,

$$
\Delta_{j}\left(n, z_{1}, f\right)=\Delta_{j-1}\left(n, z_{1}, f\right)-z_{1} \Delta_{j-1}\left(n+1, z_{1}, f\right)
$$

Lemma 4.2 (10]). With $z_{1}=\left(\frac{n}{n+1} y\right)$ and $v \geq 0$ be any integer

$$
\Delta_{j}\left(n+v, x, z f^{\prime}(z)\right)=\sum_{l=0}^{j}\binom{j}{i} \frac{y^{l}(v-(l-1) n)}{(n+1)^{l}} \Delta_{j-l}(n+v+l, y, f(z)) .
$$

Theorem 4.3. Let $f \in B_{m}(\alpha, \kappa)$. Then, for $M(r, f)=\max _{|z|=r}|f(z)|$, $q \geq 1, n \geq 1$ and $m>\left(\frac{4 q-2}{\alpha_{1}}-2\right)$

$$
H_{q}(n)=O(1) M_{r}^{(1-\alpha)}(f)\left\{\begin{array}{lll}
n^{\beta_{1}} ; & q=1, & m>\left[\frac{2}{\alpha_{1}}-2\right] \\
n^{\beta_{2}} ; & q>1, & m>\left[\frac{4 q-2}{\alpha_{1}}-2\right]
\end{array}\right.
$$

where

$$
\beta_{1}=\alpha_{1}\left(\frac{m}{2}-1\right)+\sigma-2, \quad \alpha_{1}=\alpha(1-\rho) .
$$

and

$$
\beta_{2}=\left(\alpha_{1}\left(\frac{m}{2}+1\right)+\sigma-1\right) q-q^{2} .
$$

Proof. Let $z G^{\prime}(z)=g(z)$. Then $\frac{\left(z G^{\prime}(z)\right)^{\prime}}{G^{\prime}(z)} \in P_{m}\left(p_{\kappa}\right) \subset P_{m}(\rho), \rho=\frac{\kappa}{\kappa+1}$. This implies $G \in V_{m}(\rho)$, so from (2.1) we have

$$
\begin{equation*}
G^{\prime}(z)=\left(G_{1}^{\prime}(z)\right)^{(1-\rho)}, \quad G_{1} \in V_{m} \quad(z \in E) \tag{4.3}
\end{equation*}
$$

Since $f \in B_{m}(\alpha, \kappa)$, so we can write

$$
\begin{equation*}
z f^{\prime}(z)=f^{(1-\alpha)}(z) g^{\alpha}(z) h^{\sigma}(z), \quad \text { for } h \in P . \tag{4.4}
\end{equation*}
$$

From (4.4) and result due to Brannan [1], the above equation implies

$$
\begin{equation*}
z f^{\prime}(z)=z^{\alpha} f^{(1-\alpha)}(z)\left[\frac{\left(g_{1}^{\prime}(z)\right)^{\left(\frac{m}{4}+\frac{1}{2}\right)}}{\left(g_{2}^{\prime}(z)\right)^{\left(\frac{m}{4}-\frac{1}{2}\right)}}\right]^{\alpha(1-\rho)} \cdot h^{\sigma}(z), \quad g_{1}, g_{2} \in C . \tag{4.5}
\end{equation*}
$$

For any univalent function s, we can choose $z_{1}=z_{1}(r)$ with $\left|z_{1}\right|=r$ such that

$$
\begin{equation*}
\max _{|z|=r}\left|\left(z-z_{1}\right) s(z)\right| \leq \frac{2 r^{2}}{1-r^{2}}, \quad(\text { see }[2]) \tag{4.6}
\end{equation*}
$$

Thus, from (4.5) with $z g_{i}^{\prime}=s_{i} \in S$ and $m \geq\left[\frac{2+4 j}{\alpha(1-\rho)}-2\right]$, we have

$$
\begin{aligned}
\left|\Delta_{j}\left(n, z_{1}, z f^{\prime}\right)\right| \leq & \frac{M^{1-\alpha}(r, f)}{2 \pi r^{n+j-\alpha}}\left(\frac{2 r^{2}}{1-r^{2}}\right)^{j}(2)^{\alpha_{1}\left(\frac{m}{2}-1\right)} \\
& \times \int_{0}^{2 \pi}\left|s_{1}(z)\right|^{\alpha_{1}\left(\frac{m}{4}+\frac{1}{2}\right)-j}\left|h^{\sigma}(z)\right| d \theta
\end{aligned}
$$

where we have used distortion result for starlike function s_{2}, we can rewrite above inequality as;

$$
\begin{align*}
\left|\Delta_{j}\left(n, z_{1}, z f^{\prime}\right)\right|= & O(1) \cdot M^{1-\alpha}(r, f)\left(\frac{1}{1-r}\right)^{j} \tag{4.7}\\
& \times\left[\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|s_{1}(z)\right|^{\alpha_{1}\left(\frac{m}{4}+\frac{1}{2}\right)-j}\left|h^{\sigma}(z)\right| d \theta\right]
\end{align*}
$$

where $O(1)$ denotes a constant.
By making use of Holder's inequality, we have

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|s_{1}(z)\right|^{\alpha_{1}\left(\frac{m}{4}+\frac{1}{2}\right)-j}\left|h^{\sigma}(z)\right| d \theta \tag{4.8}\\
& \quad \leq\left[\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|s_{1}(z)\right|^{\left\{\alpha_{1}\left(\frac{m}{4}+\frac{1}{2}\right)-j\right\} \frac{2}{2-\sigma}} d \theta\right]^{\frac{2-\sigma}{2}} \times\left[\frac{1}{2 \pi} \int_{0}^{2 \pi}|h(z)|^{2} d \theta\right]^{\frac{\sigma}{2}}
\end{align*}
$$

Now, from (4.7), (4.8), Lemma 2.1 and subordination for starlike functions, we obtain for $m>\left[\frac{2(1+2 j)}{\alpha_{1}}-2\right]$

$$
\Delta_{j}\left(n, z_{1}, z f^{\prime}\right)=O(1) \cdot M_{r}^{(1-\alpha)}(f)\left(\frac{1}{1-r}\right)^{\alpha_{1}\left(\frac{m}{2}-1\right)-j+\sigma-1}, \quad(r \rightarrow 1)
$$

and using Lemma 4.2, $r=1-\frac{1}{n}$, we get

$$
\Delta_{j}\left(n, z_{1}, f\right)=O(1) \cdot M_{r}^{(1-\alpha)}(f) n^{\alpha_{1}\left(\frac{m}{2}-1\right)-j+\sigma-2}, \quad(n \rightarrow \infty)
$$

For $j>0$, we have $q>1$, follow the similar technique used in 10] along with Lemma 4.1, we get for $m>\left(\frac{4 q-2}{\alpha_{1}}-2\right)$

$$
H_{q}(n)=O(1) M_{r}^{(1-\alpha)}(f) \cdot n^{\beta_{2}}
$$

where $\beta_{2}=\left(\alpha_{1}\left(\frac{m}{2}+1\right)+\sigma-1\right) q-q^{2}$. If $j=0$, we have $q=1$ and $\Delta_{0}\left(n, z_{1}, f\right)=a_{n}$. This gives us, for $m>\left[\frac{2}{\alpha_{1}}-2\right]$

$$
H_{1}(n)=O(1) M_{r}^{(1-\alpha)}(f) \cdot n^{\beta_{1}}
$$

where $\beta_{1}=\alpha_{1}\left(\frac{m}{2}-1\right)+\sigma-2$ and $\alpha_{1}=\alpha(1-\rho)$.
With suitable choices of parameters, we obtain some known results; see [12, 13, 17].

References

1. D.A. Brannan, On functions of bounded boundary rotation, Proc. Edinburg Math. Soc., 16 (1969), pp. 339-347.
2. G.M. Golusin, On distortion theorem and coefficients of univalent functions. Math. Sb., 19 (1946), pp. 183-203.
3. A.W. Goodman, Univalent Functions, Vols. I \& II, Polygonal Publishing House, Washington, New Jersey, (1983).
4. W. K. Hayman, On functions with positive real part, J. London Math. Soc., 36 (1961), pp. 34-48.
5. W.K. Hayman, On the second Hankel determinant of mean univalent functions. Proc. London Math. Soc., 18 (1968), pp. 77-84.
6. S. Kanas and A. Wisniowska, Conic domain and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), pp. 647-657.
7. S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Math., 105 (1999), pp. 327-336.
8. W. Kaplan, Close-to-convex Schlicht functions, Mich. Math. J., 1 (1952), pp. 169-185.
9. S.S. Miller and P.T. Mocanu, Differential subordinations theory and applications, Marcel Dekker, Inc., New York, Basel, (2000).
10. J.W. Noonan and D.K. Thomas, On the Hankel determinant of areally mean p-valent functions, Proc. London Math. Soc., 25 (1972), pp. 503-524.
11. K.I. Noor, Hankel determinant problem for functions of bounded boundary rotations, Rev. Roum. Math. Pures Appl., 28 (1983), pp. 731-739.
12. K.I. Noor, On a generalization of close-to-convexity, Int. J. Math. Math. Sci., 6 (1983), pp. 327-334.
13. K.I. Noor, On the Hankel determinant of close-to-convex univalent functions, Inter. J. Math. Sci., 3 (1980), pp. 447-481.
14. K.I. Noor, K. Ahmad, On higher order Bazilevic functions, Int. J. Mod. Phys. B, 27(2013), 14 pages.
15. K.I. Noor, On the Hankel determinant problem for strongly close-to-convex functions, J. Natu. Geom., 11 (1997), pp. 29-34.
16. K.I. Noor and Al-Naggar, Hankel determinant problem, J. Natu. Geom., 14 (1998), pp. 133-140.
17. K.I. Noor and M.A. Noor, Higher order close-to-convex functions related with conic domains. Appl. Math. Inf. Sci., 8 (2014), pp. 2455-2463.
18. K.S. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31 (1975), pp. 311-323.
19. B. Pinchuk, Functions with bounded boundary rotation, Israel J. Math., 10 (1971), pp. 7-16.
20. Ch. Pommerenke, On starlike and close-to-convex functions, Proc. London Math. Soc., 13 (1963), pp. 290-304.
21. D.K. Thomas, On Bazilevič functions, Trans. Amer. Math. Soc., 132 (1968), pp. 353-361.
[^1]
[^0]: 2020 Mathematics Subject Classification. 30C45, 30C55.
 Key words and phrases. Conic regions, Bazilevic function, Bounded boundary rotation, Hankel determinant, Univalent functions.

 Received: 04 December 2019, Accepted: 15 August 2020.

 * Corresponding author.

[^1]: ${ }^{1}$ Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan.

 Email address: khalidan@gmail.com
 ${ }^{2}$ Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan.

 Email address: shahglike@yahoo.com

