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On Certain Generalized Bazilevic Type Functions Associated
with Conic Regions

Khalida Inayat Noor1 and Shujaat Ali Shah2∗

Abstract. Let f and g be analytic in the open unit disc and, for
α, β ≥ 0, let

J (α, β, f, g) =
zf ′(z)

f1−α(z)gα(z)
+ β

(
1 +

zf ′′(z)

f ′(z)

)
− β (1− α)

zf ′(z)

f(z)

− αβ
zg′(z)

g(z)
.

The main aim of this paper is to study the class of analytic func-
tions which map J (α, β, f, g) onto conic regions. Several interesting
problems such as arc length, inclusion relationship, rate of growth
of coefficient and Growth rate of Hankel determinant will be dis-
cussed.

1. Introduction

Let A denotes the class of functions f given by

(1.1) f(z) = z +
∞∑
n=2

anz
n,

which are anlytic in E = {z : |z| < 1}. Let

P = {p : Re(p(z)) > 0, z ∈ E}

and

(1.2) P (pκ) = {p ∈ A : p(0) = 1 ∧ p ≺ pκ} ,
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where pκ(z) are extremal functions for conic regions Ωκ, where

(1.3) Ωκ =

{
a+ ib : a > κ

√
(a− 1)2 + b2

}
.

The regions Ωκ (κ = 0) represents right half plane, Ωκ (0 < κ < 1)
represents hyperbola, Ωκ (κ = 1) represents a parabola and Ωκ (κ > 1)
represents an ellipse. For pκ(z), κ ∈ [0,∞) we refer [6, 7]. Clearly,
P (pκ) ⊂ P (α), where α = κ

κ+1 ,
P (α) = {p : Re (p(z)) > α, z ∈ E} .

The class P (pκ) extended as follows [17];

Definition 1.1. Let p ∈ A in E with p(0) = 1. Then p ∈ Pm (pκ),
m ≥ 2, κ ∈ [0,∞) if and only if

(1.4) p(z) =

(
m

4
+

1

2

)
p1(z)−

(
m

4
− 1

2

)
p2(z),

where p1, p2 ∈ P (pκ). We note Pm (pκ) ⊂ Pm (ρ), ρ = κ
κ+1 and this

class has been studied in [18]. When κ = 0, the class Pm (p0) = Pm

which was introduced by Pinchuk in [19].

Related to the class Pm (pκ), we have:

κ− UVm =

{
f ∈ A :

(zf ′)′

f ′ ∈ Pm (pκ) ; z ∈ E

}
κ− URm =

{
f ∈ A :

zf ′

f
∈ Pm (pκ) ; z ∈ E

}
.

Some special classes of these classes are as pointed out below.
(i) 0 − UVm = Vm and 0 − URm = Rm which are respectively,

the well-known classes [3] of functions with bounded boundary
and bounded radius rotation. By choosing m = 2, we obtain
V2 = C, the class of convex functions and R2 = S∗ contains
starlike functions.

(ii) κ − UV2 = κ − UCV is the class of uniformly convex func-
tions; see [7] and κ− UR2 = κ− ST contain uniformly starlike
functions [6].

Now we define:

Definition 1.2. Let f ∈ A, α, β ≥ 0. Then f ∈ Mg (α, β, κ) if and only
if

J (α, β, f, g) =
zf ′(z)

f1−α(z)gα(z)
+ β

(
1 +

zf ′′(z)

f ′(z)

)
− β (1− α)

zf ′(z)

f(z)

− αβ
zg′(z)

g(z)
.
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belongs to P (pκ) for some g ∈ A.

Special cases:
(i) For β = 0 and g ∈ κ− URm, we have the class

Mg (α, 0, κ) = Bm (α, κ) and when m = 2, κ = 0, B2 (α, 0) =
B(α) is the well-known class of Bazilevic functions of type α,
see [21].

(ii) For β = 0, ρ = κ
κ+1 and g ∈ Rm(ρ), we have

Mg (α, 0, κ) = Bm (α, ρ, κ) introduced by Noor et. al. [14].
(iii) With g ∈ Rm, Mg (1, 0, 0) = Tm, the class of generalized close-

to-convex functions introduced and studied in [12]. For m =
2, we have T2 = K, the well-known class of close-to-convex
functions introduced in [8].

(iv) Mg (0, β, 0) = M (β) is the class of β−starlike functions and in
this case, f ∈ M (β) implies{

(1− β)
zf ′(z)

f(z)
+ β

(
1 +

zf ′′(z)

f ′(z)

)}
∈ P , z ∈ E.

(v) Mg (1, 0, k) = κ−UCV is the class of k-uniformly convex func-
tions, see [7].

2. Preliminary Results

Lemma 2.1 ([4]). Let h ∈ P , z ∈ E and z = reiϕ. Then∫ 2π

0

∣∣∣h(reiϕ)∣∣∣η dθ < c (η)
1

(1− r)η−1 ,

where η > 1 and c (η) is a constant depending only on λ.

Lemma 2.2 ([18]). Let g ∈ Vm(ρ). Then

(2.1) g′(z) =
(
g′1(z)

)1−ρ
, g1 ∈ Vm.

3. Main Results

Theorem 3.1. Let g ∈ κ− URm. Then, for m ≥ 2 and κ ≥ 0

Mg (α, β, κ) ⊂ Mg (α, 0, κ) = Bm (α, κ) .

Proof. Let

(3.1) f ∈ Mg (α, β, κ) , g ∈ κ− URm.

and let

(3.2) zf ′(z)

f (1−α)(z)gα(z)
= Q(z).
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We note that Q(z) is analytic in E and Q(0) = 1. By using (3.2), (3.1)
and some simple calculations, we have

(3.3)
(
Q(z) + β

zQ′(z)

Q(z)

)
≺ pκ(z).

Now, due to result of Miller Mocanu [9], it follows from (3.3) that
Q(z) ≺ qk(z) ≺ pκ(z),

where

qk(z) =

[∫ 1

0

(
exp

∫ tz

0

pκ(ζ)− 1

ζ
dζ

)
dt

]−1

is best dominant. Therefore it follows that f ∈ Bm (α, κ), z ∈ E. □

Remark 3.2. As a partial converse case, with κ = 0,
Bm(α, 0) ⊂ Mg (α, β, 0) for |z| < rβ,

where

(3.4) rβ =
1[

2β +
√

4β2 − 2β + 1
] .

As a proof, let
zf ′(z)

f (1−α)(z)gα(z)
= H(z).

Then Q ∈ P . Now using distortion results for the class P , see [3], we
have

Re

{
zf ′(z)

f (1−α)(z)gα(z)
+ β

(
1 +

zf ′′(z)

f ′(z)

)
− β (1− α)

zf ′(z)

f(z)
− αβ

zg′(z)

g(z)

}
= Re

(
H(z) + β

zH ′(z)

H(z)

)
> 0, for |z| < rβ,

where rβ is given by (3.4).

As special case, if f ∈ M(β) implies f ∈ S∗ for |z| = r1 <
1

2+
√
3
.

Theorem 3.3. Let f ∈ Bm (α, κ). Then, for α ∈ (0, 1] and
α(m+2)

(κ+1)(2−σ) > 1, we have

(3.5) Lf
|z|=r

= O(1)M (1−α)
r (f)

(
1

1− r

)γ

, γ =
α

κ+ 1

(m
2

+ 1
)
+ σ − 1,

where Mr (f) = max
|z|=r

|f(z)|, Lf
|z|=r

the length of the image of the circle

|z| = r under f and O(1) denotes a constant depending on κ, m and α.
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Proof. As we know that, for z = reiθ, 0 < r < 1

(3.6) Lf
|z|=r

=

∫ 2π

0

∣∣zf ′(z)
∣∣ dθ.

Since f ∈ Bm (α, κ), we have

(3.7) zf ′(z) = f (1−α)(z)gα(z)h(z),

where g ∈ k − URm ⊂ Rm

(
κ

κ+1

)
, h ∈ P (pκ). Using Lemma 2.2 and a

result of Brannan [1] for the generalized case, we can write

(3.8) g(z)

z
=

(
g1(z)
z

)( 1
κ+1)(

m
4
+ 1

2)

(
g2(z)
z

)( 1
κ+1)(

m
4
− 1

2)
, g1, g2 ∈ S∗.

Also h ∈ P (pκ) can be written as

(3.9) h(z) = pσ(z), p ∈ P , σ =
2

π
tan−1 1

κ
.

From (3.6)-(3.9), we obtain

Lf
|z|=r

≤ M
(1−α)
r (f)

r
α

κ+1

∫ 2π

0

∣∣∣∣∣(g1(z))(
m
4
+ 1

2)

(g2(z))
(m

4
− 1

2)

∣∣∣∣∣
α

κ+1

. |p(z)|σ dθ

Using distortion result for starlike function g2(z), to get

(3.10) Lf
|z|=r

≤ 2
α

κ+1(
m
2
+1)M

(1−α)
r (f)

r
α

κ+1(
m
4
+ 1

2)

∫ 2π

0
|g1(z)|

α
κ+1(

m
4
+ 1

2) . |p(z)|σ dθ.

Using Holder’s inequality, we note that∫ 2π

0
|g1(z)|

α
κ+1(

m
4
+ 1

2) . |p(z)|σ dθ ≤
(∫ 2π

0
|g1(z)|

α(m2 +1)
(κ+1)(2−σ)

) 2−σ
2

(3.11)

×
(∫ 2π

0
|p(z)|2

)σ
2

dθ.

Now, it is known [3] for p ∈ P that

(3.12)
∫ 2π

0
|p(z)|2 dθ ≤ 1 + 3r2

1− r2
,

and subordination principle together with Lemma 2.1, gives us∫ 2π

0
|g1(z)|

α(m2 +1)
(κ+1)(2−σ) dθ ≤

∫ 2π

0

∣∣∣∣ r

1− reiθ

∣∣∣∣
α(m2 +1)

(κ+1)(2−σ)

dθ(3.13)
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≤ c (α,m, κ)

[
1

1− r

] α(m+2)
(κ+1)(2−σ)

−1

,

where c (α,m, κ) is a constant and α(m+2)
(κ+1)(2−σ) > 1. Thus, using (3.12)-

(3.13), we obtain from (3.10) that

Lf
|z|=r

= O(1)M (1−α)
r (f)

(
1

1− r

)γ

, γ =
α
(
m
2 + 1

)
(κ+ 1)

+ σ − 1.

□

Corollary 3.4. Let κ = 0 ⇒ σ = 1 and α = 1
2 . Then, for

m >
(
1
α − 2

)
and r0 =

1
1−r

Lf
|z|=r

= O(1)M (1−α)
r (f) r

α(m
2
+1)

0 .

Corollary 3.5. Let κ = 1 ⇒ σ = 1
2 . Then, for m >

(
3
α − 2

)
and

r0 =
1

1−r

Lf
|z|=r

= O(1)M (1−α)
r (f) r

[α(m
4
+ 1

2)−
1
2 ]

0 .

For α = 1, we have

Lf
|z|=r

= O(1)M (1−α)
r (f) r

m
4
0 .

Corollary 3.6. Let κ = 1, m = 4, σ = 1 and r0 =
1

1−r . Then α ∈
(
1
2 , 1

]
and we have

Lf
|z|=r

= O(1)M (1−α)
r (f) r

3α−1
2

0 .

The case when α > 1 is similar and is stated as following;

Theorem 3.7. Let f ∈ Bm (α, κ). Then, for α > 1 and
α(m+2)

(κ+1)(2−σ) > 1, we have

(3.14) Lf
|z|=r

= O(1)m(1−α)
r (f)

(
1

1− r

)γ

, γ =
α

κ+ 1

(m
2

+ 1
)
+σ−1,

where mr (f) = min
|z|=r

|f(z)| and O(1) denotes a constant depending on κ,

m and α.

Corollary 3.8. For κ = 0 ⇒ σ = 1, α = 2 and r0 =
1

1−r , we have

Lf
|z|=r

= O(1)m(1−α)
r (f) r

(m+2)
0 .
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Corollary 3.9. For κ = 1 ⇒ σ = 1
2 , α = 2 and r0 =

1
1−r , we have

Lf
|z|=r

= O(1)m(1−α)
r (f) r

(m
2
+1)

0 .

Theorem 3.10. Let f ∈ Bm (α, κ). Then, for α(m+2)
(κ+1)(2−σ) > 1, we have

an =

{
O(1)M1−α(f)nγ−1;
O(1)m1−α(f)nγ−1;

0 < α ≤ 1
α > 1,

(n → ∞),

where M (f), m(f), γ and O(1) are same as defined before.

Proof. With z = reiθ, we use Cauchy Theorem to have

n |an| =
1

2πrn

∣∣∣∣∫ 2π

0
zf ′(z)e−ιnθdθ

∣∣∣∣(3.15)

≤ 1

2πrn

∫ 2π

0

∣∣zf ′(z)
∣∣ dθ

=
1

2πrn
Lf
|z|=r

.

We can easily obtain our required result from (3.5), (3.14) and (3.15).
□

4. Hankel Determinant Problem

Let f ∈ A and given by (1.1). Then for q ≥ 1, n ≥ 1, the qth hankel
determinant Hq(n) is defined as;

(4.1) Hq(n) =

∣∣∣∣∣∣∣∣∣∣
an an+1 ... an+q−1

an+1 an+2 . .
.
.

.

.
.
.

.

.
an+q−1 an+q .. an+2q−2

∣∣∣∣∣∣∣∣∣∣
Several authors have discussed rate of growth of Hq(n) as n → ∞ for
well-known classes, see [10, 11, 13, 15, 16]. In [20] Pommerenke, studied
it for starlike functions. Hayman [5] proved that H2(n) = O(1).n

1
2 as

n → ∞ and f is univalent. The exponent 1
2 is best possible and O(1) is

constant. Here we discuss this problem for f ∈ Bm (α, κ), m ≥ 2, κ ≥ 0
as n → ∞. To prove our main result of this section, we shall need the
following two lemmas.
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Lemma 4.1 ([10]). Let f ∈ A and let the Hankel determinant of f(z)
be defined by (4.1). Then, writing ∆j(n) = ∆j(n, z1, f), we have
(4.2)

Hq(n) =

∣∣∣∣∣∣∣∣∣∣
∆2q−2(n) ∆2q−3(n+ 1) ... ∆q−1(n+ q − 1)

∆2q−3(n+ 1) ∆2q−4(n+ 2) ... ∆q−2(n+ q)
.
.

.

.
.
.

.

.
∆q−1(n+ q − 1) ∆q−2(n+ q) .. ∆0(n+ 2q − 2)

∣∣∣∣∣∣∣∣∣∣
,

where, with ∆0(n, z1, f) = an, we define for j ≥ 1,

∆j(n, z1, f) = ∆j−1(n, z1, f)− z1∆j−1(n+ 1, z1, f)

Lemma 4.2 ([10]). With z1 =
(

n
n+1y

)
and v ≥ 0 be any integer

∆j(n+ v, x, zf ′(z)) =

j∑
l=0

(
j

i

)
yl(v − (l − 1)n)

(n+ 1)l
∆j−l(n+ v + l, y, f(z)).

Theorem 4.3. Let f ∈ Bm (α, κ). Then, for M(r, f) = max
|z|=r

|f(z)|,

q ≥ 1, n ≥ 1 and m >
(
4q−2
α1

− 2
)

Hq(n) = O(1)M (1−α)
r (f)

 nβ1 ;
nβ2 ;

q = 1,
q > 1,

m >
[

2
α1
−2

]
m >

[
4q−2
α1

−2
]

where
β1 = α1

(m
2

− 1
)
+ σ − 2, α1 = α(1− ρ).

and
β2 =

(
α1

(m
2

+ 1
)
+ σ − 1

)
q − q2.

Proof. Let zG′(z) = g(z). Then (zG′(z))′

G′(z) ∈ Pm (pκ) ⊂ Pm (ρ), ρ = κ
κ+1 .

This implies G ∈ Vm (ρ), so from (2.1) we have

(4.3) G′(z) =
(
G′

1(z)
)(1−ρ)

, G1 ∈ Vm (z ∈ E) .

Since f ∈ Bm (α, κ), so we can write

(4.4) zf ′(z) = f (1−α)(z)gα(z)hσ(z), for h ∈ P .

From (4.4) and result due to Brannan [1], the above equation implies

(4.5) zf ′(z) = zαf (1−α)(z)

[
(g′1(z))

(m
4
+ 1

2)

(g′2(z))
(m

4
− 1

2)

]α(1−ρ)

.hσ(z), g1, g2 ∈ C.
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For any univalent function s, we can choose z1 = z1(r) with |z1| = r
such that

(4.6) max
|z|=r

|(z − z1) s(z)| ≤
2r2

1− r2
, (see [2]).

Thus, from (4.5) with zg′i = si ∈ S and m ≥
[

2+4j
α(1−ρ) − 2

]
, we have

∣∣∆j(n, z1, zf
′)
∣∣ ≤ M1−α(r, f)

2πrn+j−α

(
2r2

1− r2

)j

(2)α1(m
2
−1)

×
∫ 2π

0
|s1(z)|α1(m

4
+ 1

2)−j |hσ(z)| dθ.

where we have used distortion result for starlike function s2, we can
rewrite above inequality as;∣∣∆j(n, z1, zf

′)
∣∣ = O(1).M1−α(r, f)

(
1

1− r

)j

(4.7)

×
[
1

2π

∫ 2π

0
|s1(z)|α1(m

4
+ 1

2)−j |hσ(z)| dθ
]

,

where O(1) denotes a constant.
By making use of Holder’s inequality, we have

1

2π

∫ 2π

0
|s1(z)|α1(m

4
+ 1

2)−j |hσ(z)| dθ

(4.8)

≤
[
1

2π

∫ 2π

0
|s1(z)|{α1(m

4
+ 1

2)−j} 2
2−σ dθ

] 2−σ
2

×
[
1

2π

∫ 2π

0
|h(z)|2 dθ

]σ
2

.

Now, from (4.7), (4.8), Lemma 2.1 and subordination for starlike func-
tions, we obtain for m >

[
2(1+2j)

α1
− 2

]
∆j(n, z1, zf

′) = O(1).M (1−α)
r (f)

(
1

1− r

)α1(m
2
−1)−j+σ−1

, (r → 1),

and using Lemma 4.2, r = 1− 1
n , we get

∆j(n, z1, f) = O(1).M (1−α)
r (f)nα1(m

2
−1)−j+σ−2, (n → ∞).

For j > 0, we have q > 1, follow the similar technique used in [10] along
with Lemma 4.1, we get for m >

(
4q−2
α1

− 2
)

Hq(n) = O(1)M (1−α)
r (f) .nβ2 ,
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where β2 =
(
α1

(
m
2 + 1

)
+ σ − 1

)
q − q2. If j = 0, we have q = 1 and

∆0(n, z1, f) = an. This gives us, for m >
[

2
α1

− 2
]

H1(n) = O(1)M (1−α)
r (f) .nβ1 ,

where β1 = α1

(
m
2 − 1

)
+ σ − 2 and α1 = α(1− ρ). □

With suitable choices of parameters, we obtain some known results;
see [12, 13, 17].
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