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On Measure Chaotic Dynamical Systems

Faride Ghorbani Moghaddam1, Alireza Zamani Bahabadi2 ∗ and Bahman Honary3

Abstract. In this paper, we introduce chaotic measure for dis-
crete and continuous dynamical systems and study some properties
of measure chaotic systems. Also relationship between chaotic mea-
sure, ergodic and expansive measures is investigated. Finally, we
prove a new version of variational principle for chaotic measure.

1. Introduction

Chaos is an interesting topic of dynamical systems. Unfortunately,
there is not decisive mathematical definition of chaos. Devaney chaos
is one of the most popular definitions of chaos in which such systems
must exhibit sensitive dependence to initial conditions; topological tran-
sitivity, and dense periodic orbits. Later, in [2], it is proven that if a
system is transitive with dense periodic orbits, then sensitivity depen-
dence to initial condition is guaranteed. It is clear that the sensitive
dependence indicates unpredictability of chaos phenomenon, so sensi-
tivity is an essential condition of chaotic behavior. Accordingly, it is
important to study what systems have sensitivity. Recently, stronger
forms of sensitivity for dynamical systems is defined, such as, ergodi-
cally sensitive, syndetically sensitive, and cofinitely sensitive. Due to
that ergodic-theoretic plays an important role in dynamical systems. In
2005, Cadre and Jacob introduced pairwise sensitivity and investigated
the relationship between pairwise sensitivity and weakly mixing and pos-
itive entropy [4]. After that the notions of measurable sensitivity and
weak measurable sensitivity have been introduced [7], which are ergodic-
theoretic versions of strong sensitivity and sensitivity, respectively.
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After presenting definition of expansivity, Morales introduced gen-
eral concept of it as measure expansivity as well [5, 9]. In this paper,
we attempt to generalize a notion of sensitivity. We introduce chaotic
measure for discrete and continuous dynamical systems. In Example
2.3, we show that sensitivity implies measure chaotic but the converse
is not true, and we attempt to discover a relation between expansive
measure and chaotic measure. In Remark 2.6, we give an example of a
map which is ergodic and is not measure chaotic. In section 3, we will
study some properties of measure chaotic systems. First, we show that
the suspension flow of a µ-chaotic map is µ̄-chaotic flow and vice versa
(Theorem 3.3). As well, we show that the chaotic measure is invariant
under the conjugacy (Theorem 3.5). Investigation of µ-chaotic on prod-
uct of flows is another result of this paper. Indeed we prove that product
of flows is µ-chaotic if and only if one of them is µ-chaotic (Theorem
3.6). In the last part of this section, we prove the variational principle
for chaotic measures (Theorem 3.11) and as a corolllary we show that
an ergodic measure with the positive entropy in a probability space is a
chaotic measure.

2. Preliminaries

Let (M,d) be a compact metric space and let f : M → M be a
continuous map. We say that a point x ∈ M is sensitive if, there is
δ > 0 such that for every ϵ > 0 there exist y ∈ Bϵ(x), and n ≥ 0
with d (fn(x), fn(y)) > δ. In this case δ is called sensitivity constant.
We denote the set of all sensitive points by S. A map f is said to be
sensitive to initial condition if there is δ > 0 such that every point of M
is sensitive with sensitive constant δ > 0. Here, we show that the set of
all sensetive points is measurable.

Proposition 2.1. S, the set of all sensitive points of f , is measurable.

Proof. We define

s(x) = inf
ϵ>0

sup {diam(fn(Bϵ(x)) ; n ∈ {0, 1, . . .}}

= inf {d∞(U) ; x ∈ Uopen} ,

where d∞(U) = supn≥0 {d(fn(y), fn(z)); y, z ∈ U}. We can see that x
is a sensitive point with sensitivity constant s(x)

4 if and only if s(x) > 0.
By definition of s(x), for every ϵ > 0 there is open set U of x such that

d∞(U) < s(x) + ϵ,

then for every y ∈ U , s(y) ≤ d∞(U) < s(x) + ϵ, hence s : M → R
is upper-semi continuous. This is well known that any upper-semi
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contonuous map is measurable, so s is measurable. Therefore S =
s−1 ((0,+∞)) is a measurable set. □

Let β be the Borel σ-algebra on M . Denote by M(M) the set of all
Borel’s probability measures on M endowed with weak∗ topology. A
Borel probability measure µ is called f -invariant if, for any Borel set B,
it holds µ

(
f−1(B)

)
= µ(B). We set

Mf (M) = {µ ∈ M(M) : µ is f -invariant} .

An f -invariant probability measure is called ergodic if any f -invariant
Borel set has measure 0 or 1. Here we define the notion of the measure
chaotic as a generalization of the notion of the sensitivity.

Definition 2.2. Let µ ∈ Mf (M). We say that f is µ-chaotic if µ (S) =
1.

It is easy to see that any sensitive map is µ-chaotic, but the converse
is not true. In the following example, we show that f is not sensitive
but it is µ-chaotic for some µ ∈ Mf (M).

Example 2.3. Given f : [0, 1] → [0, 1] as follows: where f is identity

x

y

x0 1

1

Figure 1. The graph of the map f

on [0, x0], clearly f is not sensitive and x0 is a sensitive point. Consider

µ = δx0(A) =

{
1, x0 ∈ A,

0, x0 /∈ A.

since x0 is a fixed point, so δx0 ∈ Mf (M) and we have δx0 (S) = 1;
therefore f is µ-chaotic.

In the following, we give an example that shows f is µ-chaotic for
every invariant measure µ, but it is not sensitive.
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Example 2.4. Consider f : [0, 1] ∪ {2, 3, . . . } → [0, 1] ∪ {2, 3, . . . } as
follows:

f(x) =

{
g(x), x ∈ [0, 1],

h(x), x ∈ {2, 3, . . .},
where

g (x) =

{
2x, 0 ≤ x ≤ 1

2 ,

−2x+ 2, 1
2 ≤ x ≤ 1,

and h (n) = n+ 1, n = 2, 3, . . ..
The map g(x) is sensitive to initial condition on [0, 1] and h(x) is not
sensitive, so f is not sensitive and the set of all sensitive points of f is
equal to [0, 1]. The space [0, 1] ∪ {2, 3, . . .} is not compact, so we need
to show Mf (M) ̸= ∅. In [8] example 6.4, the author proved that the
Lebesgue measure is invariant under map g (x), and since Leb ({n}) =
Leb ({n+ 1}) = 0, so Leb ∈ Mf (M). Now we show that f is µ-chaotic
for every µ ∈ Mf (M). Let µ be an f -invariant probability measure. We
claim that µ ([0, 1]) = 1. If 0 ≤ µ ([0, 1]) < 1, then there is n ∈ {2, 3, . . . }
such that µ(n) > 0. So µ(n+ 1) = µ (f(n)) = µ(n) > 0. Therefore

µ ({2, 3, . . .}) = µ

( ∞∪
n=2

{n}

)

=
∞∑
n=2

µ (n)

= ∞,

which is contradicts by probability of µ. Hence µ ([0, 1]) = 1 and f is
µ-chaotic.

The above counterexample motivates us to study the class of systems
defined below.

Definition 2.5. The map f is called measure chaotic if f is µ-chaotic
for every Borel invariant measure µ.

Remark 2.6. Ergodicity is not enough condition to imply measure
chaotic. Indeed, consider irrational rotation f(x) = x + α on S1. In
[15], one can see that the irrational rotation on unit circle S1 is ergodic
with respect to the Lebesgue measure. Since f is isometry, so it does
not have any sensitive point. Then, for Lebesgue invariant measure µ,
µ(S) = 0.

Weakly mixing is a stronger condition than ergodicity, and if f is a
weakly mixing, then it is sensitive to initial condition (see [6]). Therefore
we can conclude that f is measure chaotic.
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In the next remark, we discuss the relationship between measure
chaotic and measure expansive. We recall notion of measure expansive.
An expansive measure of continuous map f :M →M of a metric space
M is a Borel measure µ for which there is δ > 0 such that µ (Γδ(x)) = 0,
for all x ∈M , where

Γδ(x) =
{
y ∈M : d

(
f i(x), f i(y)

)
≤ δ for all i ∈ Z

}
.

Remark 2.7. In [1, Proposition 3.4], Arbieto and Morales proved that,
for every expansive measures µ, the set of all Lyapunov stable points has
measure zero, so µ is chaotic measure, but the converse does not hold.
For this, we consider f as introduced in Example 2.3. By contradiction,
let µ be expansive. Then there is δ > 0 such that µ (Γδ(x)) = 0, for
all x ∈ M . Consider x = x0 − δ

2 , so d
(
f i(x), f i(x0)

)
= d (x, x0) < δ

and hence x0 ∈ Γδ(x). Therefore µ (Γδ(x)) = 1, that is a contradiction.
Hence µ is not expansive, but in Example 2.3, we showed that µ is
chaotic.

Here we extend notion of measure chaotic for continuous systems.
A flow of M is a map φ : M × R → M satisfying φ (x, 0) = x and
φ (φ (x, s) , t) = φ (x, t+ s) for all t, s ∈ R and x ∈ M . A flow is con-
tinuous if it is continuous with respect to the product metric of M ×R.
The time t-map φt :M →M defined by φt(x) = φ (x, t) is a continuous
map of M for all t ∈ R. The set O (x) = {φt(x) : t ∈ R} is said to be
the orbit of φt through the point x.

Definition 2.8. A point x is sensitive, if there exists r > 0 such that,
for any neighborhood U of x, there are y ∈ U and t > 0 such that
d (φt(x), φt(y)) ≥ r. We denote by S, the set of all sensitive points.

Definition 2.9. A point p is Lyapunov stable, if for given ϵ > 0, there
is δ > 0 such that d (p, q) < δ implies that d (φt(p), φt(q)) < ϵ for all
t ∈ R+, where R+ is the set of all positive real numbers.

Let β be the Borel σ-algebra on M . A Borel probability measure µ is
called φ-invariant if for any Borel set B, µ (φt(B)) = µ (B) for all t ∈ R.

Mφ(M) = {µ ∈ M(M) : µ is φ-invariant} .

Definition 2.10. Let µ ∈ Mφ (M). We say that φ is µ-chaotic if
µ (S) = 1.

We say that a flow φ is measure chaotic if, for every Borel invariant
measure µ, flow φ is µ-chaotic.

3. Main Results

A useful property of chaotic measure is given by the following lemma.
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Lemma 3.1. If a continuous flow φ is µ-chaotic, then, for all t ̸= 0,
the flow φt is µ-chaotic.
Proof. Let t0 ∈ R\{0} be arbitrary and fixed. Take φt0 = f and denote
the set of all sensitive points of φ and the set of all sensitive points of f
by S and S′, respectively. The flow φ is µ-chaotic so µ (Sc) = 0, therefore
it is enough to show that (S′)c ⊆ Sc. Given ϵ > 0, by continuity of φ
there is η > 0 such that if d (a, b) < η then, d (φs(a), φs(b)) < ϵ for all
s ∈ [0, t0]. Let x ∈ (S′)c, then there exists δ > 0 such that if d (x, y) < δ
then d (fn(x), fn(y)) < η for every n ∈ N. For all t ∈ R+, we have
nt0 ≤ t ≤ (n+ 1)t0 for some n ∈ Z+, and

d (φt(x), φt(y)) = d (φt−nt0 (f
n(x)) , φt−nt0 (f

n(y)))

< ϵ.

Hence x ∈ Sc. □
Let (M,d) be a metric space and let f : M → M be a homeomor-

phism. Consider
Ω =M × [0, 1]/ ∼

where ∼ is the identification of (x, 1) with (f(y), 0) and give it the usual
quotient topology. The standard suspension flow of f is the flow ψt on
Ω defined by

ψt(y, s) = (y, t+ s), for 0 ≤ t + s < 1.

We consider metric D on Ω, known as the Bowen–Walters metric[3],
as follows: We shall consider horizontal and vertical segments. Given
x, y ∈ M and t ∈ [0, 1], we define the length of the horizontal segment
[(x, t), (y, t)] by

d1 ((x, t), (y, t)) = (1− t) d (x, y) + t (f(x), f(y)) .

Given (x, t), (y, s) ∈ Ω on the same orbit. We define the length of vertical
segment [(x, t), (y, s)] by

d2 ((x, t), (y, s)) = inf {|r| : ψr (x, t) = (y, s) and r ∈ R} .
Finally, given two point (x, t), (y, s) ∈ Ω, consider all finite chains
{(zi, ti)}ni=1 of elements of Ω such that (z1, t1) = (x, t), (zn, tn) = (y, s),
and for each 1 ≤ i ≤ n, either [(zi, ti), (zi+1, ti+1)] is a horizontal segment
or [(zi, ti), (zi+1, ti+1)] is a vertical segment.
D ((x, t) , (y, s)) = inf {length of all chains between (x, t) and (y, s)} .

For a subset A ⊂ Ω, we denote
π (A) = {x ∈M : (x, t) ∈ A, for some 0 ≤ t < 1} .

Lemma 3.2. If SM and SΩ are the set of all sensitive pints of f and ψt
(where ψt is the suspension flow of f), respectively. Then π (ScΩ) ⊆ ScM .
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Proof. Let x ∈ π (ScΩ) be arbitrary. So (x, t) ∈ ScΩ for some 0 ≤ t < 1.
Given ϵ > 0, since (x, t) ∈ ScΩ, there exists δ > 0 such that for all
(y, t′) ∈ Bδ (x, t),

D
(
ψs (x, t) , ψs

(
y, t′

))
< ϵ.(3.1)

By continuity of f , there exists 0 < δ′ < δ such that if d (x, y) < δ′, then
d (f(x), f(y)) < δ

2 . Since
D ((x, t) , (y, t)) = (1− t) d(x, y) + td (f(x), f(y))

< (1− t) δ + tδ

= δ,

so (y, t) ∈ Bδ (x, t). In particular the inequality (3.1) holds for s = n− t
and for all n ∈ Z+ we have

d (fn(x), fn(y)) = (1− 0)d (fn(x), fn(y)) + 0d
(
fn+1(x), fn+1(y)

)
= D (fn(x), 0), (fn(y), 0))

= D ((x, n− t+ t) , (y, n− t+ t))

= D (ψn−t (x, t) , ψn−t (y, t))

< ϵ.

Therefore x ∈ ScM . □
Let f be µ-chaotic and ψt be the suspension flow of f . We define µ̄

as follows:∫
Ω
ξdµ̄ :=

∫
M

∫ 1

0
ξ (x, t) dtdµ, for all ξ ∈ C0 (Ω) .

If µ is an invariant measure of f , then µ̄ is an invariant measure of ψt;
see [11].

Theorem 3.3. The map f is µ-chaotic if and only if ψ is µ̄-chaotic.

Proof. We show that if f is µ−chaotic, then the suspension flow ψt is
µ̄-chaotic.

Let µ̄ (ScΩ) > 0, where ScΩ is the set of all stable points of ψt in Ω.
Then

0 < µ̄ (ScΩ)

=

∫
Ω
χSc

Ω
dµ̄

=

∫
M

∫ 1

0
χSc

Ω
(x, t) dtdµ

≤
∫
M
χπ(Sc

Ω)
(t) dµ
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= µ (π (ScΩ)) .

By Lemma 3.2, µ (π (ScΩ)) ≤ µ (ScM ), so µ (ScM ) > 0, which is a contra-
diction, since f is µ-chaotic.

Conversely, assume that the suspension flow ψ of f is µ̄-chaotic. Fix
0 < T < 1. For every x ∈M and 0 ≤ s ≤ T

ψ1 (x, s) = (x, s+ 1)

= (f(x), s)

= (f × Id) (x, s) ,

where Id is the identity map on [0, T ]. Lemma 3.1 implies that µ̄ is
chaotic for ψ1, so f × Id : M × [0, T ] → M × [0, T ] is µ̄-chaotic. So
µ̄
(
Scψ1

)
= µ

(
Scf

)
× Leb ([0, T ]) = 0. Since Leb ([0, T ]) ̸= 0, hence µ is

chaotic for f . □
Recall that if M and N are metric spaces, the flows φt : M → M

and ψt : N → N are conjugate if there is a homeomorphism h :M → N
mapping orbits of φt onto orbits of ψt.

Definition 3.4. Given measurable spaces (M,Σ1) and (N,Σ2), a mea-
surable mapping f : M → N and a measure µ : Σ1 → [0,+∞), the
push-forward of µ is defined to be the measure f∗µ : Σ2 → [0,∞) given
by

f∗µ(B) = µ(f−1(B)), for B ∈ Σ2.

The next theorem implies that the property of having chaotic mea-
sures is conjugacy invariant.

Theorem 3.5. If f is an equivalence between φ and ψ, then µ is chaotic
for φ if and only if f∗µ is chaotic for ψ.

Proof. Denote by Sφ and Sψ the set of sensitive points of φ and ψ,
respectively. Let µ be chaotic for φ, so µ

(
Scφ
)
= 0. We show that

f∗µ
(
Scψ

)
= 0. Since f∗µ

(
Scψ

)
= µ

(
f−1

(
Scψ

))
, it is enough to prove

f−1
(
Scψ

)
⊆ Scφ. Given ϵ > 0, by continuity of f−1 there exists α >

0 such that if d (a, b) < α, then d
(
f−1 (a) , f−1 (b)

)
< ϵ. Let x ∈

f−1
(
Scψ

)
, then there is z ∈ Scψ such that f(x) = z. Since z ∈ Scψ,

there exists δ > 0 such that d (z, w) < δ implies d (ψt (z) , ψt (w)) < α.
Since f is cotinuous, there is δ′ > 0 such that d (x, y) < δ′ implies
d (f(x), f(y)) < δ. By putting f(y) = w for some y, we have

d (φt(x), φt(y)) = d
(
φt
(
f−1(z)

)
, φt

(
f−1(w)

))
= d

(
f−1 (ψt(z)) , f

−1 (ψt(w))
)
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< ϵ.

Therefor x ∈ Scφ. For the converse, replace f by f−1. □

Takure and Das in [12] discused sensitivity problems on product
of semi flows. They proved that φ∞ is sensitive (multi sensitive or
ergodically sensitive) if and only if there exists a positive integer k
such that φk is sensitive (multi sensitive or ergodically sensitive), where
φ∞ =

∏∞
i=1 φi : R ×

∏∞
i=1Xi →

∏∞
i=1Xi. This result motivate us to

investigate the same property for measure chaotic flows.

Theorem 3.6. φ×ψ is µ⊗ν-chaotic if and only if either φ is µ-chaotic
or ψ is ν-chaotic.

Proof. Consider S = {(x, y) | (x, y) is sensitive point for φ× ψ}, Sφ =
{x | x is sensitive point for φ} and Sψ = {y | y is sensitive point for ψ}.

Let φ × ψ be µ ⊗ ν-chaotic, by contradiction let φ be not µ-chaotic
and ψ is not ν-chaotic, i.e. µ

(
Scφ
)
> 0 and ν

(
Scψ

)
> 0. Take Scx =

{y | (x, y) ∈ Sc}, let y ∈ Scψ be arbitrary. Since µ
(
Scφ
)
> 0 so Scφ is

nonempty and we can take a point x ∈ Scφ. Given ϵ > 0, there are δ1
and δ2 as the definition of stable point for x and y. Take δ = min {δ1, δ2}.
For all (x′, y′) ∈ Bδ (x, y) we have x′ ∈ Bδ1 (x) and y′ ∈ Bδ2(y) therefore,
d
(
φ× ψ (t, (x, y)) , φ× ψ

(
t,
(
x′, y′

)))
= max

{
d
(
φt (x) , φt

(
x′
))
, d

(
ψt (y) , ψt

(
y′
))}

< ϵ.

Hence (x, y) ∈ Sc so Scψ ⊆ Scx and we have 0 < ν
(
Scψ

)
≤ ν (Scx). Since

for every x ∈ Scφ ν (S
c
x) > 0, so µ⊗ ν (Sc) =

∫
M ν (Scx) dµ (x) > 0 which

is a contradiction.
Conversly, let φ be µ-chaotic µ

(
Scφ
)
= 0. We show that Scy ⊆ Scφ

where Scy = {x | (x, y) ∈ Sc}. Fix ϵ > 0 and let x ∈ Sc
y . There is y ∈ X

such that (x, y) ∈ Sc, so there is δ > 0 such that for all (x′, y) ∈ Bδ (x, y)
and t ∈ R+ we have
d
(
φ× ψ (t, (x, y)) , φ× ψ

(
t,
(
x′, y

)))
= max

{
d
(
φt(x), φt

(
x′
))
, d (ψt(y), ψt(y))

}
< ϵ,

hence x ∈ Scφ.

µ× ν (Sc) =

∫
µ
(
Sc

y)
dν (y)

≤
∫
µ
(
Scφ
)
dν (y)

= 0,

therefor φ× ψ is µ× ν-chaotic. □
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3.1. Variational Principle for Chaotic Measure. Let f : M → M
be a continuous map on a compact metric space M . For every n ∈ N
we define a map dn :M ×M → R by setting

dn (x, y) = max
0≤i<n

{
d
(
f i (x) , f i (y)

)
for every x, y ∈M

}
.

Let n ∈ N and ϵ > 0. We say that a set E ⊆ M is (n, ϵ)−separated if
for every x, y ∈ E with x ̸= y, we have dn (x, y) ≥ ϵ. Let sep (n; ϵ; f) =
max {|E| : E ⊂M ; E is (n, ϵ)-separated} where |E| is the cardinality
of E. Now we can define topological entropy.

Definition 3.7. [14] Put h (f, ϵ) = lim supn→∞
1
n log sep (n, ϵ, f). Then

the topological entropy of the map f is defined as

h (f) = lim
ϵ→0

h (f, ϵ) .

Let (M,B, µ) be a probability space and f : M → M be a measure
preserving map. Let α = {A1, · · · , Ak} be a finite partitions of M . For
two partition α , β, set α ∨ β := {A ∩B A ∈ α, B ∈ β}. So, elements
of
∨n−1
i=0 f

−iα are sets of the form{
x : x ∈ Ai0 , fx ∈ Ai1 , · · · , fn−1x ∈ Ain−1

}
,

for some (i0, i1, · · · , in−1).

Definition 3.8. [16] The metric entropy of f , is defined as follows:

H (α) := H (µ(A1), · · · , µ(Ak)) , where H (p, · · · , pk) = −
∑

pi log pi,

hµ (f, α) := lim
n→∞

1

n
H

(
n−1∨
i=0

f−iα

)
,

hµ(f) := sup
α
hµ (f, α) .

The basic relationship between topological entropy and measure-theor-
etic entropy is proved in [14] as follows.

Theorem 3.9 (variational principle). Let f : M → M be a continuous
map of a compact metric space M ; then h(f) = sup{hµ : µ ∈ Mf (M)}.

Let us mention one of the interesting consequences, which guarantees
that the the variational principle holds for ergodic measures.

Corollary 3.10. [14] Let f :M →M be a continuous map on a compact
metric space M . Then h (f) = sup {hµ : µ ∈ Ef (M)}, where Ef (M)
denotes the collection of all ergodic members of Mf (M).

In the following, we attempt to conclude the variational principle for
chaotic measure. For this, we use the definition of entropy given in [13].
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Theorem 3.11. Let φ be a flow on a compact metric space M which
has no fixed point. Then

h (φ) = sup {hµ (φ) : µ is a chaotic measure} .(3.2)

Proof. We consider φ1 = f . In [10, Corollary 1], Sun and Vargas proved
that hµ (φ) = hµ (φ1) for any ergodic φ invariant probability measure
µ. Now, if h (f) = 0, then (3.2) holds. Otherwise, if h (f) > 0, then, by
Corollary 3.10, there exists an ergodic measure µ such that

0 < h (f)− ϵ < hµ (f) .

So it is enough to show µ (S) = 1. On the contrary, let µ (Sc) > 0.
Since the set of recurrent points is full measure, we can consider x ∈
Sc ∩ R, where R is the set of recurrent points. Hence, for every ϵ > 0,
there exists δ > 0 such that d (x, y) < δ; implies d

(
f i(x), f i(y)

)
< ϵ for

i = 1, 2, . . ..
Define the dynamical ball B (x, n, ϵ) as the set

B (x, n, ϵ) =
{
y ∈M : d

(
f i(x), f i(y)

)
< ϵ for every 0 ≤ i ≤ n− 1

}
.

So Nδ (x) ⊆ B (x, n, ϵ) for all n ∈ N. Define

Rn (x, ϵ) = inf
{
k ≥ 1 : fk(x) ∈ B(x, n, ϵ)

}
;

since x is a recurrent point, so there exists k0 such that fk0(x) ∈ Nδ(x),
and since x is Lyapunov stable, then Rn (x, ϵ) ≤ k0. Now by [13, Theo-
rem A], we have

hµ (f) = h̄ (f, x)

= lim
ϵ→0

lim sup
n→∞

1

n
logRn (x, ϵ)

= lim
ϵ→0

lim sup
n→∞

1

n
log k0

= 0,

that is a contradiction. □

Using the proof of the previous theorem, one can obtain the following
corollary.

Corollary 3.12. An ergodic measure with the positive entropy in a
probability space is a chaotic measure.
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