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Some Properties of Lebesgue Fuzzy Metric Spaces

Sugata Adhya1∗ and Atasi Deb Ray2

Abstract. In this paper, we establish a sequential characterisa-
tion of Lebesgue fuzzy metric and explore the relationship between
Lebesgue, weak G-complete and compact fuzzy metric spaces. We
also discuss the Lebesgue property of several well-known fuzzy met-
ric spaces.

1. Introduction

The theory of fuzzy metric spaces, proposed by George and Veeramani
[3], is widely accepted as a consistent notion for metric fuzziness. It is
a slight modification of the one due to Kramosil and Michalek [13].
Throughout the paper, this is the only notion of fuzzy metric we will
be working on. It should be noted that every fuzzy metric gives rise
to a metrizable topology that allowed the researchers to adopt several
concepts from metric spaces in this fuzzy setting. In particular, Gregori,
Romaguera, and Sapena [7] introduced a notion similar to the Lebesgue
number in the realm of fuzzy metric spaces.

In the theory of metric spaces, the Lebesgue number lemma states
that every open cover U of a compact metric space (X, d) corresponds
to a positive number δ such that any subset of X having diameter less
than δ gets contained in some member of U . This δ is called a Lebesgue
number for U . The property of having such positive real numbers for
every open cover is called the Lebesgue property for metric spaces. It
is important to note that one can find non-compact metric spaces (e.g.
consider the set of positive integers endowed with discrete topology) that
satisfy Lebesgue property. In fact, the study of metric spaces having
Lebesgue property (precisely, Lebesgue metric spaces) is an interesting
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problem in the theory of metric spaces. For details one may refer to [2]
and references therein.

In 2001, Gregori, Romaguera and Sapena [7] gave a satisfactory ex-
tension to the notion of Lebesgue property for fuzzy metric spaces and
characterized it in terms of uniform continuity, equinormality and uni-
formity. They ensured the existence of a non-standard Lebesgue fuzzy
metric that made Lebesgue property worth studying in the realm of fuzzy
metric setting. Unfortunately, Lebesgue fuzzy metric spaces didn’t get
much attention of researchers, later on. Recently in [1], we discussed
several new characterizations for Lebesgue fuzzy metric spaces and this
paper is a continuation of that.

In this paper, we provide a sequential characterization for Lebesgue
fuzzy metric and employ it to study the Lebesgue property of some
well-known fuzzy metric spaces.

In 2018, Gregori, Miñana and Sapena introduced weak G-complete
fuzzy metric spaces [9] which, alike Lebesgue fuzzy metric spaces, lie
between compact and complete fuzzy metric spaces. It is then natural
to ask the relationship between this class of fuzzy metric spaces with the
class of Lebesgue fuzzy metric spaces. In this article, we address this
question too.

Throughout the paper, R and N will stand for the sets of real numbers
and positive integers, respectively.

2. Preliminaries

In this section, we recall a series of definitions and some related results
on fuzzy metric spaces that will be required subsequently. For undefined
terms related to general topology, we refer to [18].

Definition 2.1 ([15]). Let ∗ be a binary operation on I = [0, 1] which
is associative, commutative and continuous on I × I. Then ∗ is said to
be a continuous t-norm, if

a) ∀ a ∈ [0, 1], a ∗ 1 = a;
b) ∀ a, b, c, d ∈ [0, 1], a ≤ b, c ≤ d ⇒ a ∗ c ≤ b ∗ d.

Definition 2.2 ([3, 4]). Given a non-empty set X, a continuous t-norm
∗ and a mapping M : X×X× (0,∞) → [0, 1], the ordered pair (M, ∗) is
said to be a fuzzy metric on X if for all x, y ∈ X and t > 0 the following
conditions hold:

a) M(x, y, t) > 0;
b) M(x, y, t) = 1 ⇔ x = y;
c) M(x, y, t) = M(y, x, t);
d) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s);
e) M(x, y, .) : (0,∞) → [0, 1] is continuous.
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In this case, (X,M, ∗) is said to be a fuzzy metric space.

It is easy to note from the above axioms that given two elements
x, y in a fuzzy metric space (X,M, ∗), the mapping t 7→ M(x, y, t) is
increasing on (0,∞).

Result 2.3 ([3]). Let (X,M, ∗) be a fuzzy metric space. Then {BM (x, r, t) :
x ∈ X, r ∈ (0, 1), t > 0}, where

BM (x, r, t) = {y ∈ X : M(x, y, t) > 1− r},
forms a base for some topology τM on X.

Definition 2.4. τM is called the topology induced by (M, ∗).

Definition 2.5 ([3]). Let (X, d) be a metric space. If Md : X × X ×
(0,∞) → [0, 1] is defined for all x, y ∈ X and t > 0 by

Md(x, y, t) =
t

t+ d(x, y)

then (Md, ·), ‘·’ being the usual multiplication on [0, 1], defines a fuzzy
metric on X. It is called the standard fuzzy metric induced by d.

Result 2.6 ([3]). If (X, d) is a metric space, then τMd
= τ(d), where

τ(d) denotes the topology induced by the metric d.

Definition 2.7 ([10]). A fuzzy metric space (X,M, ∗) is said to be
stationary if for all x, y ∈ X, t 7→ M(x, y, t) defines a constant mapping
on (0,∞).

George and Veeramani [3] initiated the study of convergence of se-
quences for fuzzy metric spaces. A sequence (xn) in a fuzzy metric
space (X,M, ∗) converges to x (resp. clusters), if it does so in (X, τM ).

Theorem 2.8 ([3]). A sequence (xn) in a fuzzy metric space (X,M, ∗)
converges to x ∈ X if and only if lim

n→∞
M(xn, x, t) = 1, ∀ t > 0..

Definition 2.9 ([3]). A sequence (xn) in a fuzzy metric space (X,M, ∗)
is said to be Cauchy if for ϵ ∈ (0, 1) and t > 0, there exists k ∈ N such
that M(xm, xn, t) > 1− ϵ, ∀ m,n ≥ k.

A fuzzy metric space, in which every Cauchy sequence converges, is
said to be complete.

Definition 2.10. [11] A fuzzy metric space (X,M, ∗) is said to be pre-
compact if for r ∈ (0, 1) and t > 0, there exists a finite subset A of X
such that X =

∪
x∈A

BM (x, r, t).

Proposition 2.11 ([14]). A metric space (X, d) is precompact if and
only if the standard fuzzy metric space (X,Md, ·) is precompact.
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Lemma 2.12 ([11]). A fuzzy metric space (X,M, ∗) is precompact if
and only if every sequence in X has a Cauchy subsequence.

In [11], Gregori and Romaguera introduced compactness for fuzzy
metric spaces in the most obvious way: A fuzzy metric space (X,M, ∗)
is compact if so is (X, τM ) as a topological space. They characterized
compact fuzzy metric spaces as follows:

Theorem 2.13 ([11]). A fuzzy metric space (X,M, ∗) is compact if and
only if it is precompact and complete.

3. Sequential Characterization for Lebesgue Property

Definition 3.1 ([7]). A fuzzy metric space (X,M, ∗) is said to have
the Lebesgue property if given an open cover G of (X, τM ), there exist
r ∈ (0, 1), t > 0 such that {BM (x, r, t) : x ∈ X} refines G. We call such
fuzzy metric spaces Lebesgue.

Proposition 3.2 ([7]). Let (X, d) be a metric space. Then (X, d) is
Lebesgue if and only if (X,Md, ·) is Lebesgue.

Definition 3.3 ([7]). A fuzzy metric space (X,M, ∗) is said to be
equinormal if for given nonempty, closed subsets B and C of (X, τM )
with B ∩ C = ∅, there exists s > 0 such that

sup {M(b, c, s) : b ∈ B, c ∈ C} < 1.

Several characterizations of the Lebesgue property for fuzzy metric
spaces have been discussed in [1] and [7]. In particular, it has been
shown in [7] that a fuzzy metric space is Lebesgue if and only if it is
equinormal. In what follows, we give a sequential characterization for
Lebesgue fuzzy metric spaces.

To attain the requirement of our main result, we first extend the
notion of pseudo-Cauchy sequences in fuzzy metric setting.

Recall that, a sequence (xn) in a metric space (X, d) is pseudo-Cauchy
if given ϵ > 0 and k ∈ N, there exist j, n (> k) ∈ N with j ̸= n such that
d(xj , xn) < ϵ. We propose the notion of fuzzy pseudo-Cauchy sequence
as follows:

Definition 3.4. A sequence (xn) in a fuzzy metric space (X,M, ∗) is
said to be fuzzy pseudo-Cauchy if given ϵ ∈ (0, 1), t > 0 and k ∈ N,
there exist j, n (> k) ∈ N with j ̸= n such that M(xj , xn, t) > 1− ϵ.

Clearly, a Cauchy sequence in a (fuzzy) metric space is (fuzzy) pseudo-
Cauchy, however, the converse may fail.

Proposition 3.5. Let (X, d) be a metric space. A sequence (xn) in
(X,Md, ·) is fuzzy pseudo-Cauchy if and only if (xn) is pseudo-Cauchy
in (X, d).
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Proof. Consider a fuzzy pseudo-Cauchy sequence (xn) in (X,Md, ·).
Choose ϵ ∈ (0, 1) and k ∈ N. Then there exist j, n (> k) ∈ N with

j ̸= n such that Md(xj , xn, 1− ϵ) > 1− ϵ, i.e., d(xj , xn) < ϵ. Thus (xn)
is pseudo-Cauchy in (X, d).

Conversely, let (xn) be a pseudo-Cauchy sequence in (X, d). Choose
ϵ ∈ (0, 1), t > 0 and k ∈ N. Then there exist j, n (> k) ∈ N with j ̸= n
such that d(xj , xn) <

tϵ
1−ϵ . Consequently,

t

t+ d(xj , xn)
> 1− ϵ ⇒ Md(xj , xn, t) > 1− ϵ.

Thus (xn) is fuzzy pseudo-Cauchy in (X,Md, ·). □

Example 3.6. Consider the non-standard fuzzy metric space (N,M, ∗)
(see [7]) where a ∗ b = ab, ∀ a, b ∈ [0, 1] and for x, y ∈ N, t > 0,

M(x, y, t) =

{
1, if x = y,
1
xy , otherwise,

Then (1, 2, 1, 3, 1, 4, . . .) is a fuzzy pseudo-Cauchy sequence in (N,M, ∗)
which is not Cauchy.

We are now at a stage to discuss the main result of this section.

Theorem 3.7. Let (X,M, ∗) be a fuzzy metric space. Then (X,M, ∗) is
Lebesgue if and only if every fuzzy pseudo-Cauchy sequence in (X,M, ∗)
having distinct terms has a cluster point in (X, τM ).

Proof. Let (X,M, ∗) be Lebesgue. Choose a fuzzy pseudo-Cauchy se-
quence (xn) having distinct terms in X. Then there exists a strictly
increasing sequence (rn) of natural numbers such that

M

(
xr2n−1 , xr2n ,

1

n+ 1

)
> 1− 1

n+ 1
, ∀n ∈ N.

If possible, let none of (xr2n−1) and (xr2n) has cluster point in (X, τM ).
Then, B = {xr2n−1 : n ∈ N} and C = {xr2n : n ∈ N} are disjoint, closed
subsets of (X, τM ).

Since (X,M, ∗) is equinormal, being Lebesgue, there exists s > 0 such
that

(3.1) sup{M(b, c, s) : b ∈ B, c ∈ C} = p · · · ,

where p < 1.
Choose, k ∈ N such that 1

k < min{s, 1− p}.
Then

M
(
xr2n−1 , xr2n , s

)
≥ M

(
xr2n−1 , xr2n ,

1

n+ 1

)
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> 1− 1

n+ 1
> p, ∀n ≥ k,

a contradiction to (3.1).
Thus, at least one of (xr2n−1) or (xr2n) has a cluster point in (X, τm),

which establishes the fact that (xn) has a cluster point in (X, τm).
Conversely, let the condition hold. If possible, let (X,M, ∗) be not a

Lebesgue fuzzy metric space. Then there exists an open cover G = {Uλ :
λ ∈ Λ} of (X, τM ) such that for no r ∈ (0, 1) and s > 0, {B(x, r, s) : x ∈
X} refines G. Thus for each n ≥ 1, there exists x2n−1 ∈ X such that

B

(
x2n−1,

1

n+ 1
,

1

n+ 1

)
̸⊂ Uλ, ∀λ ∈ Λ.

Since G covers (X, τM ), x2n−1 ∈ Uλn for some λn ∈ Λ. Thus ∃ x2n ∈
B
(
x2n−1,

1
n+1 ,

1
n+1

)
\Uλn and consequently,

(3.2) M

(
x2n−1, x2n,

1

n+ 1

)
> 1− 1

n+ 1
, ∀n ≥ 1.

We first show that (xn) is a fuzzy pseudo-Cauchy sequence. Let ϵ ∈
(0, 1), t > 0 and k > 1. Choose q > k such that 1

q < min{ϵ, t}. Then
2q − 1, 2q > k and

M (x2q−1, x2q, t) ≥ M

(
x2q−1, x2q,

1

q + 1

)
> 1− 1

q + 1

> 1− ϵ.

Thus (xn) is fuzzy pseudo-Cauchy.
We now show that (xn) has a fuzzy pseudo-Cauchy subsequence (xrn)

of distinct terms.
Case I: Suppose (xn) does not have any constant subsequence. We

proceed by induction.
Set xr1 = x1 and xr2 = x2. For chosen{

xr1 , xr2 , xr3 , xr4 , . . . , xr2k−1
, xr2k

}
find p > r2k such that x2p−1, x2p /∈

{
xr1 , xr2 , xr3 , xr4 , . . . , xr2k−1

, xr2k
}

and set xr2k+1
= x2p−1, xr2k+2

= x2p. Thus we obtain a subsequence
(xrn) of (xn) having distinct terms.

Choose t > 0, ϵ ∈ (0, 1) and k ∈ N. Find q > k such that 1
q <

min{ϵ, t}. Then

M
(
x2rq−1, x2rq , t

)
≥ M

(
x2rq−1, x2rq ,

1

q + 1

)
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≥ M

(
x2rq−1, x2rq ,

1

rq + 1

)
> 1− 1

rq + 1

≥ 1− 1

q + 1

> 1− ϵ.

Consequently (xrn) is fuzzy pseudo-Cauchy.
Case II: Suppose (xn) has a constant subsequence (xrn), where

xrn = a, ∀ n ≥ 1.

By setting

mn =

{
rn − 1, if rn is even,

rn + 1, if rn is odd,

we see that for chosen n ∈ N, ∃ k ∈ N such that {rn,mn} = {2k−1, 2k}.
Since (rn) defines a strictly increasing sequence of natural numbers, so
does (mn). Thus (xmn) forms a subsequence of (xn).

We first show that, (xm2n) is fuzzy pseudo-Cauchy.
Using equation (3.2) we see that, ∀n ∈ N,

M

(
xr2n , xm2n ,

1

n+ 1

)
> 1− 1

n+ 1
,

that is, M
(
a, xm2n ,

1
n+1

)
> 1 − 1

n+1 . Thus (xm2n) is convergent and

hence, is fuzzy pseudo-Cauchy.
Since lim

n→∞
xm2n = a, and xm2n ̸= xr2n , ∀ n ∈ N, it follows that (xm2n)

has no constant subsequence. Thus, in view of Case I, it must have a
fuzzy pseudo-Cauchy subsequence of distinct terms.

Consequently, in any case, (xn) has a fuzzy pseudo-Cauchy subse-
quence of distinct terms. Thus, in view of the hypothesis, (xn) must
have a cluster point z in (X, τM ).

Clearly z ∈ Uλ for some λ ∈ Λ. Since Uλ is open, there exist r ∈ (0, 1)
and s > 0 such that BM (z, r, s) ⊂ Uλ.

Since ∗ is continuous, there exists r′ ∈ (0, 1) with r′ < r such that

(1− r′) ∗ (1− r′) ∗ (1− r′) > 1− r.

Also z being a cluster point of (xn), there is a natural number p
satisfying 1

p < min{r′, s3} such that at least one of x2p and x2p−1 belongs

to BM (z, r′, s3). Set y to be a point among x2p and x2p−1 such that it
lies in BM (z, r′, s3).
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Note that for w ∈ BM

(
x2p−1,

1
p+1 ,

1
p+1

)
, we have

M(w, z, s) ≥ M
(
w, x2p−1,

s

3

)
∗M

(
x2p−1, y,

s

3

)
∗M

(
y, z,

s

3

)
≥ M

(
w, x2p−1,

1

p+ 1

)
∗M

(
x2p−1, y,

1

p+ 1

)
∗M

(
y, z,

s

3

)
≥

(
1− 1

p+ 1

)
∗
(
1− 1

p+ 1

)
∗ (1− r′)

≥ (1− r′) ∗ (1− r′) ∗ (1− r′)

> 1− r,

that is, w ∈ BM (z, r, s). Thus

BM

(
x2p−1,

1

p+ 1
,

1

p+ 1

)
⊂ BM (z, r, s)

⊂ Uλ,

a contradiction.
So (X,M, ∗) is Lebesgue. □

Example 3.8. It is worth recalling, at this stage, that (N,M, ∗), defined
in Example 3.6, forms a non-standard, Lebesgue fuzzy metric space [7].

In fact, Theorem 3.7 can be employed to realize that (N,M, ∗) is
Lebesgue: Choose ϵ = 1

2 and t > 0. Then for no x, y (x ̸= y) ∈ N we can
have M(x, y, t) > 1 − ϵ. So, there is no fuzzy pseudo-Cauchy sequence
in (N,M, ∗). Consequently, (N,M, ∗) is Lebesgue.

Note 3.9. Example 3.8 establishes the generality of Theorem 3.7 with
respect to its classical counterpart [17].

Before proceeding further, we note from pseudo-Cauchy characteriza-
tion of the Lebesgue property that the class of Lebesgue fuzzy metric
spaces resides strictly in-between the classes of compact and complete
fuzzy metric spaces.

Example 3.10. For X = (0,∞), define M : X2 × (0,∞) → [0, 1] by

M(x, y, t) = min{x,y}
max{x,y} , ∀ x, y ∈ X, t > 0. It has been shown in [12] that,

(X,M, ·) forms a complete fuzzy metric space which is not compact.
We now show that, (X,M, ·) is not even Lebesgue.
Set an = n, ∀ n ∈ N. Then

lim
n→∞

(an, an+1, t) = lim
n→∞

n

n+ 1
= 1, ∀t > 0.
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So, given ϵ ∈ (0, 1), t > 0 and k ∈ N, ∃ p, q (p ̸= q) > n such that
M(xp, xq, t) > 1 − ϵ. Thus, (an) is a fuzzy pseudo-Cauchy sequence of
distinct terms in X.

If possible, let c be a cluster point of (an). Then there exists a sub-
sequence (arn) of (an) that converges to c with respect to the topology
τM . Note that, ∃ k ∈ N such that arn > c, ∀ n ≥ k, whence

lim
n→∞

M(arn , c, t) = lim
n→∞

c

rn
= 0, ∀ t > 0.

Thus (arn) cannot converge to c, a contradiction. Consequently, (an)
has no cluster point.

So, in view of Theorem 3.7, (X,M, ·) is not Lebesgue.

Example 3.11. For X = [0,∞), define M : X2 × (0,∞) → [0, 1] by

M(x, y, t) =
min{x, y}+ t

max{x, y}+ t
, ∀ x, y ∈ X, t > 0.

Then (X,M, ·) forms a complete fuzzy metric space [12]. Arguing as
Example 3.10, it can be shown that (X,M, ·) is not Lebesgue.

Example 3.12. Let ϕ : (0,∞) → (0, 1] be a function such that
ϕ(t) = t, t ≤ 1 and ϕ(t) = 1 otherwise. For X = (0,∞), define
M : X2 × (0,∞) → [0, 1] by

M(x, y, t) =

{
1, x = y,
min{x,y}
max{x,y} .ϕ(t), x ̸= y.

It has been shown in [6] that, (X,M, ·) forms a complete fuzzy metric
space.

We now show that (X,M, ·) is, in fact, Lebesgue.
Choose a fuzzy pseudo-Cauchy sequence (an) of distinct terms in

(X,M, ·). Then there exists a strictly increasing sequence (rn) of natural
numbers such that

M

(
ar2n−1 , ar2n ,

1

n+ 1

)
> 1− 1

n+ 1
, ∀ n ∈ N.

Note that for chosen t > 0 and ϵ ∈ (0, 1), we can find p ∈ N such that
1
p < min{ϵ, t}. Then

M
(
ar2n−1 , ar2n , t

)
≥ M

(
ar2n−1 , ar2n ,

1

n+ 1

)
> 1− 1

n+ 1
> 1− ϵ, ∀ n ≥ p,
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then lim
n→∞

M(ar2n−1 , ar2n , t) = 1, ∀ t > 0.

However

lim
n→∞

M

(
ar2n−1 , ar2n ,

1

2

)
=

1

2
× lim

n→∞

min{ar2n−1 , ar2n}
max{ar2n−1 , ar2n}

=
1

2
× lim

n→∞
M

(
ar2n−1 , ar2n , 1

)
,

a contradiction.
Thus no such fuzzy pseudo-Cauchy sequence (an) exists in (X,M, ·).

So, in view of Theorem 3.7, (X,M, ·) is Lebesgue.

Example 3.13. For X = (0, 1), define M : X2 × (0,∞) → [0, 1] by

M(x, y, t) =

{
1, x = y,

xy.ϕ(t), x ̸= y,

where ϕ is defined in Example 3.12.
It has been shown in [6] that (X,M, ·) forms a complete fuzzy metric

space . Arguing as Example 3.12, we can see that (X,M, ·) is, in fact,
Lebesgue.

4. Weak G-Completeness Versus Lebesgue Property

In this section, we investigate the relationship between weak G-compl-
eteness and Lebesgue property for (fuzzy) metric spaces. We start by
recalling the following weaker notion than Cauchy sequences, due to M.
Grabiec [5].

Definition 4.1. A sequence (xn) in a fuzzy metric space (X,M, ∗) is
said to be G-Cauchy if for each t > 0 and p ∈ N, lim

n→∞
M(xn, xn+p, t) =

1, or equivalently, lim
n→∞

M(xn, xn+1, t) = 1, ∀ t > 0.

Tirado, in [16], proposed the notion ofG-Cauchyness for metric spaces:

Definition 4.2. A sequence (xn) in a metric space (X, d) is said to
be G-Cauchy if for each p ∈ N, lim

n→∞
d(xn, xn+p) = 0, or equivalently,

lim
n→∞

d(xn, xn+1) = 0, ∀ t > 0.

Definition 4.3 ([9]). A (fuzzy) metric space X is said to be

i) weak G-complete if every G-Cauchy sequence in X has a cluster
point in it;

ii) G-complete if every G-Cauchy sequence in X converges in it.

Clearly,

G-completeness → weak G-completeness → completeness

though the implications cannot be reversed as is shown in [9].
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Note 4.4. The space (X,M, ·), in Example 3.10, is not weakG-complete,
since (n) is a G-Cauchy sequence in X without any cluster point.

Observation 4.5. It is known that (X,M, ·), where X = [0, 1] and

M(x, y, t) = min{x,y}+t
min{x,y}+t , ∀ x, y ∈ X, t > 0, defines a compact, non-G-

complete fuzzy metric space [9]. Thus a Lebesgue fuzzy metric space
may not be G-complete.

Let us recall the following results before proceeding further:

Proposition 4.6 ([9]). Let (X, d) be a metric space. Then (X, d) is weak
G-complete if and only if the standard fuzzy metric space (X,Md, ·) is
weak G-complete.

It is observed in [9] that every compact metric space is weak G-
complete. A stronger result can be realized from the succeeding dis-
cussion.

Theorem 4.7. A Lebesgue fuzzy metric space is weak G-complete.

Proof. Let (X,M, ∗) be a Lebesgue fuzzy metric space and (xn) be a
G-Cauchy sequence in X.

If (xn) has a constant subsequence, then it must have a cluster point
in X. So we assume that, (xn) has no constant subsequence. We proceed
by induction. Choose xr1 , xr2 from the sequence such that r1 < r2, xr1 ̸=
xr2 and M

(
xr1 , xr2 ,

1
2

)
> 1− 1

2 .
Next, for chosen xr1 , xr2 , . . . , xr2k−1

, xr2k , find xr2k+1
, xr2k+2

/∈ {xr1 ,
xr2 , . . . , xr2k−1

, xr2k} such that r2k < r2k+1 < r2k+2, xr2k+1
̸= xr2k+2

and

M

(
xr2k+1

, xr2k+2
,

1

2k + 2

)
> 1− 1

2k + 2
.

Clearly (xrn) defines a subsequence of distinct terms.
Choose ϵ ∈ (0, 1) and t > 0. Then for any k ∈ N satisfying 1

k <
min{ϵ, t}, we have

M
(
xr2k+1

, xr2k+2
, t
)
≥ M

(
xr2k+1

, xr2k+2
,
1

k

)
≥ M

(
xr2k+1

, xr2k+2
,

1

2k + 2

)
> 1− 1

2k + 2
> 1− ϵ.

Consequently, (xrn) is a fuzzy pseudo-Cauchy sequence. So by hypoth-
esis, (xrn), and hence (xn), has a cluster point in X. Hence the result
follows. □
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The following corollary is immediate from Proposition 3.2 and Propo-
sition 4.6.

Corollary 4.8. A Lebesgue metric space is weak G-complete.

In view of Theorem 2.13, it is now clear that the class of Lebesgue
fuzzy metric spaces L lies in-between the classes of compact fuzzy metric
spaces K and weak G-complete fuzzy metric spaces G. In what follows,
we show that K ⊊ L ⊊ G.

Example 4.9. (A weak G-complete, non-Lebesgue metric space) Let
X = {n : n ∈ N} ∪

{
n+ 1

n : n ∈ N
}

and d be the usual metric on R
restricted to X ×X.

The metric space (X, d) is not Lebesgue: Clearly, τd is the discrete
topology on X. Thus {{x} : x ∈ X} is an open cover of X without any
Lebesgue number. Consequently (X, d) is not Lebesgue.

The metric space (X, d) is weak G-complete: It suffices to show that
the only sequences which are G-Cauchy are those that contain a constant
subsequence.

Assume on the contrary, there exists a G-Cauchy sequence (xn) in
X which does not have a constant subsequence. Then there exists a
subsequence (xrn) of (xn) having distinct terms such that d(xrn+1 , xrn) <
1
3 , ∀ n ∈ N, a contradiction. Hence (X, d) is weak G-complete.

In view of the last example, the following observation is immediate
from Proposition 3.2 and Proposition 4.6:

Observation 4.10. L ⊊ G.

Example 4.11. (A non-compact, Lebesgue fuzzy metric space) LetX ={
1
2n : n ≥ 2

}
∪
[
1
2 , 1

]
. It has been shown in [9] that the stationary fuzzy

metric space (X,M, ·), where M(x, y, t) = min{x,y}
max{x,y} , ∀ x, y ∈ X and

t > 0, is a non-compact, weak G-complete fuzzy metric space.
We now show that (X,M, ·) is, in fact, Lebesgue. Choose a fuzzy

pseudo-Cauchy sequence (xn) of distinct terms in (X,M, ·).
Clearly, (xn) can not be eventually in

{
1
2n : n ≥ 2

}
. Otherwise, there

exists k ∈ N such that M(xm, xn, t) ≤ 1
2 , ∀ n ≥ k, t > 0, which is a

contradiction since (xn) is pseudo-Cauchy.
So there exists a subsequence (xrn) of (xn) such that xrn ∈

[
1
2 , 1

]
, ∀ n ∈

N.
Since τM defines the usual topology of R restricted to X [12], so [12 , 1]

is a compact subset of (X,M, ·). Consequently, in view of Theorem 2.13,
(xrn) (and hence (xn)) has a cluster point in X.

Thus (X,M, ·) is Lebesgue.

Observation 4.12. K ⊊ L.
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The following result is an immediate consequence of Lemma 2.12:

Theorem 4.13. A precompact, weak G-complete fuzzy metric space is
Lebesgue.

In view of the last theorem, we have the next corollary from Proposi-
tion 2.11, Proposition 4.6 and Proposition 3.2:

Corollary 4.14. A precompact, weak G-complete metric space is Lebe-
sgue.
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