On Some Properties of Log-Harmonic Functions Product

Mehri Alizadeh, Rasoul Aghalary and Ali Ebadian

Sahand Communications in
Mathematical Analysis
Print ISSN: 2322-5807
Online ISSN: 2423-3900
Volume: 19
Number: 4
Pages: 133-147
Sahand Commun. Math. Anal.
DOI: 10.22130/scma.2022.554936.1121

SCMA, P. O. Box 55181-83111, Maragheh, Iran http://sema.maragheh.ac.ir

On Some Properties of Log-Harmonic Functions Product

Mehri Alizadeh ${ }^{1}$, Rasoul Aghalary ${ }^{2 *}$ and Ali Ebadian ${ }^{3}$

Abstract

In this paper we define a new subclass $S_{L H}(k, \gamma ; \varphi)$ of log-harmonic mappings, and then basic properties such as dilations, convexity on one direction and convexity of log functions of convex- exponent product of elements of that class are discussed. Also we find sufficient conditions on β such that $f \in S_{L H}(k, \gamma ; \varphi)$ leads to $F(z)=f(z)|f(z)|^{2 \beta} \in S_{L H}(k, \gamma, \varphi)$. Our results generalize the analogues of the earlier works in the combinations of harmonic functions.

1. Introduction and Preliminaries

Suppose $E=\{z \in C:|z|<1\}$ and $\mathcal{H}(E)$ describe the linear space of all holomorphic functions defined in E. Let f be a 2-times continuously differentiable function, then f is harmonic if $\Delta f=0$, and f is logharmonic mapping if $\log f$ is harmonic, where

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right), \quad \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right), \quad \Delta=4 \frac{\partial^{2}}{\partial z \partial \bar{z}} .
$$

Actually a log-harmonic mapping f is solution of the nonlinear elliptic partial differential equation

$$
\frac{\bar{f}_{\bar{z}}}{\bar{f}}=a \frac{f_{z}}{f}
$$

where the second dilation function $a \in \mathcal{H}(E)$ is such that $|a(z)|<1$ for all $z \in E$.

[^0]Furthermore Abdulhadi et al. in [1, 2] have showed that if f is a non-constant log-harmonic mapping that vanishes only at $z=0$, then f should be in the form

$$
\begin{equation*}
f(z)=z^{m}|z|^{2 m \beta} h(z) \overline{g(z)} \tag{1.1}
\end{equation*}
$$

where m is a nonnegative integer, $\operatorname{Re} \beta>-\frac{1}{2}$. while $h, g \in \mathcal{H}(E)$ satisfying $g(0)=1$ and $h(0) \neq 0$. Note that β in (1.1) depends only on $a(0)$ and is given by

$$
\beta=\frac{\overline{a(0)}(1+a(0))}{1-|a(0)|^{2}}
$$

Moreover, $f(0) \neq 0$ if and only if $m=0$, and that a univalent logharmonic mapping in E vanishes at the origin if and only if $m=1$, that is, f is as follow

$$
f(z)=z|z|^{2 \beta} h(z) \overline{g(z)}
$$

where $R e \beta>-\frac{1}{2}$ and $0 \notin h g(E)$. The similar of the harmonic functions the Jacobian of log-harmonic function f is taken by

$$
J_{f}(z)=\left|f_{z}\right|^{2}\left(1-|a(z)|^{2}\right)
$$

and is positive. So all non-constant log-harmonic mappings that we have discussed the above are sense-preserving in the unit disk E. Let B_{0} describe the class of Schwarzian functions such that $a(0)=0$. Also let $S_{L H}$ be the class of all univalent and sense-preserving log-harmonic mappings in E with respect to $a \in B_{0}$. These mappings are in the form

$$
\begin{aligned}
& f(z)=h(z) \overline{g(z)} \\
& h(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n} \\
& g(z)=1+\sum_{n=1}^{\infty} b_{n} z^{n} .
\end{aligned}
$$

The set of all function $f \in S_{L H}$ with $f_{\bar{z}}(0)=0$ is denoted by $S_{\underline{L H}}^{0}$.
In view of the definition $a(z)$ for the function $f(z)=h(z) \overline{g(z)}$, we observe that the second dilation $a(z)$ is

$$
\begin{aligned}
a(z) & =\frac{\bar{f}_{\bar{z}}(z) \cdot f(z)}{f_{z}(z) \cdot \bar{f}(z)} \\
& =\frac{g^{\prime}(z) \bar{h}(z) h(z) \bar{g}(z)}{h^{\prime}(z) \bar{g}(z) g(z) \bar{h}(z)} \\
& =\frac{g^{\prime}(z) h(z)}{h^{\prime}(z) g(z)}
\end{aligned}
$$

If $f(z)=h(z) \overline{g(z)}$ be univalent and satisfies the condition

$$
\left|\frac{g^{\prime}(z) h(z)}{h^{\prime}(z) g(z)}\right| \leq k<1, \quad(z \in E)
$$

we call it a log-harmonic K-quasi conformal mapping on E, where $K=$ $\frac{k+1}{1-k}$.

Let $S_{L H}(k)$ be the subclass of $S_{L H}^{0}$ consisting of log-harmonic K-quasi conformal mappings. We refer the reader for more information about log-harmonic mappings to $[3,6,10]$.

Let $\Omega \subset \mathbb{C}$ be a domain. Then Ω is called a convex set in the direction $\gamma \in[0, \pi]$, if the set $\Omega \cap\left\{a+t e^{i \gamma}: t \in \mathbb{C}\right\}$ is either connected or empty, for all $a \in \mathbb{C}$. Particularly, a domain such Ω is convex in the direction of real (imaginary) axis if every line parallel to the real (imaginary) axis has either an empty intersection or a connected intersection with the domain. A function is called a convex function in the direction γ if it maps E univalently on to a convex domain in the direction γ.

For, $k \in(0,1], \gamma \in[0, \pi]$ and $\nu \in \mathcal{H}(E)$, consider the following subclass $S_{L H}(k, \gamma, \nu)$ of $S_{L H}$ defined by

$$
\begin{aligned}
& S_{L H}(k, \gamma, \nu) \\
& \quad:=\left\{f(z)=h(z) \overline{g(z)} \in S_{L H}(k): \log h(z)-e^{2 i \gamma} \log g(z)=\nu(z)\right\}
\end{aligned}
$$

For simplicity, we write

$$
S_{L H}(k, 0, \nu):=S_{L H}^{-}(k, \nu), \quad S_{L H}\left(k, \frac{\pi}{2}, \nu\right):=S_{L H}^{+}(k, \nu)
$$

Recently the authors in [9-11], have been discussed on the linear combination of harmonic functions and in the $[3,4]$ the authors are considered the same problem for log-harmonic function. In this research, we define a new subclass of log-harmonic functions and discuss on the basic properties of the convex-exponent product of the elements of that class.

In Section 2 we discuss on the second dilation function of convexexponent product of log-harmonic function and then prove that the convex-exponent product of elements of the class $S_{L H}(k, \gamma, \varphi)$ are belonging to this class and then by taking different functions of φ we solve this problem. Also, in Section 3, we consider other type of convexexponent product of log-harmonic functions.

For achieving to our goals, we recall the following lemmas.
Lemma 1.1 ([5]). A sense-preserving harmonic function $f=h+\bar{g}$ in E is a univalent mapping of E on to a domain convex in the direction γ with $0 \leq \gamma<\pi$ if and only if $e^{-i \gamma} h-e^{i \gamma} g$ is an analytic univalent mapping of E on to a domain convex in the direction real axis.

Lemma $1.2([7])$. Assume that f be a holomorphic function in E with $f(0)=0$ and $f^{\prime}(0) \neq 0$ and let for all, $(\theta \in \mathbb{R})$

$$
\begin{equation*}
k(z)=\frac{z}{\left(1+z e^{i \theta}\right)\left(1+z e^{-i \theta}\right)} \tag{1.2}
\end{equation*}
$$

If

$$
\Re\left(\frac{z f^{\prime}(z)}{k(z)}\right)>0, \quad(z \in E)
$$

then f is convex in the direction of the real axis.
Lemma 1.3 ([8]). Let $\varphi(z)$ be a non-constant function analytic in E. The function $\varphi(z)$ maps E univalently on to a domain convex in the direction of imaginary axis, if and only if there are numbers ν and μ, $0 \leq \nu<2 \pi$ and $0 \leq \mu<2 \pi$ such that

$$
\Re\left(-i e^{i \mu}\left(1-2 z e^{i \mu} \cos \nu+z^{2} e^{-2 i \mu}\right) \varphi^{\prime}(z)\right) \geq 0, \quad \text { for } z \in E
$$

2. Convex-Exponent Product of Log-Harmonic Mappings

Lemma 2.1. If $f_{j} \in S_{L H}(k, \gamma, \varphi)$ with $(j=1,2)$, then the dilation $a_{3}(z)$ of product $f_{3}(w)=f_{1}^{t}(w) f_{2}^{1-t}(w)$ with $(0 \leq t \leq 1)$ satisfies

$$
\begin{aligned}
\left|a_{3}(w)\right| & =\left|\frac{t \frac{g_{1}^{\prime}(w)}{g_{1}(w)}+(1-t) \frac{g_{2}^{\prime}(w)}{g_{2}(w)}}{t \frac{h_{1}^{\prime}(w)}{h_{1}(w)}+(1-t) \frac{h_{2}^{\prime}(w)}{h_{2}(w)}}\right| \\
& \leq k \\
& <1
\end{aligned}
$$

Proof. By definition of the class $S_{L H}(k, \gamma, \varphi)$, we have $\varphi(w)=\log \frac{h(w)}{g(w)^{2 i \gamma}}$, for any $f=h \bar{g} \in S_{L H}(k, \gamma, \varphi)$. So by letting $f_{j}=h_{j} \overline{g_{j}}$ and $\varphi_{j}(w)=$ $\log h_{j}(w)-e^{2 i \gamma} \log g_{j}(w)$, for $j=1,2$

$$
\varphi_{j}^{\prime}(w)=\frac{h_{j}^{\prime}(w)}{h_{j}(w)}-e^{2 i \gamma} \frac{g_{j}^{\prime}(w)}{g_{j}(w)}
$$

Also we will take the second dilations of the functions f_{j} with $a_{j}(j=$ $1,2)$. By elementary calculations and taking partial differentiating of them we obtain

$$
\left(f_{j}\right)_{\bar{z}}(w)=h_{j}(w) \overline{g_{j}^{\prime}(w)}, \quad\left(f_{j}\right)_{z}(w)=h_{j}^{\prime}(w) \overline{g_{j}(w)}
$$

and so in view of definition of a_{j} we have

$$
\frac{\bar{h}_{j}(w) g_{j}^{\prime}(w)}{\bar{h}_{j}(w) g_{j}(w)}=a_{j} \frac{h_{j}^{\prime}(w) \bar{g}_{j}(w)}{h_{j}(w) \bar{g}_{j}(w)}
$$

or

$$
\frac{g_{j}^{\prime}(w)}{g_{j}(w)}=a_{j} \frac{h_{j}^{\prime}(w)}{h_{j}(w)}
$$

Also,

$$
\begin{aligned}
\varphi_{j}^{\prime}(w) & =\frac{h_{j}^{\prime}(w)}{h_{j}(w)}-e^{2 i \gamma} a_{j} \frac{h_{j}^{\prime}(w)}{h_{j}(w)} \\
& =\frac{h_{j}^{\prime}(w)}{h_{j}(w)}\left(1-e^{2 i \gamma} a_{j}\right)
\end{aligned}
$$

or

$$
\frac{h_{j}^{\prime}(w)}{h_{j}(w)}=\frac{\varphi_{j}^{\prime}(w)}{\left(1-e^{2 i \gamma} a_{j}\right)}, \quad(j=1,2)
$$

By calculation $\left(f_{3}\right)_{z}$ and $\left(f_{3}\right)_{\bar{z}}$ and substituting them in the definition of second dilation of f_{3} namely a_{3} we have

$$
\begin{aligned}
a_{3}(w) & =\frac{\left(\overline{f_{3}}\right)_{\bar{z}}(w) \cdot f_{3}(w)}{\overline{f_{3}}(w)\left(f_{3}\right)_{z}(w)} \\
& =\frac{t \frac{g_{1}^{\prime}(w)}{g_{1}(w)}+(1-t) \frac{g_{2}^{\prime}(w)}{g_{2}(w)}}{t \frac{h}{1}_{\prime}^{h_{1}(w)}+(1-t)}{ }_{h_{2}^{\prime}(w)}^{h_{2}(w)} \\
& =\frac{t \frac{a_{1}\left(\varphi^{\prime}(w)\right.}{\left(1-e^{2 i \gamma} a_{1}\right)}+(1-t) \frac{a_{2} \varphi^{\prime}(w)}{\left(1-e^{2 i \gamma} a_{2}\right)}}{t \frac{\varphi^{\prime}(w)}{\left(1-e^{2 i \gamma} a_{1}\right)}+(1-t) \frac{\varphi^{\prime}(w)}{\left(1-e^{2 i \gamma} a_{2}\right)}} \\
& =\frac{t \frac{a_{1}}{\left(1-e^{2 i \gamma} a_{1}\right)}+(1-t) \frac{a_{2}}{\left(1-e^{2 i \gamma} a_{2}\right)}}{t \frac{1}{\left(1-e^{2 i \gamma} a_{1}\right)}+(1-t) \frac{1}{\left(1-e^{2 i \gamma} a_{2}\right)}} .
\end{aligned}
$$

But $\left|a_{3}\right| \leq k$ yields if

$$
k^{2}\left|\frac{t}{\left(1-e^{2 i \gamma} a_{1}\right)}+\frac{1-t}{\left(1-e^{2 i \gamma} a_{1}\right)}\right|^{2}-\left|\frac{t a_{1}}{\left(1-e^{2 i \gamma} a_{1}\right)}+\frac{(1-t) a_{2}}{\left(1-e^{2 i \gamma} a_{2}\right)}\right|^{2} \geq 0
$$

Let $a_{j}=\rho_{j} e^{i \theta_{j}},\left(0 \leq \rho_{j}<1, \theta_{j} \in \mathbb{R} ; j=i, 2\right)$ and

$$
\phi:=\frac{2 t(1-t)}{\left|1-e^{2 i \gamma} a_{1}\right|^{2}\left|1-e^{2 i \gamma} a_{2}\right|^{2}} \geq 0
$$

then we have

$$
\begin{aligned}
& k^{2}\left|\frac{u}{\left(1-e^{2 i \gamma} a_{1}\right)}+\frac{1-u}{\left(1-e^{2 i \gamma} a_{1}\right)}\right|^{2}-\left|\frac{u a_{1}}{\left(1-e^{2 i \gamma} a_{1}\right)}+\frac{(1-u) a_{2}}{\left(1-e^{2 i \gamma} a_{2}\right)}\right|^{2} \\
& =\frac{u^{2}\left(k^{2}-\left|a_{1}\right|^{2}\right)}{\left|1-e^{2 i \gamma} a_{1}\right|^{2}}+\frac{(1-u)^{2}\left(k^{2}-\left|a_{2}\right|^{2}\right)}{\left|1-e^{2 i \gamma} a_{2}\right|^{2}} \\
& \quad+2 u(1-u) \Re\left(\frac{k^{2}-a_{1} \bar{a}_{2}}{\left(1-e^{2 i \gamma} a_{1}\right)\left(1-e^{-2 i \gamma} \bar{a}_{2}\right)}\right) \\
& \quad \geq \frac{2 u(1-u)}{\left|\left(1-e^{2 i \gamma} a_{1}\right)\right|^{2}\left|\left(1-e^{2 i \gamma} a_{2}\right)\right|^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \times \Re\left(\left(k^{2}-a_{1} \bar{a}_{2}\right)\left(1-e^{-2 i \gamma} \bar{a}_{1}\right)\left(1-e^{-2 i \gamma} a_{2}\right)\right) \\
= & \phi\left(\left(k^{2}-\rho_{1}^{2} \rho_{2}^{2}\right)+\rho_{1}\left(\rho_{2}^{2}-k^{2}\right) \cos \left(2 \gamma+\theta_{1}\right)\right. \\
& \left.+\rho_{2}\left(\rho_{1}^{2}-k^{2}\right) \cos \left(2 \gamma+\theta_{2}\right)+\rho_{1} \rho_{2}\left(k^{2}-1\right) \cos \left(\theta_{2}-\theta_{1}\right)\right) \\
\geq & \phi\left(\left(k^{2}-\rho_{1}^{2} \rho_{2}^{2}\right)-\rho_{1}\left(k^{2}-\rho_{2}^{2}\right)-\rho_{2}\left(k^{2}-\rho_{1}^{2}\right)-\rho_{1} \rho_{2}\left(1-k^{2}\right)\right) \\
= & \phi\left(k^{2}-\rho_{1} \rho_{2}\right)\left(1-\rho_{1}\right)\left(1-\rho_{2}\right) \\
\geq & 0
\end{aligned}
$$

Thus the proof is completed.
Corollary 2.2. Let $f_{\mu}=h_{\mu} \bar{g}_{\mu} \in S_{L H}(k, \gamma, \varphi),(\mu=1,2, \ldots, n)$ be a log-harmonic univalent mapping in E. Then, dilation of the product of $F=f_{1}^{t_{1}} f_{2}^{t_{2}} \ldots f_{n}^{t_{n}}$ satisfies

$$
\begin{aligned}
|a| & =\left|\frac{t_{1} \frac{g_{1}^{\prime}}{g_{1}}+t_{2} \frac{g_{2}^{\prime}}{g_{2}}+\cdots+t_{n} \frac{g_{n}^{\prime}}{g_{n}}}{t_{1} \frac{h_{1}^{\prime}}{h_{1}}+t_{2} \frac{h_{2}^{\prime}}{h_{2}}+\cdots+t_{n} \frac{h_{n}^{\prime}}{h_{n}}}\right| \\
& \leq k \\
& <1
\end{aligned}
$$

where $0 \leq t_{\mu} \leq 1(\mu=1,2, \ldots, n)$, and $t_{1}+t_{2}+\cdots+t_{n}=1$.
Theorem 2.3. Let $f_{\mu}(w)=h_{\mu}(w) \bar{g}_{\mu}(w), \mu=1,2$. Then

$$
f(w)=f_{1}^{t}(w) f_{2}^{1-t}(w) \in S_{L H}(k, \gamma, \varphi), \quad(0 \leq t \leq 1)
$$

Proof. By considering Lemma 2.1, we know that the dilation of f satisfies

$$
|a|=\left|\frac{u \frac{g_{1}^{\prime}(w)}{g_{1}(w)}+(1-u) \frac{g_{2}^{\prime}(w)}{g_{2}(w)}}{u \frac{h_{1}^{\prime}(w)}{h_{1}(w)}+(1-u) \frac{h_{2}^{\prime}(w)}{h_{2}(w)}}\right| \leq k<1
$$

and

$$
\begin{aligned}
\log & h_{j}(w)-e^{2 i \gamma} \log g_{j}(w) \\
= & \log \left(h_{1}^{u}(w) h_{2}^{1-u}(w)\right)-e^{2 i \gamma} \log \left(g_{1}^{u}(w) g_{2}^{1-u}(w)\right) \\
= & \left(u \log h_{1}(w)+(1-u) \log h_{2}(w)\right) \\
& -e^{2 i \gamma}\left(u \log g_{1}(w)+(1-u) \log g_{2}(w)\right) \\
= & u\left(\log h_{1}(w)-e^{2 i \gamma} \log g_{1}(w)\right)+(1-u)\left(\log h_{2}(w)-e^{2 i \gamma} \log g_{2}(w)\right) \\
= & u \varphi+(1-u) \varphi \\
= & \varphi
\end{aligned}
$$

Thus, $f(w)=f_{1}^{u}(w) f_{2}^{1-u}(w) \in S_{L H}(k, \gamma, \varphi)$.

Corollary 2.4. Let $f_{j}(z)=h_{j}(z) \bar{g}_{j}(z), j=1,2, \ldots n$. Then

$$
f(z)=f_{1}^{t_{1}}(z) f_{2}^{t_{2}}(z) \ldots f_{n}^{t_{n}}(z) \in S_{L H}(k, \gamma, \varphi), \quad\left(0 \leq t \leq 1, \sum_{j=i}^{n} t_{j}=1\right)
$$

Corollary 2.5. Let $k_{j}(z)=h_{j}(z) \bar{g}_{j}(z) \in S_{L H}(k, \gamma, \zeta),(j=1,2)$ with

$$
\zeta(z)=\int_{0}^{z} \frac{e^{i \gamma} d \rho}{\left(1+\rho e^{i \theta}\right)\left(1+\rho e^{-i \theta}\right)}, \quad(\theta \in \mathbb{R})
$$

then for $(0 \leq u \leq 1), f(w)=k_{1}^{u}(w) k_{2}^{1-u}(w):=h(w) \bar{g}(w) \in S_{L H}(k, \gamma, \zeta)$, and the function $\log f$ is convex in the position γ.

Proof. Let $k(w)$ be the function defined by (1.2). Now

$$
\begin{aligned}
& \Re\left(\frac{w e^{-i \gamma}\left(\frac{h^{\prime}(w)}{h(w)}-e^{2 i \gamma} \frac{g^{\prime}(w)}{g(w)}\right)}{k(w)}\right) \\
& \quad=\Re\left(\frac{w e^{-i \gamma}}{k(w)}\left[u \frac{h_{1}^{\prime}(w)}{h_{1}(w)}+(1-u) \frac{h_{2}^{\prime}(w)}{h_{2}(w)}\right]\right) \\
& \\
& \quad-\Re\left(\frac{w e^{-i \gamma}}{k(w)}\left[e^{2 i \gamma}\left(u \frac{g_{1}^{\prime}(w)}{g_{1}(w)}-(1-u) \frac{g_{2}^{\prime}(w)}{g_{2}(w)}\right)\right]\right) \\
& \quad=u . \Re\left(\frac{w e^{-i \gamma} \varphi^{\prime}(w)}{k(w)}\right)+(1-u) . \Re\left(\frac{w e^{-i \gamma} \varphi^{\prime}(w)}{k(w)}\right) \\
& \quad=u+(1-u) \\
& \quad=1 \\
& \quad>0
\end{aligned}
$$

and so by using Lemma 1.2 we deduce $e^{-i \gamma}\left(\log h-e^{2 i \gamma} \log g\right)$ is convex in the position of the real axis, and by Lemma 1.1 the function $\log f$ is convex in the position γ. On the other hand, according to the Theorem 2.3 we know $f(w)=k_{1}^{u}(w) k_{2}^{1-u}(w) \in S_{L H}(k, \gamma, \zeta)$ and the proof is complete.

Corollary 2.6. Suppose that $\alpha \in[-1,1], \theta \in(0, \pi)$ and $a, b \geq 0, a+b \neq$ 0. Let $f_{j}(w)=h_{j}(w) g_{j}(w) \in S_{L H}^{+}(k, \delta),(j=1,2)$, where

$$
\delta(w)=a \frac{w(1-\alpha w)}{1-w^{2}}+b \frac{1}{2 i \sin \theta} \log \left(\frac{1+w e^{i \theta}}{1+w e^{-i \theta}}\right)
$$

then $f(w)=f_{1}^{t}(w) f_{2}^{1-t}(w) \in S_{L H}^{+}(k, \delta),(0 \leq t \leq 1)$, and $\log f$ is convex in the position of the imaginary axis.

Proof. If we take

$$
\delta(w)=a \frac{w(1-\alpha w)}{1-w^{2}}+b \frac{1}{2 i \sin \theta} \log \left(\frac{1+w e^{i \theta}}{1+w e^{-i \theta}}\right)
$$

then it is proved in [10] that δ is convex in the position of the imaginary axis and so $\log f$ is convex in the position of the imaginary axis. Also by using Theorem 2.3 we have $f(w)=f_{1}^{t}(w) f_{2}^{1-t}(w) \in S_{L H}^{+}(k, \delta),(0 \leq$ $t \leq 1$) and the proof is complete.

Corollary 2.7. Suppose that $c \in[-2,2], \theta \in(0, \pi)$ and $a, b \geq 0, a+b \neq$ 0 . Let $f_{j}(w)=h_{j}(w) g_{j}(w) \in S_{L H}^{-}(k, \eta),(j=1,2)$, where

$$
\begin{equation*}
\eta(w)=a \log \left(\frac{1+w}{1-w}\right)+b\left(\frac{w}{1+c w+w^{2}}\right) \tag{2.1}
\end{equation*}
$$

then $f_{j}(w)=k_{1}^{u}(w) k_{2}^{1-u}(w) \in S_{L H}^{-}(k, \eta),(0 \leq u \leq 1)$ and $\log f$ is convex in the position of the real axis.
Proof. It has showed in [10] the function defined by (2.1) is convex in the position of the real axis and so $\log f$ is convex in the position of the real axis. Also by using Theorem 2.3 we have $f(w)=k_{1}^{u}(w) f_{2}^{1-u}(w) \in$ $S_{L H}^{-}(k, \eta),(0 \leq u \leq 1)$ and the proof is complete.

Theorem 2.8. Let $f_{1}(z)=h_{1}(z) \bar{g}_{1}(z) \in S_{L H}(k, \gamma, \psi)$ and $f_{2}(z)=$ $h_{2}(z) \bar{g}_{2}(z) \in S_{L H}(k, \gamma, \psi)$. Suppose that

$$
\Re\left(k^{2} \frac{h_{1}^{\prime} \bar{h}_{2}^{\prime}}{h_{1} \bar{h}_{2}}-\frac{g_{1}^{\prime} \bar{g}_{2}^{\prime}}{g_{1} \bar{g}_{2}}\right) \geq 0
$$

and $u \varphi+(1-u) \psi$ is convex in the direction γ.
Then $f(w)=f_{1}^{u}(w) f_{2}^{1-u}(w) \in S_{L H}(k),(0 \leq u \leq 1)$ and $\log f$ is convex in the direction γ.

Proof. By considering a as second dilation of f and a_{1}, a_{2} second dilations of f_{1} and f_{2}, respectively, we have

$$
\begin{aligned}
|a| & =\left|\frac{u \frac{g_{1}^{\prime}(w)}{g_{1}(w)}+(1-u) \frac{g_{2}^{\prime}(w)}{g_{2}(w)}}{u \frac{h_{1}^{\prime}(w)}{h_{1}(w)}+(1-u) \frac{h_{2}^{\prime}(w)}{h_{2}(w)}}\right| \\
& =\left|\frac{u a_{1} \frac{h_{1}^{\prime}(w)}{h_{1}(w)}+(1-u) a_{2} \frac{h_{2}^{\prime}(w)}{h_{2}(w)}}{u \frac{h_{1}^{\prime}(w)}{h_{1}(w)}+(1-u) \frac{h_{2}^{\prime}(w)}{h_{2}(w)}}\right| .
\end{aligned}
$$

Now for proving $|a| \leq k$ it is sufficient to show that

$$
k^{2}\left|u \frac{h_{1}^{\prime}(w)}{h_{1}(w)}+(1-u) \frac{h_{2}^{\prime}(w)}{h_{2}(w)}\right|^{2}-\left|u a_{1} \frac{h_{1}^{\prime}(w)}{h_{1}(w)}+(1-u) a_{2} \frac{h_{2}^{\prime}(w)}{h_{2}(w)}\right|^{2} \geq 0
$$

But by assumption, it follows that

$$
\begin{aligned}
& k^{2}\left|u \frac{h_{1}^{\prime}(w)}{h_{1}(w)}+(1-u) \frac{h_{2}^{\prime}(w)}{h_{2}(w)}\right|^{2}-\left|u a_{1} \frac{h_{1}^{\prime}(w)}{h_{1}(w)}+(1-u) a_{2} \frac{h_{2}^{\prime}(w)}{h_{2}(w)}\right|^{2} \\
&= k^{2}\left(u \frac{h_{1}^{\prime}(w)}{h_{1}(w)}+(1-u) \frac{h_{2}^{\prime}(w)}{h_{2}(w)}\right)\left(u \bar{h}_{\overline{h_{1}}(w)}^{\overline{h_{1}}(w)}+(1-u) \frac{\bar{h}_{2}^{\prime}(w)}{\overline{h_{2}}(w)}\right) \\
&-\left(u a_{1} \frac{h_{1}^{\prime}(w)}{h_{1}(w)}+(1-u) a_{2} \frac{h_{2}^{\prime}(w)}{h_{2}(w)}\right)\left(u a_{1} \frac{\bar{h}_{1}^{\prime}(w)}{\overline{h_{1}(w)}+(1-u) a_{2}}{\overline{h_{2}^{\prime}}(w)}_{\bar{h}_{2}(w)}^{\prime}\right) \\
&= u^{2}\left|\frac{h_{1}^{\prime}(w)}{h_{1}(w)}\right|^{2}\left(k^{2}-\left|a_{1}\right|^{2}\right)+(1-u)^{2}\left|\frac{h_{2}^{\prime}(w)}{h_{2}(w)}\right|^{2}\left(k^{2}-\left|a_{2}\right|^{2}\right) \\
&+2 u(1-u) \Re\left(k^{2}-a_{1} \bar{a}_{2}\right) \frac{h_{1}^{\prime}(w)}{h_{1}(w)} \bar{h}_{2}^{\prime}(w) \\
&\left.\overline{h_{2}(w)}\right) \\
& \geq 2 u(1-u) \Re\left(k^{2} \frac{h_{1}^{\prime}(w)}{h_{1}(w)} \frac{\bar{h}_{2}^{\prime}(w)}{\bar{h}_{2}(w)}-\frac{g_{1}^{\prime}(w)}{g_{1}(w)} \frac{\bar{g}_{2}^{\prime}(w)}{\bar{g}_{2}(w)}\right) \\
& \geq 0,
\end{aligned}
$$

so $|a| \leq k<1$. Since

$$
\log h_{1}(w)-e^{2 i \gamma} \log g_{1}(w)=\varphi(w)
$$

and

$$
\log h_{2}(w)-e^{2 i \gamma} \log g_{2}(w)=\psi(w)
$$

we have

$$
\begin{aligned}
& \log h(w)-e^{2 i \gamma} \log g(w) \\
&= \log \left(h_{1}^{u}(w) h_{2}^{1-u}(w)\right)-e^{2 i \gamma} \log \left(g_{1}^{u}(w) g_{2}^{1-u}(w)\right) \\
&= u \log h_{1}(w)+(1-u) \log h_{2}(w) \\
&-e^{2 i \gamma}\left(u \log g_{1}(w)+(1-u) \log g_{2}(w)\right) \\
&= u \log h_{1}(w)-e^{2 i \gamma} \log g_{1}(w)+(1-u)\left(\log h_{2}(w)-e^{2 i \gamma} \log g_{2}(w)\right) \\
&= u \varphi+(1-u) \psi
\end{aligned}
$$

which is convex in the position γ by the assumption. Thus, $f(w)=$ $f_{1}^{u}(w) f_{2}^{1-u}(w) \in S_{L H}(k),(0 \leq u \leq 1)$ and $\log f$ convex in the position γ.

Theorem 2.9. Let $k_{1}(w)=h_{1}(w) \bar{g}_{1}(w) \in S_{L H}(k, \gamma, \vartheta)$ and $k_{2}(w)=$ $h_{2}(w) \bar{g}_{2}(w) \in S_{L H}\left(k, \gamma+\frac{\pi}{2}, \vartheta\right)$ where

$$
\vartheta(w)=\int_{0}^{w} \frac{e^{i \gamma} d \xi}{\left(1+\xi e^{i \theta}\right)\left(1+\xi e^{-i \theta}\right)}, \quad(\theta \in \mathbb{R}) .
$$

Suppose that

$$
\Re\left(k^{2} \frac{h_{1}^{\prime} \bar{h}_{2}^{\prime}}{h_{1} \bar{h}_{2}}-\frac{g_{1}^{\prime} \bar{g}_{2}^{\prime}}{g_{1} \bar{g}_{2}}\right) \geq 0,
$$

then $f(w)=k_{1}^{u}(w) k_{2}^{1-u}(w) \in S_{L H}(k),(0 \leq u \leq 1)$, and $\log f$ is convex in the direction γ.
Proof. By using similar argument in Theorem 2.8, the dilation $a(z)$ of $f(w)=k_{1}^{u}(w) k_{2}^{1-u}(z)$ satisfies $|a| \leq k<1$. Now we show that $\log f$ is convex in the direction γ. First we note that

$$
\begin{aligned}
\frac{h_{2}^{\prime}(w)}{h_{2}(w)}-e^{2 i \gamma} \frac{g_{2}^{\prime}(w)}{g_{2}(w)} & =\left(\frac{h_{2}^{\prime}(w)}{h_{2}(w)}+e^{2 i \gamma} \frac{g_{2}^{\prime}(w)}{g_{2}(w)}\right)\left(\frac{\frac{h_{2}^{\prime}(w)}{h_{2}(w)}-e^{2 i \gamma} \frac{g_{2}^{\prime}(w)}{g_{2}(w)}}{\frac{h_{2}^{\prime}(w)}{h_{2}(w)}+e^{2 i \gamma} \frac{y_{2}^{\prime}(w)}{g_{2}(w)}}\right) \\
& =\vartheta^{\prime}(w)\left(\frac{1-e^{2 i \gamma} a_{2}}{1+e^{2 i \gamma} a_{2}}\right) \\
& =\vartheta^{\prime}(w) p(w),
\end{aligned}
$$

where

$$
p(w)=\left(\frac{1-e^{2 i \gamma} a_{2}}{1+e^{2 i \gamma} a_{2}}\right) .
$$

But it is obvious that $\Re(p(w))>\cap$ For the convexity of $\log f$ in the direction of γ we will use Lemma 1.2. Now

$$
\begin{aligned}
& \Re\left(\frac{w e^{-i \gamma}\left(\frac{h^{\prime}(w)}{h(w)}-e^{2 i \gamma} \frac{g^{\prime}(w)}{g(w)}\right)}{k(w)}\right) \\
& \quad=\Re\left(\frac{w e^{-i \gamma}}{k(w)}\left[u \frac{h_{1}^{\prime}(w)}{h_{1}(w)}+(1-u) \frac{h_{2}^{\prime}(w)}{h_{2}(w)}-e^{2 i \gamma}\left(u \frac{g_{1}^{\prime}(w)}{g_{1}(w)}+(1-w) \frac{g_{2}^{\prime}(w)}{g_{2}(w)}\right)\right]\right) \\
& \quad=u \Re\left(\frac{w e^{-i \gamma} \varphi^{\prime}(w)}{k(w)}\right)+(1-u) \Re\left(\frac{w e^{-i \gamma} \vartheta^{\prime}(w) p(w)}{k(w)}\right) \\
& \quad=u+(1-u \Re(p(w)) \\
& \quad>0 .
\end{aligned}
$$

So $e^{-i \gamma}\left(\log h-e^{2 i \gamma} \log g\right)$ is convex in the position of real axis, and hence the function $\left(\log h-e^{2 i \gamma} \log g\right)$ is convex in the position γ or $\log f$ is convex in the position γ. This completes the proof.

Theorem 2.10. Let $f_{1}(z)=h_{1}(z) \bar{g}_{1}(z) \in S_{L H}^{-}(k, \varphi)$ and $f_{2}(z)=$ $h_{2}(z) \bar{g}_{2}(z) \in S_{L H}^{-}(k, \varphi)$ where

$$
\varphi(z)=\frac{1}{2} \log \frac{1+z}{1-z}, \quad(z \in E)
$$

then $f(z)=f_{1}^{u}(z) f_{2}^{1-u}(z) \in S_{L H}^{-}(k, \varphi),(0 \leq u \leq 1)$ and $\log f$ is convex.

Proof. By considering Theorem 2.8, we know that

$$
f(w)=f_{1}^{u}(w) f_{2}^{1-u}(w) \in S_{L H}^{-}(k, \varphi),
$$

where $(0 \leq t \leq 1)$. On the other hand by Lemma 1.1 the convexity of $\log f$ is equivalent that analytic functions ($\log h-e^{2 i \theta} \log g$) are univalent and convex in the direction θ, for all $(0 \leq \theta<\pi)$.

Hence it is sufficient to show that the functions $F_{\theta}=i e^{-i \theta}(\log h-$ $e^{2 i \theta} \log g$) are convex in the direction of the imaginary axis and are univalent. But

$$
\begin{aligned}
& (\log h(w))^{\prime}-(\log g(w))^{\prime} \\
& \quad=\log \left(h_{1}^{u}(w) h_{2}^{1-u}(w)\right)^{\prime}-\log \left(g_{1}^{u}(w) g_{2}^{1-u}(w)\right)^{\prime} \\
& \quad=\left(u \log h_{1}(w)+(1-u) \log h_{2}(w)-u \log g_{1}(w)-(1-u) \log g_{2}(w)\right)^{\prime} \\
& \quad=u \frac{h_{1}^{\prime}(w)}{h_{1}(w)}+(1-w) \frac{h_{2}^{\prime}(w)}{h_{2}(w)}-u \frac{g_{1}^{\prime}(w)}{g_{1}(w)}-(1-u) \frac{g_{2}^{\prime}(w)}{g_{2}(w)} \\
& \quad=u\left(\frac{h_{1}^{\prime}(w)}{h_{1}(w)}-\frac{g_{1}^{\prime}(w)}{g_{1}(w)}\right)+(1-u)\left(\frac{h_{2}^{\prime}(w)}{h_{2}(w)}-\frac{g_{2}^{\prime}(w)}{g_{2}(w)}\right) \\
& \quad=\frac{1}{1-w^{2}} .
\end{aligned}
$$

From Lemma 1.3, by taking $\mu=\nu=\frac{\pi}{2}$ we have

$$
\begin{aligned}
& \Re\left(-i e^{i \frac{\pi}{2}}\left(1-2 w e^{i \frac{\pi}{2}} \cos \frac{\pi}{2}+w^{2} e^{-2 i \frac{\pi}{2}}\right) F_{\theta}^{\prime}(w)\right) \\
&=\Re\left(\left(1-z^{2}\right) F_{\theta}^{\prime}(w)\right) \\
&=-\Im\left(\left(1-w^{2}\right) e^{-i \theta}\left[\frac{h^{\prime}(w)}{h(w)}-e^{2 i \theta} \frac{g^{\prime}(w)}{g(w)}\right]\right) \\
&=-\Im\left(\left(1-w^{2}\right)\left[e^{-i \theta} \frac{h^{\prime}(w)}{h(w)}-e^{i \theta} \frac{g^{\prime}(w)}{g(w)}\right]\right) \\
&=-\Im\left(1-w^{2}\right)\left((\cos \theta-i \sin \theta) \frac{h^{\prime}(w)}{h(w)}-(\cos \theta+i \sin \theta) \frac{g^{\prime}(w)}{g(w)}\right) \\
&=-\Im\left(1-w^{2}\right)\left(\cos \theta\left(\frac{h^{\prime}(w)}{h(w)}-\frac{g^{\prime}(w)}{g(w)}\right)-i \sin \theta\left(\frac{h^{\prime}(w)}{h(w)}+\frac{g^{\prime}(w)}{g(w)}\right)\right) \\
& \quad=-\Im\left(\frac{1}{\left.\frac{h^{\prime}(w)}{h(w)}-\frac{g^{\prime}(w)}{g(w)}\right)}\right. \\
& \quad \times\left(\cos \theta\left(\frac{h^{\prime}(w)}{h(w)}-\frac{g^{\prime}(w)}{g(w)}\right)-i \sin \theta\left(\frac{h^{\prime}(w)}{h(w)}+\frac{g^{\prime}(w)}{g(w)}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-\Im\left(\cos \theta-i \sin \theta \frac{\frac{h^{\prime}(w)}{h(w)}+\frac{g^{\prime}(w)}{g(w)}}{\frac{h^{\prime}(w)}{h(w)}-\frac{g^{\prime}(w)}{g(w)}}\right) \\
& =\Re \sin \theta p(w),
\end{aligned}
$$

where

$$
p(w)=\frac{\frac{h^{\prime}(w)}{h(w)}+\frac{g^{\prime}(w)}{g(w)}}{\frac{h^{\prime}(w)}{h(w)}-\frac{g^{\prime}(w)}{g(w)}},
$$

It is obvious that $\Re(p(w))>0$ and we conclude the F_{θ} is convex in the position of the imaginary axis and is univalent.
Corollary 2.11. Let $f_{\rho}(w)=h_{\rho}(w) \bar{g}_{\rho}(w) \in S_{L H}^{-}(k, \chi),(\rho=1,2, \ldots, n)$ where

$$
\chi(w)=\frac{1}{2} \log \frac{1+w}{1-w}, \quad(w \in E)
$$

then $F=f_{1}^{c_{1}} f_{2}^{c_{2}} \cdots f_{n}^{c_{n}} \in S_{L H}^{-}(k, \chi),\left(0 \leq c_{i}, \sum_{1}^{n} c_{i}=1\right)$ and $\log f$ is convex.

By proceeding the same as the proof of Theorem 2.10 we obtain the following result.
Theorem 2.12. Let $k_{\rho}(w)=h_{\rho}(w) \bar{g}_{\rho}(w) \in S_{L H}^{+}(k, v),(\rho=1,2)$ where

$$
v(w)=\frac{1}{2} \log \frac{1+w}{1-w}, \quad(w \in E)
$$

then $f(w)=k_{1}^{u}(w) k_{2}^{1-u}(w) \in S_{L H}^{+}(k, v),(0 \leq u \leq 1)$ and $\log f$ is convex.

Corollary 2.13. Let $k_{\rho}(w)=h_{\rho}(w) \bar{g}_{\rho}(w) \in S_{L H}^{+}(k, \kappa),(\rho=1,2, \ldots, n)$ where

$$
\kappa(w)=\frac{w}{1-w}, \quad(w \in E)
$$

then $F(w)=k_{1}^{c_{1}}(w) k_{2}^{c_{2}}(w) \cdots k_{n}^{c_{n}} \in S_{L H}^{+}(k, \kappa),\left(0 \leq c_{i}, \sum_{1}^{n} c_{i}=1\right)$ and $\log F$ is convex.

3. Exponent Product

Theorem 3.1. Let $\left(\beta>-\frac{1}{2}\right)$ and ϱ be analytic convex function in the position of real axis. If $k(w) \in S_{L H}^{-}(1, \varrho)$ then $K(w)=k(w)|k(w)|^{2 \beta} \in$ $S_{L H}^{-}(1, \varrho)$ and $\log K$ is convex in position of real axis.
Proof. Let $k(w)=h(w) \overline{g(w)}$, then

$$
\begin{aligned}
K(w) & =k(w)|k(w)|^{2 \beta} \\
& =k(w) f^{\beta}(w) \bar{k}^{\beta}(w) \\
& =(h(w) \bar{g}(w))^{1+\beta}(\bar{h}(w) g(w))^{\beta}
\end{aligned}
$$

$$
=M(w) \bar{N}(w)
$$

where

$$
\begin{equation*}
M(w)=h^{1+\beta}(w) g^{\beta}(w), \quad N(w)=h^{\beta}(w) g^{1+\beta}(w) \tag{3.1}
\end{equation*}
$$

Also let $k(w)=h(w) \overline{g(w)}$ and \hat{a}, a denote the second dilations of the functions K, k (respectively); that is

$$
\frac{\bar{K}_{\bar{z}}(w)}{\bar{K}(w)}=\hat{a} \frac{K_{z}(w)}{K(w)} .
$$

Now

$$
\hat{a}(z)=\frac{\frac{\bar{K}_{z}(w)}{\bar{K}(w)}}{\frac{K_{z}(w)}{K(w)}},
$$

or

$$
\begin{aligned}
\hat{a}(w) & =\frac{(1+\beta) \frac{\bar{k}_{z}(w)}{\bar{k}(w)}+\beta \frac{k_{z}(w)}{k(w)}}{(1+\beta) \frac{k_{z}(w)}{k(w)}+\beta \frac{\bar{k}_{z}(w)}{\bar{k}(w)}} \\
& =\frac{(1+\beta) a(w) \frac{k_{z}(w)}{k(w)}+\beta \frac{k_{z}(w)}{k(w)}}{(1+\beta) \frac{k_{z}(w)}{k(w)}+\beta a(w) \frac{k_{z}(w)}{k(w)}} \\
& =\frac{a(w)+\frac{\beta}{1+\beta}}{1+a(w) \frac{\beta}{1+\beta}} .
\end{aligned}
$$

It is clear that

$$
\begin{aligned}
|\hat{a}(w)| & =\left|\frac{a(w)+\frac{\bar{\beta}}{(1+\bar{\beta})}}{1+a(w) \frac{\beta}{1+\beta}}\right| \\
& <1,
\end{aligned}
$$

provided that $|\beta|^{2}<|1+\beta|^{2}$, which evidently holds since ($\beta>-\frac{1}{2}$). On the other hand by hypothesis of Theorem and using Lemma 1.3, there are numbers α, γ with $0 \leq \alpha<2 \pi$ and $0 \leq \gamma<2 \pi$ such that

$$
\Re\left(e^{i \gamma}\left(1-2 w e^{i \gamma} \cos \alpha+w^{2} e^{-2 i \gamma}\right) \varphi^{\prime}(w)\right) \geq 0, \quad(w \in E) .
$$

Let

$$
\psi(w)=\log \frac{M(w)}{N(w)}
$$

Then

$$
\begin{aligned}
& \Re\left(e^{i \gamma}\left(1-2 w e^{i \gamma} \cos \alpha+w^{2} e^{-2 i \gamma}\right) \psi^{\prime}(w)\right) \\
& \quad=\Re\left(e^{i \gamma}\left(1-2 w e^{i \gamma} \cos \alpha+w^{2} e^{-2 i \gamma}\right) \varphi^{\prime}(w)\right) \\
& \quad \geq 0,
\end{aligned}
$$

which means that $\log K$ is convex function in the direction of real axis and the proof is complete.

Theorem 3.2. Let $k_{1}, k_{2} \in S_{L H}^{-}(1 ; \varphi), \alpha_{1}>-\frac{1}{2}, \alpha_{2}>-\frac{1}{2}$ and

$$
\begin{aligned}
K_{1}(w) & =k_{1}(w)\left|k_{1}(w)\right|^{2 \alpha_{1}}, K_{2}(w) \\
& =k_{2}(w)\left|k_{2}(w)\right|^{2 \alpha_{2}},
\end{aligned}
$$

then

$$
K(w)=K_{1}^{\lambda}(w) K_{2}^{1-\lambda}(w) \in S_{L H}^{-}(1, \varphi)
$$

Proof. According to the definitions of K_{1} and K_{2} we have $K_{1} \in S_{L H}^{-}(1, \varphi)$, $K_{2} \in S_{L H}^{-}(1, \varphi)$ and so by Theorem 3.1, $K \in S_{L H}^{-}(1, \varphi)$.

Acknowledgment. The author would like to express his gratitude to the editor and the anonymous referees for their valuable comments and suggestions which have improved the original paper.

References

[1] Z. Abdulhadi and D. Bshouty, Univalent functions in $H \cdot \bar{H}(D)$, Trans. Am. Math Soc., 305 (2) (1988), pp. 841-849.
[2] Z. Abdulhadi and W. Hengartner, Polynomiales in $H \cdot \bar{H}$, Complex Var.Theory Appl., 46 (2) (2001), pp. 89-107.
[3] Z. Abdulhadi and R.M. Ali, Univalent log-harmonic mapping in the plane, J. Abstr. Appl., Sci. Rep., 2012 (2012), pp. 1-32.
[4] Z. Abdulhadi, N.M. Alareefi and R.M. Ali, On the convex-exponent product of log-harmonic mappings, J. Inequalities and Applications., 2014 (2014).
[5] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I Math., 9 (1984), pp. 3-25.
[6] Z. Liu and S. Ponnusamy, Some properties of univalent LogHarmonic mappings, Filomat., 32 (15) (2018), pp. 5275-5288.
[7] C. Pommerenke, On starlike and close-to-convex functions, Proc. London Math. Soc., 13 (1963), pp. 290-304.
[8] W.C. Royster and M. Ziegler, Univalent functions convex in one direction, Publ. Math. Debrecen, 23 (1976), pp. 339-345.
[9] Y. Sun, Y. Jiang and Z. Wang, On the convex combinations of slanted half-plane harmonic mappings, Houston. J. Math. Anal. Appl., 6 (2015), pp. 46-50.
[10] Y. Sun, A. Rasila and Y. Jiang, Linear combinations of harmonic quasiconformal mappings convex in one direction, J. Kodai Mathematical. Appl., 2016 (2016), pp. 1323-1334.
[11] Z-G. Wang, Z-H. Liu and Y-C. Li, On the linear combinations of harmonic univalent mappings, J. Math. Anal. Appl., 400 (2013), pp. 452-459.
${ }^{1}$ Department of Mathematics, Faculty of Science, PNU University, P.O.BOX 19395-4697, Tehran, Iran.

Email address: alizadeh.mehri@yahoo.com
${ }^{2}$ Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.

Email address: raghalary@yahoo.com
${ }^{3}$ Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.

Email address: ebadian@gmail.com

[^0]: 2020 Mathematics Subject Classification. Primary 30C45; Secondary 30C80.
 Key words and phrases. Univalent function, Log-harmonic function, Convex in the one direction, Sense-preserving functions

 Received: 31 May 2022, Accepted: 01 October 2022.

 * Corresponding author.

