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Gabor Dual Frames with Characteristic Function Window

Mohammad Ali Hasankhani Fard

Abstract. The duals of Gabor frames have an essential role in
reconstruction of signals. In this paper we find a necessary and suffi-
cient condition for two Gabor systems

(
χ[c1,d1), a, b

)
and

(
χ[c2,d2), a, b

)
to form dual frames for L2 (R), where a and b are positive numbers
and c1, c2, d1 and d2 are real numbers such that c1 < d1 and c2 < d2.

1. Introduction

Frames were first introduced by Duffin and Schaeffer [6] in the study
of nonharmonic Fourier series in 1952. Frames have very important and
interesting properties which make them very useful in the characteri-
zation of function spaces, signal processing and many other fields. A
frame is a family of elements in a separable Hilbert space which allows
stable not necessarily unique decomposition of arbitrary elements into
expansions of frame elements [5]. Given a separable Hilbert space H
with inner product ⟨., .⟩, a sequence {fk}∞k=1 is called a frame for H if
there exist constants A > 0, B < ∞ such that for all f ∈ H,

A ∥f∥2 ≤
∞∑
k=1

| ⟨f, fk⟩ |2 ≤ B ∥f∥2 ,(1.1)

where A,B are the lower and upper frame bounds, respectively. The
second inequality of the frame condition (1.1) is also known as the Bessel
condition for {fk}∞k=1. If A = B, then {fk}∞k=1 is called a tight frame.
For more information concerning frames, we refer to [3–5, 12, 16, 18].
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For any x, y ∈ R the translation operator Tx and modulation operator
Ey on L2 (R) are defined by

(Txg) (t) = g (t− x) , (Eyg) (t) = e2πiytg (t) .

A Gabor system (g, a, b) with window function g ∈ L2 (R), time shift
parameter a > 0 and frequency shift parameter b > 0 is the sequence
{EmbTnag}m,n∈Z. A Gabor system (g, a, b) is called a Gabor frame if it

is a frame for L2 (R), i.e., if there exist constants 0 < A ≤ B < ∞ such
that for all f ∈ L2 (R),

A∥f∥2 ≤
∑

m,n∈Z
| ⟨f,EmbTnag⟩ |2 ≤ B∥f∥2,(1.2)

where ∥.∥ and ⟨., .⟩ denote the standard norm and inner product of
L2 (R).

By the Ron-Shen theory [17] and [7] the Gabor system (g, a, b) is a
Gabor frame with bounds 0 < A ≤ B < ∞ if and only if

bAI ≤ Mg (t)M
∗
g (t) ≤ bBI, a.e. t ∈ R,

where I denote the identity operator on ℓ2 (Z) and Mg (t)) is the bi-
infinite matrix defined by

Mg (t) =

(
g

(
t+ na− k

b

))
k,n∈Z

, a.e. t ∈ R,

where k is the row index and n is the column index. The case when
g = χ[0,c), for some c > 0 has been studied by Janssen in [15].

By Ron-Shen theorem,
(
χ[0,c), a, b

)
is a Gabor frame with frame bounds

0 < A ≤ B < ∞ if and only if
(
χ[0,bc), ba, 1

)
is a Gabor frame with frame

bounds bA and bB.
Two Gabor frames (g, a, b) and (h, a, b) form dual frames for L2 (R) if

f =
∑

m,n∈Z
⟨f,EmbTnag⟩EmbTnah,

for all f ∈ L2 (R)[5]. For more information concerning Gabor frames,
we refer to [8, 9, 11].

The duals of Gabor frames have an essential role in the reconstruction
of signals [1, 2, 10, 13]. In this paper, we find a simple duality condition
for the case that g and h are characteristic functions on intervals [c1, d1)
and [c2, d2), respectively, where c1, c2, d1 and d2 are real numbers such
that c1 < d1 and c2 < d2 (Theorem 2.7).
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2. Dual Gabor Frames

The duality condition for a pair of Gabor systems (g, a, b) and (h, a, b)
is presented by Janssen as follows [14]:

Lemma 2.1. Two Bessel sequences (g, a, b) and (h, a, b) form dual frames
for L2 (R) if and only if∑

k∈Z
g
(
x− ka− n

b

)
h (x− ka) = bδn,0, a.e. x ∈ R, ∀n ∈ Z.

Also

Lemma 2.2. Two Bessel sequences (g, a, b) and (h, a, b) form dual frames
for L2 (R) if and only if∑

k∈Z
g
(
x− ka− n

b

)
h (x− ka) = bδn,0, a.e. x ∈ [0, a] , ∀n ∈ Z.

It is well known that if g is a bounded function with compact support,
then the Gabor system (g, a, b) is a Bessel sequence and then every
Gabor system

(
χ[c1,d1), a, b

)
is a Bessel sequence. In this section, we are

going to find duals of a Bessel sequence
(
χ[c1,d1), a, b

)
having the form(

χ[c2,d2), a, b
)
.

Proposition 2.3. The Gabor system
(
χ[c,d), a, b

)
is a Gabor frame with

bounds A,B if and only if
(
χ[0,d−c), a, b

)
is a Gabor frame with bounds

A and B, where c and d are real numbers such that c < d.

Proof. For all t ∈ R we have

Mχ[c,d)
(t) =

(
χ[c,d)

(
t+ na− k

b

))
k,n∈Z

=

(
χ[0,d−c)

(
t− c+ na− k

b

))
k,n∈Z

= Mχ[0,d−c)
(t− c) .

Also M∗
χ[c,d)

(t) = M∗
χ[0,d−c)

(t− c). Now the result is obtained from Ron-

Shen theorem. □
For any x ∈ R, there exists n ∈ Z such that n ≤ x < n + 1. In this

case ⌊x⌋ := n and ⌈x⌉ := n+ 1.
A necessary condition for duality of two Bessel sequences

(
χ[c1,d1), a, b

)
and

(
χ[c2,d2), a, b

)
is given in the next lemma.

Lemma 2.4. If
(
χ[c1,d1), a, b

)
and

(
χ[c2,d2), a, b

)
are dual frames for

L2 (R), then b =
⌊
− c

a

⌋
−

⌊
−d

a

⌋
, where c = max {c1, c2} and

d = min {d1, d2}.
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Proof. Let
(
χ[c1,d1), a, b

)
and

(
χ[c2,d2), a, b

)
be dual frames for L2 (R).

Then for almost all x ∈ [0, a) we have

b =
∑
k∈Z

χ[c1,d1) (x− ka)χ[c2,d2) (x− ka) ,

by Lemma 2.2 and hence b =
⌊
x−c
a

⌋
−

⌈
x−d
a

⌉
+ 1 ∈ N, where c =

max {c1, c2} and d = min {d1, d2}.
If b <

⌊
− c

a

⌋
−

⌊
−d

a

⌋
− 1, then for all x ∈ [0, e) ⊆ [0, a), where e =

min{a, a
⌊
− c

a

⌋
− a

⌊
−d

a

⌋
− a− ab} we have

b =

⌊
x− c

a

⌋
−

⌈
x− d

a

⌉
+ 1

≥ b+ 1,

and this is a contradiction.
Also if b =

⌊
− c

a

⌋
−

⌊
−d

a

⌋
− 1, then for all x ∈ [0, e) ⊆ [0, a), where

e = min
{
a, c+ a

⌊
− c

a

⌋
+ a, d+ a

⌊
−d

a

⌋
+ a

}
we have

b =

⌊
x− c

a

⌋
−

⌈
x− d

a

⌉
+ 1

=
⌊
− c

a

⌋
−

⌊
−d

a

⌋
= b+ 1,

and this is a contradiction.
If b >

⌊
− c

a

⌋
−

⌊
−d

a

⌋
+ 1, then for all x ∈ [e, a) ⊆ [0, a), where e =

max
{
0, a

⌊
− c

a

⌋
− a

⌊
−d

a

⌋
+ 2a− ab

}
we have

b =

⌊
x− c

a

⌋
−

⌈
x− d

a

⌉
+ 1

≤ b− 1,

and this is a contradiction.
Also if b =

⌊
− c

a

⌋
−

⌊
−d

a

⌋
+ 1, then for all x ∈ [0, e) ⊆ [0, a), where

e = min
{
a, c+ a

⌊
− c

a

⌋
+ a, d+ a

⌊
−d

a

⌋
+ a

}
we have

b =

⌊
x− c

a

⌋
−

⌈
x− d

a

⌉
+ 1

=
⌊
− c

a

⌋
−

⌊
−d

a

⌋
= b− 1,

and this is a contradiction.
□
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Another necessary condition for duality of two Bessel sequences(
χ[c1,d1), a, b

)
and

(
χ[c2,d2), a, b

)
is given in the next lemma.

Lemma 2.5. If
(
χ[c1,d1), a, b

)
and

(
χ[c2,d2), a, b

)
are dual frames for

L2 (R), then
⌊
− c

a

⌋
−

⌊
−d

a

⌋
= d−c

a , where c = max {c1, c2} and d =
min {d1, d2}.

Proof. Let
(
χ[c1,d1), a, b

)
and

(
χ[c2,d2), a, b

)
be dual frames for L2 (R).

Then for almost all x ∈ [0, a) we have

b =
∑
k∈Z

χ[c1,d1) (x− ka)χ[c2,d2) (x− ka) ,

by Lemma 2.2 and hence b =
⌊
x−c
a

⌋
−
⌈
x−d
a

⌉
+1, where c = max {c1, c2}

and d = min {d1, d2}.
It is obvious that

⌊
− c

a

⌋
−

⌊
−d

a

⌋
= d−c

a , if c
a ∈ Z and d

a ∈ Z. Now let
c
a /∈ Z and hence

⌊
− c

a

⌋
< − c

a . If
⌊
− c

a

⌋
−
⌊
−d

a

⌋
> d−c

a , then c+a
⌊
− c

a

⌋
+

a > d+ a
⌊
−d

a

⌋
+ a and hence

[0, a) =

[
0, d+ a

⌊
−d

a

⌋
+ a

)
∪
[
d+ a

⌊
−d

a

⌋
+ a, c+ a

⌊
− c

a

⌋
+ a

)
∪
[
c+ a

⌊
− c

a

⌋
+ a, a

)
.

If x ∈
[
c+ a

⌊
− c

a

⌋
+ a, a

)
⊆ [0, a), then

⌊
x−c
a

⌋
=

⌊
− c

a

⌋
+1 and

⌈
x−d
a

⌉
=⌊

−d
a

⌋
+ 2 and hence

b =

⌊
x− c

a

⌋
−

⌈
x− d

a

⌉
+ 1

=
⌊
− c

a

⌋
−

⌊
−d

a

⌋
.

If x ∈
[
d+ a

⌊
−d

a

⌋
+ a, c+ a

⌊
− c

a

⌋
+ a

)
⊆ [0, a), then

⌊
x−c
a

⌋
=

⌊
− c

a

⌋
and

⌈
x−d
a

⌉
=

⌊
−d

a

⌋
+ 2. Thus

b =

⌊
x− c

a

⌋
−

⌈
x− d

a

⌉
+ 1

=
⌊
− c

a

⌋
−

⌊
−d

a

⌋
− 1

= b− 1,

and this is a contradiction.
On the other hand if

⌊
− c

a

⌋
−
⌊
−d

a

⌋
< d−c

a , then 0 < c+ a
⌊
− c

a

⌋
+ a <

d+ a
⌊
−d

a

⌋
+ a and hence

[0, a) =
[
0, c+ a

⌊
− c

a

⌋
+ a

)
∪
[
c+ a

⌊
− c

a

⌋
+ a, d+ a

⌊
−d

a

⌋
+ a

)
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∪
[
d+ a

⌊
−d

a

⌋
+ a, a

)
,

where the third interval may be empty.
If x ∈

[
c+ a

⌊
− c

a

⌋
+ a, d+ a

⌊
−d

a

⌋
+ a

)
⊆ [0, a), then

b =

⌊
x− c

a

⌋
−

⌈
x− d

a

⌉
+ 1

=
⌊
− c

a

⌋
−

⌊
−d

a

⌋
+ 1.

If x ∈
[
0, c+ a

⌊
− c

a

⌋
+ a

)
⊆ [0, a), then

⌊
x−c
a

⌋
=

⌊
− c

a

⌋
and

⌈
x−d
a

⌉
=⌊

−d
a

⌋
+ 1. Thus

b =

⌊
x− c

a

⌋
−

⌈
x− d

a

⌉
+ 1

=
⌊
− c

a

⌋
−

⌊
−d

a

⌋
= b− 1,

and this is a contradiction. A similar argument proves the claim in the
case that d

a /∈ Z. □
Another necessary condition for duality of two Bessel sequences(

χ[c1,d1), a, b
)
and

(
χ[c2,d2), a, b

)
is given in the next lemma.

Lemma 2.6. If
(
χ[c1,d1), a, b

)
and

(
χ[c2,d2), a, b

)
are dual frames for

L2 (R), then d1 − c2 ≤ 1
b and d2 − c1 ≤ 1

b .

Proof. We first assume that d1 − c2 >
1
b .

Case c1 ≤ c2: If d1− 1
b ≤ d2, then for all x ∈

[
c2, d1 − 1

b

)
(the measure

of this interval is d1 − c2 − 1
b > 0), we have

χ[c2,d2) (x) = χ[c1,d1)

(
x+

1

b
)

)
= 1.

Therefore for n = −1 we have∑
k∈Z

χ[c1,d1)

(
x− ka+

1

b

)
χ[c2,d2) (x− ka) ≥ χ[c1,d1)

(
x+

1

b

)
χ[c2,d2)(x)

= 1.

If d1 − 1
b > d2, then for all x ∈ [c2, d2) we have

χ[c2,d2) (x) = χ[c1,d1)

(
x+

1

b

)
= 1.
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Therefore for n = −1 we have∑
k∈Z

χ[c1,d1)

(
x− ka+

1

b

)
χ[c2,d2) (x− ka) ≥ χ[c1,d1)

(
x+

1

b

)
χ[c2,d2) (x)

= 1.

Thus
(
χ[c1,d1), a, b

)
and

(
χ[c2,d2), a, b

)
are not dual frames for L2 (R) by

Lemma 2.1.
Case c1 > c2 and d1 ≤ d2: If c1 − c2 <

1
b , then for all x ∈

[
c2, d1 − 1

b

)
(the measure of this interval is d1 − c2 − 1

b > 0), we have

χ[c2,d2) (x) = χ[c1,d1)

(
x+

1

b

)
= 1.

Therefore for n = −1 we have∑
k∈Z

χ[c1,d1)

(
x− ka+

1

b

)
χ[c2,d2) (x− ka) ≥ χ[c1,d1)

(
x+

1

b

)
χ[c2,d2) (x)

= 1.

If c1 − c2 ≥ 1
b , then for all x ∈ [c1, d1) we have

χ[c1,d1) (x) = χ[c2,d2))

(
x− 1

b

)
= 1.

Therefore for n = 1 we have∑
k∈Z

χ[c2,d2)

(
x− ka− 1

b

)
χ[c1,d1) (x− ka) ≥ χ[c2,d2)

(
x− 1

b

)
χ[c1,d1) (x)

= 1.

Thus
(
χ[c1,d1), a, b

)
and

(
χ[c2,d2), a, b

)
are not dual frames for L2 (R) by

Lemma 2.1.
Case c1 > c2 and d1 > d2: In this case if d2 ≤ c1, then the intersection

of two intervals [c1, d1) and [c2, d2) is empty ([c1, d1) ∩ [c2, d2) = ∅) and
hence ∑

k∈Z
χ[c2,d2) (x− ka)χ[c1,d1) (x− ka) = 0.

Thus
(
χ[c1,d1), a, b

)
and

(
χ[c2,d2), a, b

)
are not dual frames for L2 (R) by

Lemma 2.1. Therefore we can assume that d2−c1 > 0. Now if c1−c2 ≥ 1
b ,

then for all x ∈ [c1, d2) we have

χ[c1,d1) (x) = χ[c2,d2)

(
x− 1

b

)
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= 1.

Therefore for n = 1 we have∑
k∈Z

χ[c2,d2)

(
x− ka− 1

b

)
χ[c1,d1) (x− ka) ≥ χ[c2,d2)

(
x− 1

b

)
χ[c1,d1) (x)

= 1.

If c1 − c2 <
1
b and d1 − d2 ≤ 1

b , then for all x ∈
[
c2 +

1
b , d1

)
we have

χ[c1,d1) (x) = χ[c2,d2)

(
x− 1

b

)
= 1.

Therefore for n = 1 we have∑
k∈Z

χ[c2,d2)

(
x− ka− 1

b

)
χ[c1,d1) (x− ka) ≥ χ[c2,d2)

(
x− 1

b

)
χ[c1,d1) (x)

= 1.

Also if c1 − c2 <
1
b and d1 − d2 >

1
b , then for all x ∈ [c2, d2) we have

χ[c2,d2) (x) = χ[c1,d1)

(
x+

1

b

)
= 1.

Therefore for n = 1 we have∑
k∈Z

χ[c1,d1)

(
x− ka+

1

b

)
χ[c2,d2) (x− ka) ≥ χ[c1,d1)

(
x+

1

b

)
χ[c2,d2) (x)

= 1.

Thus
(
χ[c1,d1), a, b

)
and

(
χ[c2,d2), a, b

)
are not dual frames for L2 (R) by

Lemma 2.1. A similar argument proves the claim in the case that d2 −
c1 >

1
b . □

Finally the necessary and sufficient condition for duality of two Bessel
sequences

(
χ[c1,d1), a, b

)
and

(
χ[c2,d2), a, b

)
is given in the next theorem.

Theorem 2.7. Let a and b be positive numbers and c1, c2, d1 and d2 be
real numbers such that c1 < d1 and c2 < d2. Then two Gabor systems(
χ[c1,d1), a, b

)
and

(
χ[c2,d2), a, b

)
are dual frames for L2 (R) if and only

if d1 − c2 ≤ 1
b , d2 − c1 ≤ 1

b and b =
⌊
− c

a

⌋
−

⌊
−d

a

⌋
= d−c

a , where
c = max {c1, c2} and d = min {d1, d2}.

Proof. If
(
χ[c1,d1), a, b

)
and

(
χ[c2,d2), a, b

)
are dual frames for L2 (R),

then d1 − c2 ≤ 1
b , d2 − c1 ≤ 1

b and b =
⌊
− c

a

⌋
−

⌊
−d

a

⌋
= d−c

a , where
c = max {c1, c2} and d = min {d1, d2}, by Lemma 2.4, Lemma 2.5 and
Lemma 2.6.
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Conversely let d1 − c2 ≤ 1
b , d2 − c1 ≤ 1

b and b =
⌊
− c

a

⌋
−
⌊
−d

a

⌋
= d−c

a ,
where c = max {c1, c2} and d = min {d1, d2}. Then

c+ a
⌊
− c

a

⌋
+ a = d+ a

⌊
−d

a

⌋
+ a.

Let x ∈ [0, a) =
[
0, c+ a

⌊
− c

a

⌋
+ a

)
∪
[
c+ a

⌊
− c

a

⌋
+ a, a

)
(in the case

that c
a ∈ Z, the second interval is empty).

If x ∈
[
0, c+ a

⌊
− c

a

⌋
+ a

)
, then we have

c+ a
⌊
− c

a

⌋
= d+ a

⌊
−d

a

⌋
≤ x

< c+ a
⌊
− c

a

⌋
+ a

= d+ a

⌊
−d

a

⌋
+ a,

and hence
⌊
x−c
a

⌋
=

⌊
− c

a

⌋
and

⌈
x−d
a

⌉
=

⌊
−d

a

⌋
+ 1. Therefore∑

k∈Z
χ[c1,d1) (x− ka)χ[c2,d2) (x− ka) =

⌊
x− c

a

⌋
−

⌈
x− d

a

⌉
+ 1

=
⌊
− c

a

⌋
−

⌊
−d

a

⌋
= b.

If x ∈
[
c+ a

⌊
− c

a

⌋
+ a, a

)
, then we have

c+ a
⌊
− c

a

⌋
+ a = d+ a

⌊
−d

a

⌋
+ a

≤ x

< c+ a
⌊
− c

a

⌋
+ 2a

= d+ a

⌊
−d

a

⌋
+ 2a,

and hence
⌊
x−c
a

⌋
=

⌊
− c

a

⌋
+ 1 and

⌈
x−d
a

⌉
=

⌊
−d

a

⌋
+ 2. Therefore∑

k∈Z
χ[c1,d1) (x− ka)χ[c2,d2) (x− ka) =

⌊
x− c

a

⌋
−

⌈
x− d

a

⌉
+ 1

=
⌊
− c

a

⌋
−

⌊
−d

a

⌋
= b.
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Also for any x ∈ [0, a), if c2 ≤ x− ka < d2, then

x− ka− n

b
≤ x− ka− 1

b

< d2 −
1

b
≤ c1,

for all positive integer n and

x− ka− n

b
≥ x− ka+

1

b

> c2 +
1

b
≥ d1,

for all negative integer n. Thus for all x ∈ [0, a) and for all n ∈ Z− {0}
we have ∑

k∈Z
χ[c1,d1)

(
x− ka− n

b

)
χ[c2,d2) (x− ka) = 0.

Therefore
(
χ[c1,d1), a, b

)
and

(
χ[c2,d2), a, b

)
are dual frames for L2 (R) by

Lemma 2.2. □

Corollary 2.8. Let a, b, c and d be positive numbers. Then two Gabor
systems

(
χ[0,c), a, b

)
and

(
χ[0,d), a, b

)
are dual frames for L2 (R) if and

only if b ∈ N, c ≤ 1
b , d ≤ 1

b and ab = min {c, d}.

Corollary 2.9. Let a, c and d be positive numbers. Then two Gabor
systems

(
χ[0,c), a, 1

)
and

(
χ[0,d), a, 1

)
are dual frames for L2 (R) if and

only if c ≤ 1, d ≤ 1 and a = min {c, d}.
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