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Abstract. In this paper, a class of new polynomials based on Fi-
bonacci sequence using Newton interpolation is introduced. This
target is performed once using Newton forward- divided- difference
formula and another more using Newton backward- divided- dif-
ference formula. Some interesting results are obtained for forward
and backward differences. The relationship between forward (and
backward) differences and the Khayyam- Pascal’s triangle are also
examined.

1. Introduction

The Fibonacci number sequence appeared in the solution to the fol-
lowing problem:
“A certain man put a pair of rabbits in a place surrounded on all sides
by a wall. How many pairs of rabbits can be produced from that pair
in a year if it is supposed that every month each pair begets a new pair
which from the second month those becomes productive?”
The resulting sequence is

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

The recursive formula for these numbers is:
f1 = f2 = 1, fn+1 = fn + fn−1, n ≥ 2.

Recall that the nth number of this sequence is the sum of the two previous
numbers [8].
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There are some developments about Fibonacci sequence and poly-
nomials generated by Fibonacci sequence. Fibonacci Polynomials (FP)
are generated recursively similar to Fibonacci sequence [1] and Fibonacci
Coefficient Polynomials (FCP) are generated by putting Fibonacci se-
quence as coefficient [4]. Also Fibonacci Lagrange interpolation poly-
nomials (FLIP) are generated recursively and implicitly by using La-
grange interpolation [7]. In this work, we propose a novel approach to
construct polynomial based on Fibonacci sequence. The idea is by lo-
cating Fibonacci point pn = (n, fn) as the point from the nth term of
Fibonacci sequence as points in coordinate system and then find a poly-
nomial that passes through those points by using Newton interpolation.
We perform this target once using Newton forward- divided difference
formula and another more using Newton backward- divided- difference
formula. In the field of numerical analysis, interpolation is the selection
of a function p(x) from a given class of functions in such a way that the
graph of y = p(x) passes through a finite set of given data points. The
simplest approximation of an interpolation is a polynomial. One of the
polynomial interpolation methods is the Newton interpolation. Suppose
that we are given a table of different points (xi, fi) for i = 0, 1, . . . , n:

Table 1. The n+ 1 different points (xi, fi) for i = 0, 1, . . . , n.

xi x0 x1 x2 · · · xn−2 xn−1 xn

fi f0 f1 f2 · · · fn−2 fn−1 fn

When the nodes are arranged consecutively with equal spacing, New-
ton forward- divided- difference formula can be expressed as follow:

pn(x) =
n∑

k=0

(
s

k

)
∆kf0(1.1)

=f0 + s∆f0 +
s(s− 1)

2!
∆2f0 +

s(s− 1)(s− 2)

3!
∆3f0

+ · · ·+ s(s− 1)(s− 2) · · · (s− k + 1)

k!
∆kf0

+ · · ·+ s(s− 1)(s− 2) · · · (s− n+ 1)

n!
∆nf0.

In this formula we have h = xi+1 − xi, for each i = 0, 1, . . . , n − 1 and
x = xo + sh. Then x− xi = (s− i)h. Also the forward difference ∆fi is
defined by

(1.2) ∆fi = f(xi+1)− f(xi), for i ≥ 0.
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Higher powers of the operator ∆ are defined recursively by
(1.3) ∆k+1(fi) = ∆k(∆fi), for k ≥ 1.

We also agree that ∆0fi means the same as fi.
Newton backward- divided- difference formula can be expressed as

follow:

pn(x) =
n∑

k=0

(−1)k
(
−s

k

)
∇kfn(1.4)

=
n∑

k=0

(
s+ k − 1

k

)
∇kfn

=fn + s∇fn +
s(s+ 1)

2!
∇2fn +

s(s+ 1)(s+ 2)

3!
∇3fn

+ · · ·+ s(s+ 1)(s+ 2) · · · (s+ n− 1)

n!
∇nfn

where x = xn + sh and the backward difference ∇fi is defined by
(1.5) ∇fi = f(xi)− f(xi−1), for i ≥ 1.

Higher powers are defined recursively by
(1.6) ∇k+1(fi) = ∇k(∇fi), for k ≥ 1.

Note that ∇kfi is defined only for i ≥ k. We also agree that ∇0fi means
the same as fi. For some sources on Newton interpolation method see [3]
and [6]. We denote N as the set of natural number and W = {0, 1, 2, . . .}.

2. Interpolating the Fibonacci Sequence Using Newton
Forward- Divided- Difference Formula

Let denote Fibonacci point pn = (n, fn) as the point from the nth term
of Fibonacci sequence as points in coordinate system. For example, the
Fibonacci points for n = 0 until n = 4 are shown in Table 2.

Table 2. The Fibonacci points for i = 0, . . . , 4.

xi x0 = 0 x1 = 1 x2 = 2 x3 = 3 x4 = 4

fi f0 = 1 f1 = 1 f2 = 2 f3 = 3 f4 = 5

(xi, fi) (0, 1) (1, 1) (2, 2) (3, 3) (4, 5)

In this paper, we define FNIPn(x) as the polynomial that generated
using Newton interpolation (using forward- divided- difference formula)
from pi for i = 0, 1, . . . , n (we call it here Fibonacci point pi = (i, fi)).
Since the points are arranged consecutively with equal spacing h = 1
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and x0 = 0, consequently, we have x = x0 + sh = s in (1.1) and then we
can write

(2.1) FNIPn(x) =

n∑
k=0

(
x

k

)
∆kf0.

According to relation (1.2), the generation of the constructing forward
differences ∆kfi for i = 0, 1, . . . , 10 is outlined in Table 3.

Table 3. The forward differences ∆k
i = ∆kfi for i = 0, 1, . . . , 10.

xi fi ∆i ∆2
i ∆3

i ∆4
i ∆5

i ∆6
i ∆7

i ∆8
i ∆9

i ∆10
i

0 1
0

1 1 1
1 −1

2 2 0 2
1 1 −3

3 3 1 −1 5
2 0 2 −8

4 5 1 1 −3 13
3 1 −1 5 −21

5 8 2 0 2 −8 34
5 1 1 −3 13

6 13 3 1 −1 5
8 2 0 2

7 21 5 1 1
13 3 1

8 34 8 2
21 5

9 55 13
34

10 89

FNIP1(x) = 1

FNIP2(x) =
x2 − x+ 2

2

FNIP3(x) =
−x3 + 6x2 − 5x+ 6

6

FNIP4(x) =
x4 − 8x3 + 23x2 − 16x+ 12

12

The graphics of above polynomials are shown in Figure 1. We recall
that FNIPn(i) = fi for i = 1, . . . , n. Before deriving another formula
for FNIPn(x), we will prove a theorem about ∆kfi. Indeed by observing
the behavior of ∆kfi in Table 3, we guess the formula stated in Theorem
2.1 and then we will prove it by induction.
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Figure 1. FNIPi(x) for i = 1, . . . , 4.

Theorem 2.1. Let (i, fi) be the Fibonacci points for i ∈ W. Then the
forward differences ∆kfi for i, k ∈ W, are obtained by

(2.2) ∆kfi =


fi−k, i > k − 1,
0, i = k − 1,
(−1)k−ifk−2−i, i < k − 1.

Proof. By induction on k and according to the recursive formula of the
operator ∆, that is (1.3), the theorem is easily proved. First we recall
that due to the property of the Fibonacci sequence and relation (1.2),
we have

∆f0 = f1 − f0 = 0

and
∆fi = fi+1 − fi = fi−1 . . . for i ≥ 1.

Note that the result is true for k = 0. Since i ≥ k = 0 (or i > k − 1),
according to the first rule of (2.2) we have

∆0fi = fi−0 = fi.

So the result is true for k = 0. Let k be a positive integer for which the
statement is true. We will show that the statement is true for k + 1;
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that is

(2.3) ∆k+1fi =


fi−k−1, i > k,
0, i = k,
(−1)k+1−ifk−1−i, i < k.

Note that
∆k+1fi = ∆k(∆fi)

= ∆k

({
fi−1 i ≥ 1
f1 − f0 i = 0

)
.

Now if i ≥ 1, then we have

∆kfi−1 =


fi−1−k, i− 1 > k − 1,
0, i− 1 = k − 1,
(−1)k−i+1fk−2−i+1, i− 1 < k − 1,

=


fi−k−1, i > k,
0, i = k,
(−1)k+1−ifk−1−i, i < k.

So the statement (2.3) is established for this case. And if i = 0, then we
consider the cases: k = 0, k = 1, k = 2 and k > 2.
If k = 0, then we have

∆f0 = f1 − f0 = 0.

In this case, since i = k, the statement (2.3) is established due to the
correctness of the second rule. It’s easy to show that if k = 1, then

∆2f0 = ∆(f1 − f0) = ∆f1 −∆f0 = f2 − f1 − f1 + f0 = f0

and for k = 2, we have
∆3f0 = ∆2(f1 − f0) = −f1.

So for i = 0 and k = 1, 2 the statement (2.3) is established due to the
correctness of the third rule. If k > 2, then we have

∆k(f1 − f0) = ∆kf1 −∆kf0.

According to induction hypothesis, since k−1 > 1, due to the third rule
we have

∆kf1 −∆kf0 =(−1)k−1fk−2−1 − (−1)kfk−2

=(−1)k−1fk−3 + (−1)k−1fk−2

=(−1)k−1(fk−3 + fk−2)

=(−1)k−1fk−1.

The last term is the third rule of (2.3). So the proof is complete. □
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Theorem 2.2. Fibonacci Newton interpolation polynomials constructed
by using forward- divided- difference formula, can be express as:

FNIPn(x) = 1 +
n∑

k=2

(
x

k

)
(−1)kfk−2.

Proof. Applying Theorem 2.1 for i = 0 and k > 1, we have
(2.4) ∆kf0 = (−1)kfk−2.

In (2.1) we show that

FNIPn(x) =
n∑

k=0

(
x

k

)
∆kf0.

Replacing (2.4) in above formula for k ≥ 2, we have

FNIPn(x) =f0 + x∆f0 +

n∑
k=2

(
x

k

)
(−1)kfk−2(2.5)

=1 + 0 +
x(x− 1)

2!
+

x(x− 1)(x− 2)

3!
(−1)

+
x(x− 1)(x− 2)(x− 3)

4!
(2)

...

+
x(x− 1)(x− 2) · · · (x− n+ 1)

n!
(−1)nfn−2.

So the proof is complete. □

Corollary 2.3. The leading coefficient of FNIPn(x) is (−1)nfn−1

n!
.

Proof. It is clear that the coefficient of xn in the last term of (2.5) is
(−1)nfn−1

n!
. □

Remark that this corollary is proved in [7] for the leading coefficient
of Fibonacci Lagrange interpolation polynomials. Since polynomials of
degree n passing through n + 1 points (i, fi) are unique, this result is
not far-fetched. We end this section by showing the relationship between
∆kfi and the Khayyam- Pascal’s triangle. Note that

∆0fi =fi,

∆1fi =fi+1 − fi,

∆2fi =fi+2 − 2fi+1 + fi,

∆3fi =fi+3 − 3fi+2 + 3fi+1 − fi,
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∆4fi =fi+4 − 4fi+3 + 6fi+2 − 4fi+1 + fi.

By induction on k ≥ 0 we can show that

(2.6) ∆kfi =

k∑
j=0

(
k

j

)
fi+k−j(−1)j .

First we note that the result is true for k = 0 and k = 1. If k = 0, then

∆0fi =
0∑

j=0

(
0

j

)
fi−j(−1)j = fi

and for k = 1, we have

∆fi =

1∑
j=0

(
1

j

)
fi+1−j(−1)j = fi+1 − fi.

Now we assume (2.6) holds for k > 1. We will show that the statement,
is true for k + 1; that is

∆k+1fi =
k+1∑
j=0

(
k + 1

j

)
fi+k+1−j(−1)j .

We will need to use Pascal’s identity in the form(
k

j

)
+

(
k

j − 1

)
=

(
k + 1

j

)
.

We have

∆k+1fi =∆k(∆fi)

=∆k(fi+1 − fi) = ∆kfi+1 −∆kfi

=
k∑

j=0

(
k

j

)
fi+1+k−j(−1)j −

k∑
j=0

(
k

j

)
fi+k−j(−1)j

=fi+1+k +
k∑

j=1

(
k

j

)
fi+1+k−j(−1)j −

k−1∑
j=0

(
k

j

)
fi+k−j(−1)j

− fi(−1)k

=fi+1+k +
k∑

j=1

(
k

j

)
fi+1+k−j(−1)j
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−
k∑

j=1

(
k

j − 1

)
fi+k−j+1(−1)j−1 − fi(−1)k

=fi+1+k +
k∑

j=1

[(
k

j

)
+

(
k

j − 1

)]
fi+k−j+1(−1)j + fi(−1)k+1.

From Pascal’s identity, it follows that

∆k+1fi =fi+1+k +

k∑
j=1

(
k + 1

j

)
fi+k−j+1(−1)j + fi(−1)k+1

=

k+1∑
j=0

(
k + 1

j

)
fi+k−j+1(−1)j .

Hence the result is true for k + 1 and by induction, (2.6) is true for
all k ≥ 0. According to (2.2) and (2.6), the following theorem can be
expressed.

Theorem 2.4. Let {fn} be the Fibonacci sequence. Then

k∑
j=0

(
k

j

)
fi+k−j(−1)j =


fi−k, i > k − 1,
0, i = k − 1,
(−1)k−ifk−2−i, i < k − 1.

For example, for i = 2, the following triangle can be drawn with respect
to the Khayyam-Pascal’s triangle.

Table 4. The relationship between ∆kfi and the Khayyam- Pas-
cal’s triangle.

i = 2
∑k

j=0

(
j
k

)
fi+k−j(−1)j ∆kfi

k = 0 1f2 f2

k = 1 1f3 − 1f2 f1

k = 2 1f4 − 2f3 + 1f2 f0

k = 3 1f5 − 3f4 + 3f3 − 1f2 0

k = 4 1f6 − 4f5 + 6f4 − 4f3 + 1f2 f0
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3. Interpolating the Fibonacci Sequence Using Newton
Backwar-Divided-Differences Formula

In this section, we will consider the Newton interpolation polynomials
passing through the points pi = (i, fi), for i = 0, 1, . . . , n and generated
by using backward-divided-difference. For simplicity, we denote these
polynomials by Pn(x). Since the points are arranged consecutively with
equal spacing h = 1 and xn = n, consequently, in (1.4) we have x = n+s
or s = x− n and then we can write

(3.1) Pn(x) =
n∑

k=0

(
x− n+ k − 1

k

)
∇kfn.

The backward differences ∇kfi for i = 0, 1, . . . , 10 can also be seen in
Table 3. Before deriving another formula for Pn(x), we will prove a
theorem about ∇kfi. Indeed by observing the behavior of ∇kfi in Table
3, we guess below formula and then we prove it by induction.

Theorem 3.1. Let (i, fi) be the Fibonacci points for i ∈ W. Then the
backward differences ∇kfi for i ≥ k ∈ W, are obtained by

(3.2) ∇kfi =

 (−1)if2k−2−i, k ≤ i < 2k − 1,
0, i = 2k − 1,
fi−2k, i > 2k − 1.

Proof. By induction on k and according to the recursive formula of the
operator ∇, that is (1.6), the theorem similar to the Theorem 2.1, is
easily proved. We only note that due to the property of the Fibonacci
sequence and relation (1.5), we have

∇fi = fi − fi−1 = fi−2, for i ≥ 2. □

Theorem 3.2. Fibonacci Newton interpolation polynomials constructed
by using backward- divided- difference formula, can be express as:

Pn(x) =

n−1
2∑

k=0

(
x− n+ k − 1

k

)
fn−2k −

n∑
k=n+3

2

(
x− n+ k − 1

k

)
f2k−2−n

if n is odd, and

Pn(x) =

n
2∑

k=0

(
x− n+ k − 1

k

)
fn−2k +

n∑
k=n

2
+1

(
x− n+ k − 1

k

)
f2k−2−n

if n is even.
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Proof. In (3.1) we show that

Pn(x) =

n∑
k=0

(
x− n+ k − 1

k

)
∇kfn.

Applying above formula and Theorem 3.1 for i = n and k ≤ i, we have

Pn(x) =

n−1
2∑

k=0

(
x− n+ k − 1

k

)
∇kfn +

(
x− n+ k − 1

k

)
∇

n+1
2 fn

+
n∑

k=n+3
2

(
x− n+ k − 1

k

)
∇kfn

=

n−1
2∑

k=0

(
x− n+ k − 1

k

)
fn−2k −

n∑
k=n+3

2

(
x− n+ k − 1

k

)
f2k−2−n

if n is odd, and

Pn(x) =

n
2∑

k=0

(
x− n+ k − 1

k

)
∇kfn +

n∑
k=n

2
+1

(
x− n+ k − 1

k

)
∇kfn

=

n
2∑

k=0

(
x− n+ k − 1

k

)
fn−2k +

n∑
k=n

2
+1

(
x− n+ k − 1

k

)
f2k−2−n

if n is even. So the proof is complete. □
We end this section by showing the relationship between ∇kfi and

the Khayyam- Pascal’s triangle. Note that
∇0fi =fi,

∇1fi =fi − fi−1,

∇2fi =fi − 2fi−1 + fi−2,

∇3fi =fi − 3fi−1 + 3fi−2 − fi−3,

∇4fi =fi − 4fi−1 + 6fi−2 − 4fi−3 + fi−4.

Similar to the proof of Equation (2.6) by induction on k it can be shown
that

(3.3) ∇kfi =

k∑
j=0

(
k

j

)
fi−j(−1)j .

According to (3.2) and (3.3), the following theorem can be expressed.
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Theorem 3.3. Let {fn} be the Fibonacci sequence. Then
k∑

j=0

(
k

j

)
fi−j(−1)j =

 (−1)if2k−2−i, k ≤ i < 2k − 1,
0, i = 2k − 1,
fi−2k, i > 2k − 1.

For example, for i = 5, the following triangle can be drawn with
respect to the Khayyam-Pascal’s triangle.

Table 5. The relationship between ∇kfi and the Khayyam- Pas-
cal’s triangle.

i = 5
∑k

j=0

(
j
k

)
fi−j(−1)j ∇kfi

k = 0 1f5 f5

k = 1 1f5 − 1f4 f3

k = 2 1f5 − 2f4 + 1f3 f1

k = 3 1f5 − 3f4 + 3f3 − 1f2 0

k = 4 1f5 − 4f4 + 6f3 − 4f2 + 1f1 −f1

4. Future Work

There are certain polynomials that are used in the numerical solution
of differential and integral equations. For example, we can mention the
use of Bernoulli polynomials in solving nonlinear two-dimensional inte-
gral equations [2] and the convergence of Nyström methods for solving
Fredholm−integral equations of the second kind with the smooth kernel
can be analyzed using an interpolatory projection based on Legendre
polynomials of degree ≤ n [5]. For the numerical approximation of the
definite integral in the following form

(4.1)
∫ 1

−1
f(x)dx

by Gauss−Legendre method, the goal is to find coefficients such as
ωi, i = 1, . . . , n and nodes such as xi, i = 1, . . . , n, which are the roots
of Legendre,s orthogonal polynomials, so the rule is stated as

(4.2)
∫ 1

−1
f(x)dx =

n∑
i=1

ωif(xi).

Now the question is whether there are a new class of orthogonal polyno-
mials whose non-zero roots are functions of the numbers of the Fibonacci
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sequence and can apply to relation (4.2)? For example, the following two
Legendre polynomials apply in the above conditions:

(4.3) p(x) =
1

2
(3x2 − 1), q(x) =

1

2
(5x3 − 3x).

5. Conclusion

In this paper a new method to construct polynomials based on Fi-
bonacci sequence using Newton interpolation is introduced. By ob-
serving the behavior of ∆kfi and ∇kfi in Table 3, we obtained some
interesting results.

As mentioned, in the forward differences ∆kf0 for k ≥ 2, the Fibonacci
numbers with alternating signs are appeared. And in the backward
differences ∇kfn for k = 0, . . . , n, every other number appears to be
decreasing, until we reach to f0 or f1 in the integral part of [n+1

2 ]. If
n is odd, for k = n+1

2 we have ∇kfn = 0 and for k > n+1
2 , opposite

of the odd index Fibonacci numbers are appeared. And if n is even,
for k > n+1

2 , the Fibonacci sequence sentences are appeared with even
index.

For example, for n = 9, the backward differences ∇kfn for k =
0, 1, . . . , 9 are

f9, f7, f5, f3, f1, 0, −f1, −f3, −f5, −f7

respectively and for n = 10, the backward differences ∇kfn for k =
0, 1, . . . , 10 are

f10, f8, f6, f4, f2, f0, f0, f2, f4, f6, f8

respectively. We also showed the relationship between forward (and
backward) differences and the Khayyam- Pascal’s triangle.

Acknowledgment. The authors wish to thank referees for their useful
comments.

References

1. T. Amdeberhan, X. Chen, V. Moll and B. Sagan, Generalized Fi-
bonacci polynomials and fibonomial coefficients, Ann. Comb., 18
(2014), pp. 541-562.

2. S. Bazm, Numerical solution of a class of nonlinear two-
dimensional integral equations using Bernoulli polynomials, Sahand
Commun. Math. Anal., 3 (1) (2016), pp. 37-51

3. R.L. Burden, J.D. Faires and A.M. Burden, Numerical Analysis,
Tenth edition, Cengage Learning, Boston, Massachusetts, 2016.

4. D. Garth, D. Mills and P. Mitchell, Polynomials generated by the
Fibonacci sequence, J. Integer Seq., 10 (2007), Article 07.6.8.



146 M.EBADI AND S. HAGHKHAH

5. B. Hamza, A. Chafik and T. Mohamed, Legendre Superconver-
gent Degenerate Kernel and Nystrom Methods for Fredholm Inte-
gral Equations, Sahand Commun. Math. Anal., 20 (1) (2023), pp.
45-60

6. D. Kincaid and W. Cheney, Numerical Analysis Mathematics of
Scientific Computing, Third Edition., AMS., 2017.

7. M.S. Mufid, T. Asfihani and L. Hanaf,On The Lagrange Interpola-
tion of Fibonacci Sequence, IJCSAM., 2 (2016), pp. 38-40.

8. T. Scott and P. Marketos,On the origin of Fibonacci sequence, Mac-
Tutor History of Mathematics, University of St Andrews, Scotland,
2014.

1 Department of Mathematics, University of Farhangian, Tehran, Iran.
Email address: moosa.ebadi@yahoo.com
2 Department of Mathematics, University of Farhangian, Tehran, Iran.
Email address: sareh_haghkhah@cfu.ac.ir


	1. Introduction
	2. Interpolating the Fibonacci Sequence Using Newton Forward- Divided- Difference Formula
	3. Interpolating the Fibonacci Sequence Using Newton Backwar-Divided-Differences Formula
	4. Future Work
	5. Conclusion
	References

