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On Certain Generalized Bazilevic Type Functions Associated
with Conic Regions
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ABSTRACT. Let f and g be analytic in the open unit disc and, for

a, B>0, let
a Y i O N 2"(2) _ -« ()
0
reN

The main aim of this paper is to study the class of analytic func-
tions which map J («, 3, f, g) onto conic regions. Several interesting
problems such as arc length, inclusion relationship, rate of growth
of coefficient and Growth rate of Hankel determinant will be dis-
cussed.

1. INTRODUCTION

Let A denotes the class of functions f given by
o0
(1.1) f(2) :z—i—Zanz",
n=2

which are anlytic in E = {z: |z| < 1}. Let
P ={p:Re(p(z)) >0, z€ E}
and

(1.2) P(ps)={p € A:p(0) =1 Ap=<ps},
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14 K.I. NOOR AND S.A. SHAH
where p,(z) are extremal functions for conic regions €, where
(1.3) Q,{—{a+ib:a>n (a—1)2+b2}.

The regions 2, (k = 0) represents right half plane, Q. (0 < k < 1)
represents hyperbola, 2, (k =1) represents a parabola and Q,; (k > 1)
represents an ellipse. For p.(z), k € [0,00) we refer [, [f]. Clearly,
P (px) C P («), where a = =

P(a)={p:Re(p(z)) >a, z€ E}.
The class P (p,;) extended as follows [17];

Definition 1.1. Let p € A in E with p(0) = 1. Then p € Py, (px),
m > 2, k € [0,00) if and only if

(1) w0 = (G +5)me - (5 - 5) mle)

where p1,ps € P (ps). We note Py, (ps) C P (p), p = 47 and this
class has been studied in [18]. When x = 0, the class Py, (po) = Pn,

which was introduced by Pinchuk in [[19].
Related to the class Py, (px), we have:

K—Uvm:{fEA: (fo/’) € Py, (ps); zEE}
/@—URm:{feA JJ:/EP (Pr) ; zeE}.

Some special classes of these classes are as pointed out below.

(i) 0—-UV,, = V,, and 0 — UR,, = R,, which are respectively,
the well-known classes [B] of functions with bounded boundary
and bounded radius rotation. By choosing m = 2, we obtain
Vo = C, the class of convex functions and Ry = S* contains
starlike functions.

(iil) k — UVy = kK — UCV is the class of uniformly convex func-
tions; see [[7] and k — URy = k — ST contain uniformly starlike
functions [6].

Now we define:

Definition 1.2. Let f € A, o, > 0. Then f € My (e, 3, ) if and only

if
2f(z SO\ )
T f.0)= 7 ()g()+6<1+f’(2)> PA=a) 7
_aﬂzg’(Z)

9(2)
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belongs to P (py) for some g € A.

Special cases:

(i) For =0 and g € k — UR,;,, we have the class
M, (,0,k) = By, (o, k) and when m = 2, k = 0, By (,0) =
B(«) is the well-known class of Bazilevic functions of type «,
see [21].

(ii) For 8 =0, p= 17 and g € Riy(p), we have
My (a,0, k) = By, (o, p, k) introduced by Noor et. al. [14].

(ili) With g € Ry, My (1,0,0) = T}y, the class of generalized close-
to-convex functions introduced and studied in [12]. For m =
2, we have Ty, = K, the well-known class of close-to-convex
functions introduced in [§].

(iv) My (0,B,0) = M (B) is the class of f—starlike functions and in
this case, f € M (f) implies

o058 es {1+ £ . e

(v) My (1,0,k) = k—UCYV is the class of k-uniformly convex func-
tions, see [[].

2. PRELIMINARY RESULTS
Lemma 2.1 ([4]). Let h € P, z € E and z = re'®. Then
o 1
/0 (1—r)" "
where n > 1 and ¢ (n) is a constant depending only on .
Lemma 2.2 ([18]). Let g € Vin(p). Then

(2.1) J(=) = (d1(2)"". 91 €Vm

h (rei¢) ‘n df < c(n)

3. MAIN RESULTS
Theorem 3.1. Let g € Kk — UR,,. Then, form > 2 and x > 0
My (o, 5,k) C Mg (,0,K) = By (o, K) .

Proof. Let

(31) feMg(aaﬁv’%)a geH_URm'
and let

(3.2) B/ KO — Q(z).
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We note that Q(z) is analytic in F and Q(0) = 1. By using (@), (@)

and some simple calculations, we have

(3.3) <Q(z) n 51?&?) < pel2).

Now, due to result of Miller Mocanu [9], it follows from (@) that
Q(2) < ar(2) < px(2),

o[ on  H9=20) ]

is best dominant. Therefore it follows that f € B, (o, k), z € E. O

where

Remark 3.2. As a partial converse case, with k = 0,
Bun(@,0) € My (a, ,0) for |2| < rg,

where
1

[26+/A7 25 +1]

(3.4) rg =

As a proof, let
2f'(z)
—— - = H(z2).
fA=o)(z)g*(2)
Then @ € P. Now using distortion results for the class P, see [3], we
have

N O\ _ ey G o)
K {fﬂ—a)(z)ga(z)” (” f’(z)) P Ty ~ 90 }
2H'(2)

= Re <H(z)+[5’ ) ) >0, for |z| <rg,

where 73 is given by (@)

As special case, if f € M(3) implies f € S* for |z| =7 < —.

2+/3
Theorem 3.3. Let f € By, (a,k). Then, for a € (0,1] and
a(m—+2
m>l, we have
1\ a [/m
3.5) Ly =O0(1)M1~® = — 41 —1
5) Ly =0mMI () (7= ) - 7 (G ) o1

where M, (f) = ‘mlax|f(z)|, Ly the length of the image of the circle
Z=r |z|=r

|z| = r under f and O(1) denotes a constant depending on k, m and c.
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Proof. As we know that, for z =re?, 0 <r <1
2w
(3.6) L = / |2f'(2)| d.
|z|=r 0
Since f € By, (a, k), we have
(3.7) 2f'(2) = [V (2)g" (2)h(z),

k+1 )7

A7

where g € k —UR,,, C R, ( n ) h € P (ps). Using Lemma @ and a

result of Brannan [I] for the generalized case, we can write

(3.8) g(z) = : 91,92 € S*.

z (gg(z))(nil)(zn_é)’

(gl(z))(nlﬂ)(i?%)

z

Also h € P (py) can be written as

(3.9) h(z) =p°(2), pE€P, o= %tanﬂ %
From (B.6)-(B), we obtain
Mr(lfa) (f) 2 (gl(z))(%+%) Py )
LS I o@D e

Using distortion result for starlike function g2(z), to get
orgr (g +1) prd-a)
(3.10) Ly < r ()

|Z‘=T T%ﬂ(%—‘r%)

Using Holder’s inequality, we note that

271— [e% m
(3.11) /0 o ()| (2

N

<( " 0 C .

Now, it is known [3] for p € P that

2m 2
1+ 3r
3.12 2do < =
(3.12) | e < T2
and subordination principle together with Lemma @, gives us
a(B+1

3.13 o <a£1%)(;)> do < i ! %
313 [ la) N —

2T L
/0 191(2)[ =1 (ET2) p(2))7 do.

2T a(B+1) %TU
) . |p(Z)|Jd9 S </ |gl(z)|('€+1>(20))
0



18 K.I. NOOR AND S.A. SHAH

a(m+2) —1
]_ :| (k+1)(2—0)

)

< c(a,m, k) L
—-r

where ¢ (a, m, k) is a constant and % > 1. Thus, using ()_
(), we obtain from () that

ol o (2
Ly :O(l)M““”(f)(liT) : 7:M+0—1.

|z|=r

Corollary 3.4. Let k =0=0=1 and a = % Then, for

m>(é—2) and rog = -

1—r
Iy =omui=) (fry 1.
|z|=r
Corollary 3.5. Let k = 1 = 0 = % Then, for m > (% —2) and

1
o= 1=

m 1y _ 1
Ly = O(I)Mr(l—a) (f) 7,([)0‘( +3) 2].
|z|=r
For a =1, we have
Ly = OMMI=) (f)rg.
|z|=r
Corollary 3.6. Letk =1, m=4,0=1andrqg= l—ir Then o € (%, 1]
and we have s
Ly = OW)M (f)rg *

|z|=r
The case when « > 1 is similar and is stated as following;

Theorem 3.7. Let f € By, (a, k). Then, for a > 1 and

7(;;(1”;(;2_)0) > 1, we have
1\ a /m
= (l_a) == - -
(3.14) |jir O(1)m, (f)<1—r> , Y /{_1_1(2 +1)+0 1,

where m, (f) = min |f(2)| and O(1) denotes a constant depending on k,

|z|=r
m and o.

Corollary 3.8. Fork =0=0c=1,a=2 and rg = ﬁ, we have

Ly =O(1)m{=) (f)rf" .

|z[=r
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1
1=, we have

Corollary 3.9. Fork =1= 0 = %, a=2andry=

Ly = 0Mm= ()r§ ).

|z|=r

Theorem 3.10. Let f € By, (o, k). Then, for % > 1, we have

0 — { O)M'=(fin~1; o0<a<l (n — o0),

oLm'=*(fin'™  a>1,
where M(f), m(f), v and O(1) are same as defined before.

Proof. With z = re?, we use Cauchy Theorem to have

/% zf/(z)emedﬁ'
0
1 2m
'(2)] db
<o | 1)

= 2mrm
_ 1

= f .
27”"n|z|:7~

1
2mwrn

(3.15) nla,| =

We can easily obtain our required result from (@), (M) and (m)
O

4. HANKEL DETERMINANT PROBLEM

Let f € A and given by (EI) Then for ¢ > 1, n > 1, the qth hankel
determinant Hy(n) is defined as;

Qp, Ap41 .- Ap4q—1

Ap+1 An+2
(11) Hy(n) =

Gp4q—1 Qptq - QAn42¢—2

Several authors have discussed rate of growth of Hy(n) as n — oo for
well-known classes, see [10, 11, 13, [15, 16]. In [20] Pommerenke, studied

it for starlike functions. Hayman [p] proved that Ha(n) = O(l).n% as
n — oo and f is univalent. The exponent 3 is best possible and O(1) is
constant. Here we discuss this problem for f € B, (a, k), m > 2, k >0
as n — 0o0. To prove our main result of this section, we shall need the
following two lemmas.
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Lemma 4.1 ([10]). Let f € A and let the Hankel determinant of f(z)
be defined by ). Then, writing Aj(n) = Aj(n, 21, ), we have
(4.2)

qu_g(n) qu_3(n +1) .. Aq_l(n +q—1)
qu_g(n +1) qu_4(n +2) .. Aq_Q(n +q)
Hy(n) = : : . . ,
Agmiln+qg—1) Aga2(n+q) .. Aon+2q—2)

where, with Ao(n, z1, f) = an, we define for j > 1,
Aj(n, 21, f) = Ajo1(n, 21, f) = 21851 (n + 1, 21, f)

Lemma 4.2 ([10]). With z; = (#y) and v > 0 be any integer

, I /i o —(1—=1)n
B+ vanaf ) = 30V bt 4 b 2

Theorem 4.3. Let f € By, (a,k). Then, for M(r, f) = Tnax|f(z)|,

z|=r

g>1,n>1andm > (4‘3)‘:2—2)

B1. -1 m > —(12 —2}
Hy(n) = 0()MI () "0 970 :
r : > 1, 49-2
L q m > 21 2}

fr=ai(g—1)+0-2  ar=al-p)

o (o (1) o) a-g

Proof. Let 2G'() = g(2). Then CEE € P, (p,) € P (p), p = 5.
This implies G € V,;, (p), so from (R.1)) we have

(4.3) G'(z)=(G)"", GieVym (z€E).
Since f € By, (o, k), so we can write
(4.4) 2f'(z) = fA79(2)g%(2)h%(2), for h e P.

From (Q) and result due to Brannan [}, the above equation implies

s ( a(l-p)
(4.5) zf'(z) = 22 f179(2) [Egl())] h2(2), g1,92€C.
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For any univalent function s, we can choose z; = z1(r) with |z1| = r
such that
272
(4.6) max |(z — 21) s(2)| < — (see [2]).
|z|=r 1—r

Thus, from (@) with zg, = s; € S and m > [Of(ﬁf)) — 2}, we have

, Ml—a , 2 2 J a(m—
1Aj(n, 21, 2f")| < 27rrn£§£) <1TT2> (2) (-1)

* /OZW [s1(2)[* (E+2)77 17 (2)] ao.

where we have used distortion result for starlike function so, we can
rewrite above inequality as;

(A7) A,z 2] = O(). M, ) (1 - T)J

<Jo [T e )]

where O(1) denotes a constant.
By making use of Holder’s inequality, we have

(4.8)

1 27 m )
151(2)| 1 (5 +2) 79 |07 (2)) do

Bl T der? S 2W|h<z>2d9]g-

Now, from (@), (@), Lemma @ and subordination for starlike func-

tions, we obtain for m > [2(%12” — 2]

2 Jo

IN

) (r_>1)7

1 a1 (B—1)—j+o—1
Aj(n, 21, 2f') = O(1). M=) (f) (1 — 7«>
and using Lemma @, r=1-— %, we get

Aj(n, 21, f) = O). M=) (fn(FDTH2 (0 = o0),
For j > 0, we have ¢ > 1, follow the similar technique used in [10] along
with Lemma @, we get for m > <4q_2 - 2)

aq

Hy(n) = O() M=) (f) .2,
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where By = (al(%—i—l)—l—a—l)q—qQ. If 5 =0, we have ¢ = 1 and

Ag(n, z1, f) = ap. This gives us, for m > [l - 2}

i
Hi(n) = O()MI= (f) 0,
whereﬁl:al(%—l)+G—2anda1:a(1—p). O

With suitable choices of parameters, we obtain some known results;
see [12, 13, 17].
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