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Second Hankel Determinant for Certain Subclasses of
Bi-starlike Functions Defined by Differential Operators

Halit Orhan®, Hava Arikan? and Murat Caglar®*

ABSTRACT. In this paper, we obtain upper bounds of the initial
Taylor-Maclaurin coefficients |az|, |as| and |as| and of the Fekete-
Szeg6 functional |a3 - na§| for certain subclasses of analytic and
bi-starlike functions S;(8,60,n,m) in the open unit disk. We have
also obtained an upper bound of the functional ’a2a4 — a%} for the
functions in the class S;(8,60,n,m). Moreover, several interesting
applications of the results presented here are also discussed.

1. INTRODUCTION AND DEFINITIONS

Let A denotes the family of functions f analytic in the open unit disk
U={z:2zeCand |z| <1},

of the form:
(1.1) f(z):z—i—Zakzk.
k=2

Let S denotes the class of all functions in A that are univalent in 4L
The Koebe one-quarter theorem (see, for example, [10]) ensures that
the image of 4l under every f € S contains a disk of radius 1/4. Clearly,
every f € S has an inverse function f~! satisfying f~1(f(2)) = z (z € U)

and f (f~ (w)) = w (jw| <ro(f); r0(f) 2 1/4), where

FHw) = w — asw? + (243 — a3) w® — (5a3 — Sasas + a4) w4 -
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A function f € Ais said to be bi-univalent in {lif both f(z) and f~1(z)
are univalent in $l. Let o denotes the class of bi-univalent functions in
given by (@)

In 1967, Lewin [21] showed that, for every function f € o of the form
(IL.1)), the second coefficient of f satisfies the estimate |as| < 1.51. In
1967, Brannan and Clunie [3] conjectured that |as| < /2 for f € o.

Later, Netanyahu [22] proved that I}laX|CL2’ = 2. In 1985, Kedzierawski
€o

[17] proved _the Brannan—Clunie conjecture for bi-starlike functions. In
1985, Tan [35] obtained a bound for ag, namely that |az| < 1.485, which
is the best known estimate for functions in the class ¢. Brannan and
Taha [4] obtained estimates on the initial coefficients |ag| and |ag| for
functions in the classes of bi-starlike functions of order 8 and bi-convex
functions of order § (0 < 5 < 1).

The study of bi-univalent functions was revived in recent years by
Srivastava et al. [33] and a considerably large number of sequels to
the work of Srivastava et al. [33] have appeared in the literature since
then. In particular, several results on coefficient estimates for the initial
coefficients |as|, |aa|, and |as4| were proved for various subclasses of o
(see, for example, [, 2, 8, [11, 13, 16, 25, B1, B2, B4, B6, B7]).

Recently, Deniz [9] and Kumar et al. [19] both extended and improved
the results of Brannan and Taha [4] by generalizing their classes by
means of the principle of subordination between analytic functions. The
problem of estimating the coefficients |ax| (k = 2) is still open (see also
[B2] in this connection).

Among important tools in the theory of univalent functions are Hankel
determinants, which are used, for example, in showing that a function
of bounded characteristic in 4, that is, a function that is a ratio of two
bounded analytic functions, with its Laurent series around the origin
having integral coefficients, is rational [§]. The Hankel determinants
Hy(k) (k=1,2,3,..., ¢ =1,2,3,...) of the function f are defined by
(see [23])

ay Ag+1 - Qktg—1
Ak+1 a2 QAf+q
Hq(k) = . . . ’ ((11 = 1)
Ak+q-1 Qk+q " Qk+2¢-2

This determinant was discussed by several authors with ¢ = 2 (see
[6, 7, 15, 20, 26, 29, B0, BY]). For example, we know that the functional
Hy(1) = a3 — a3 is known as the Fekete-Szegd functional and one
usually considers the further generalized functional a3 — pa3 where
p is some real number (see [12]). Estimating for the upper bound of
‘ag — ,ua%} is known as the Fekete-Szeg6 problem. In 1969, Keogh and
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Merkes [18] solved the Fekete-Szegd problem for the classes of starlike
and convex functions. One can see the Fekete-Szegd problem for the
classes of starlike functions of order g and convex functions of order
in special cases in the paper of Orhan et al. [24]. On the other hand,
quite recently, Zaprawa (see [38, B9]) studied the Fekete-Szegd problem
for some classes of bi-univalent functions. In special cases, he gave the
Fekete-Szego problem for the classes of bi-starlike functions of order
and bi-convex functions of order .

The second Hankel determinant Hs(2) is given by Hs(2) = asay — a3.
The bounds for the second Hankel determinant Ho(2) were obtained for
the classes of starlike and convex functions in [15]. Lee et al. [20] estab-
lished a sharp bound for |H2(2)| by generalizing their classes by means
of the principle of subordination between analytic functions. In their
paper [20], one can find the sharp bound for |H2(2)| for the functions in
the classes of starlike functions of order 5 and convex functions of order
S._ Recently, Deniz et al. [6], Soh and Mohamad [30] and Orhan et al.
[26] found some upper bounds for the functional Hy(2) = agay — a3 for
the subclasses of bi-univalent functions.

Let f € A. In [2§], Salagean introduced the following differential
operator:

Df(2) = f(2),
D'f(2) = Df(2) = 2f'(2),

D"f(z) =D(D" ' f(2)), (neN=1,23,..).
Note that

D'f(z) =2+ ik"akzk, (n e No=NU{0}).
k=2

Definition 1.1 ([29]). A function f(z) given by (EI) is said to be in
the class f € S%(8,6,n,m), if the following conditions are satisfied:

f€o and Re{ew [5;‘;((?)}} >,
(zeyn>m, 0SB <1, |0 <mand cosfd > f3),

{e B o

(westly n>m, 0 58<1, |0 <7 and cosf > f3),
where the function g is given by

and

g(w) = w — asw? + (2a3 — az) w*® — (5a§ — Basaz + as) w' + - .
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Upon allocating the parameters n, m and 6, one can obtain several
new subclasses of o, as illustrated in the following three examples.

Example 1.2. A function f(z) given by (@) is said to be in the class
feSis,0,1,0) = Sx(B,0), if the following conditions are satisfied:

f€eo and Re{ewZ]{gS)} > 0,
(zel; 0SB <1, |#] <mand cosf > f3),

(wed; 0 8<1, |0 <mand cosf > f),

where the function g is given by

and

g(w) = w — asw?® + (2a3 — a3) w® — (5a3 — Sasas + as) w' + - - .
Example 1.3. A function f(z) given by (EI) is said to be in the class
f e SiB,0,1,0) = Sx(B), if the following conditions are satisfied:
2f'(2)

f(z)

f€eo and Re{ }>B, (zet; 0=p5<1),

and

EZAC) —
R { o(w) }>B,( ey 05p<1),

where the function g is given by

g(w) =w — a2w2 + (Qa% — ag) w3 — (5a§ — basas + a4) wh4 .
Example 1.4. A function f(z) given by (@) is said to be in the class
f€5%(0,0,1,0) = S, if the following conditions are satisfied:

2f'(2)
f(2)

f €0 and Re{ }>O, (ze ),

and

Ro{ "0 >0 (wew,

where the function g is given by
g(w) =w — agw? + (2@% - a3) w — (5a?2’ — bagas + a4) wr

Let P be the class of functions with positive real part consisting of
all analytic functions P : 4 — C satisfying p(0) = 1 and Re (p(z)) > 0.
To establish our main results, we shall require the following lemmas.
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Lemma 1.5 ([27]). If the function p € P is given by the following series:
(1.2) p(z) =14+crz+e2®+ -,
then the sharp estimate given by

lek] =2, (K=1,2,3,...),

holds.
Lemma 1.6 ([14]). If the function p € P is given by the series ),
then

20220%4—30(4—0%),
403:C?+2(4—C%)61$—01 (4—ch)a?+2(4—c) (1—\x|2> z,
for some x and z with |x| £ 1 and |z| = 1.

In this paper, we determine the coefficients of ao, as, a4 and obtain the
second Hankel determinant, which satisfy the condition and is to seek
an upper bound for the functional ‘a2a4 — a%’ for f € SX(B,0,n,m).

2. MAIN RESULTS

Our first main result for the class f € Si(8,6,n,m) is stated as
follows:

Theorem 2.1. Let f(z) given by ) be in the class Si(B,0,n,m) for
n>m+1,0= <1, |0 <7 and cos@ > 3. Then

2 (cosf — )
. < - 77
(2.1) lag| < o gm
4 (cos — B)Z 2 (cosf — fB)
2.2 <
( ) |a3‘ - (2n _ 2m)2 + 3n —3m
n __ om m _ om—1 _ 92m—1
8 (cosf — B)* (2" —2m) (3 2 2 )
+27 (3" — 3™)
(2.3) layg] < .
(20 + 2m) (27 — 2m)
10 (cos @ — ,8)2 2 (cosf — p)
(2n _ Qm) (3n _ 3m) qn — gm ’
and forn e C
cos 60— 1
‘a3 _ na%‘ S 371,3757 0 S ’h(’r]? n7m))‘ Sl 2(3n_3m)7
2[h(n,n,m)|[cos 8 — B], |h(n,n,m)| > 23" —3m)>
where ,
h(nvn)m) - —

2 [(3n _ 3m) _ (2m+n _ 22m)] :
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Proof. Let f € SX(8,0,n,m) and g = f~!. Then

k=1

Df(z)
and

Drg(w) _ 4 S -

Dmg(w) +; K
Hence

et [11;:1?((2)) —B=¢€" (1 + Z hkzk> — B,
- k=1

and

0 [P g(w) ] - -
0 0 k
— B = 1 h — 0.
o[ = ( -3 k) -
Next, by simplifying the equation, we obtain

i | D"f(2) o o (N, Lk
e [Dmf(z)]—5—181n9—0059—5+6 (thz>,

and

: D”g(w)] . ,

10 10

e — B —isinf@ =cosf — B +e
{D g(w) B B

which result

o0 [D”f(Z)} — B —isind e’ (Z hkzk>

D f(z) k=1
2.4 =14 —=
(24) cos — 3 * cos — 3
0 | Dg(w .. 0 = h k
& 9 [D"LZ((W))} - ,6 - ZSln9 _ N € <k§::1 Y )
cosf — cosf —

Therefore, from the left hand side of equation (@) and Lemma @, we
get

et? [an(z)} — B —1isinf

D™ f(2) .
(25) COSG _ IB p(z)ﬂ
i6 | D™ g(w) -
e | Doy | — B —isinf
[ 2 )} = q(w)

cost — 3
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Thus,
1+ (2" —2M) agz + [(3" — 3™) ag — (2™ — 2°™) a3 22
eie + [(411 _ 4m) aq + (22m+n _ 23m) a%
—(3M (2" — 2™) + 2™ (3" — 3™)) agag] 2>
— (B +isinb)
cosf — (3

= p(2),

1—(2" —2™) aqw
+ [(3" = 3™) (243 — a3) — (2™F" — 22™) 3] w?
e — (4" — 4™) (5a3 — bagas + a4)
+ [3™ (2" — 2™) (a3 — 2a3) ag + 22™ (2" — 2™) aj]
+2™ (3" — 3™) (a3 — 2a3) az| w?
— (B +isinf)

cosf — 3
= q(w),
where the functions p(z) and g(w) given by
p(z) =1+ciz+eaz? +--
and
q(w) =1+ dyw + dow?® + - - -,

are in class P.
Comparing the coefficients in (@), we have

1 [cos 0 — ]

(2.6)  ax= m,
(27) (3" —3M)ag — (27" —22m) o = 2T 2 [co:lz -A
(2 8) (4n _ 4m) ayq + (22m+n _ 23m) CL% _c3 [C089 _ 5]
. _ [3m (211 _ 2m) + 2m (3n _ Sm)] a2a3 - eig 9
_ dy[cos® —f]
(2.9) — a2 = ma

9 (3n _ Sm) a% _ (2m+n _ 22m) a% B do [0080 _ ﬁ]
(2.10) [ (3" — 3M) gy = "=
— (4™ —4™) [5@% — basas + a4]
—3™ (2" — 2™) (a3 — 2a3) a» ds [cos O — f]
_22m (Qn _ 2m) a% ei@ :
—2m (3" — 3™) (a3 — 2a3) az

(2.11)
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From (@) and (@), we find that

(212) C1 — *dl,
and
(2.13) gy — C1lcos0 = 7]

*= i (g )
Now, from (@), (M) and (m), we get

_ fcosf — B> 1(co—do)[cost — f]
(2.14) @3 = ei20 (27 — 2m)2 T3 e (3n —3m)

Also, from (2.8) and (£.11)), (2.13) and (2.14), we find that

n __om m _ om—1 _ 92m—1
[6080 - ﬁ]B |: S?Qm (gn )_(gm) 2 2 ) C?

(215)  aq =

et30 (277, _ 2m)3 (4n _ 4m)
5 c1 (ca — dy) [cos § — 8]
(3n _ 3m) et20 (2n _ 2m)
1 (e5— ds) [cos — ]
2 (4n _ 4m) ett

If we @ly Lemma @ to (ﬁ), (M) and (M), we obtain (@), (@)

and (2.3).
Adding (@) to (), we get

(2.16)  2[(3" —3™) — (2" —2*™)] a5 =

Also by subtracting () from (@), we get
1 (eg — d2) [cos O — ] 9
2.1 == : .
( 7) as 2 629 (3” — 3m) + (IQ
From equations (I‘Zld) and (bl?l), we get

e (co — dg) [cos @ — ]
4N = Ty (gn — gm) el

(co — dg) [cos @ — [] (ca + da) [cos b — []

92 (3n _ 3m) 10 + (1 B 77) ) [(3n _ 3m) _ (2m+n _ 22m)] 0
B [cos € — [] (1—-n) 1
-5 (s~ )

* (2 i 3m§1—_<;731+n e R 3m>> d2}

st 4 {<h(n’ - M) .

"1

+

(co + d2) [cos b — []
oi0

+(1-n)a3
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() g )}

L—mn
2[(3" —3m) - @ — 2]’
The proof of Theorem @ is completed. O

where

h(n,n,m) =

Our second main result for the class S¥(3, 0, n, m) is given by Theorem
below.

Theorem 2.2. Let f(z) given by ) be in the class Si(B,0,n,m) and
if A=cosf—p forn >m+1 [ (2" —2") (3m — 2 22m_1) #0

) +2m(3n - 3m) . (4n . 4m) )
0] < m and cos@ > 3. Then

|CL20,4 — a%‘

3m _ 2m—1
@ (T )

om (3 — 3m)

44° — (4™ —4™)
4n—4m ) (2n,2m)4
_|_(3 —3"M)—(2"=2"")(4"—4")

4A2

’ Ae [07 (I)(n,m)] )

A

64(4™ —4™)

(3n73m)2 )

A 2A(2™ 42™) 2 2

16(4n—4™) {‘B*F(Qn,;m)w] (4‘43 +5PESE ) ’ A € [cb(n’m)’ 1] )

2A(2m f2™M) 2
(P+E)°+[B+ gy gy |

where

(47 — 4m)(2n — 2m)?

(2m —2m) (3™ —2m~1 — 22m1)
+27(3" —3™) — (4" —4™)

P(n,m) =
8(3n — 3m) {

] @ T
+2m(3" — 3™) — (4" — 4™)
x {(4™ —4m)(2" —2m) — 2(3" — 3™)?

1 1-—
X + (4n _ 4m)2(2n _ 2m) ’

B (2n _ 2m)(3n _ 3m)2 ’
_=2(3™ —3m)2 4 (27 — 2m) (4" — 4™) A(2" +2™m)
EB - (2n _ 2m)(3n _ 3m)2 - (2n _ Qm)(gn _ 3m)’
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B 4A2 [(3m _ mel _ 22m71) 4 om (371 _ 3m) (2n 4 2m)]

€ (2n _ 2m)3
Proof. From (), () and () and letting A = cos 6 — 3, we have
- ClA
a2 = eid (2n _ 2m)’
242 1 [y —do] A
az = — 2 9 ,i0 (an m)’
6120(271_2771) 2e (3 -3 )
and
[(Qn o Qm) (3m o 2m—1 _ 22m—1) 4 om (3n _ 3m)] A3C‘?
aq =

€i39 (2n _ 2m)3 (477, _ 4m)

5 C1 (CQ — dg) A2 + 1 (03 — d3) A

+ 4 (3n _ 3m) ei2¢9 (2n _ 2m) 2 (4n _ 4m) ez‘@

Hence, the functional asay — ag will become

(2.18)
(2n _ 2m) (3m o 2m71 _ 22m71) A4C4
9 42 (3" — 3™) — (4" — 4™) 1
az2a4 — a3 = - 1
6149 (2n _ Qm) (4n _ 4m)
N 1 2 (cg —dy) A3 1 c1 (c3 — dg) A?
4 (3n _ 3m) 130 (2n - 2m)2 2 (4n _ 4m) ei20 (2n _ Qm)

1 (CQ — d2)2 A2
4 (3n - 3m)2 et20
According to Lemma E and (), we write

202:c%+$(4—c%) _4—0%
(2.19) 2d2:d%—|—y(4—d%) = c9—dy= 5 (z —vy),

and
(2.20)
4cg :c§’+2(4—c%)clm—cl (4—0%)x2+2(4—c%) (1— \:L‘|2) z,

Ady = d} +2(4 — D)y — di(4 — )y + 2(4 - @) (1~ yP) w.
Moreover, we have

3 4 — 2
(2.21) 63—d3:c21+01(201)(

N (4—20?) ((1 N |m|2> . (1 - |y|2) w) :

r+y) —
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(1=),

5 T +y),

(222) co + d2 = C% —+
for some z.y and z, w with [z < 1, |y| £ 1, |2| £ 1, |w| £ 1 and [¢?] = 1.
Using ( R.19) and (E2I) in (R.18), and applying the triangle inequality,
we have

oM (30— 3m) — (47 — 4m)
ei40 (2n _ 2m)4 (4n _ 4m)

[ (2n —2m) (3m —om-1_ 22"“1) ] Alet

asy — a%‘ =

1 d@-—a)4

8(2n —omZ(3n_gm) v)

c1 A2 S (4 — 02)
+2(2n—2711)(4n—4m) Pt @ty
_a (44_ C%) (@2 + 12

— 2
+(421) (=22 = (1~ |y|2>w)]
(4 - C?)z A? 2
16 (37 — 3m)> ==v)

G i O
o™ (30— 3m) (47 — 4m)
= (2n _ 2m)4 (4n _ 4m)
cjA?
(@ —2m) (@ — )
o (4—2) A2
2 (27 — 2m) (47 — 4m)
c%(élfc%)As
n__9om 2 n__QqAm
| SEEEEED (Ja] 41y
i@ _omyan—4my |
c%(4—c%)A2
| e | (P )
L 4@2r—2m)(dr—4m)
(4 - c%)2 A?
16 (37 — 3m)?

"1

(2 + ly])*.
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Since p € P, the function p(e?z) (f € R) is also in the class P and
therefore we can assume without loss of generality that ¢; = ¢ € [0, 2].
Thus, for A = |z| <1 and g = |y| £ 1, we obtain

|lazas — a3| £ My + Ma(X+ p) + M3(A\> + p?) + My(A+ p)* = F(X, ),

where

A2 ( 1, A ) A
= = (2n_2m) (2n_2m)4 >
My = Mi(e) = T —gm L Semac? =0,
(2r—2m)
M2 = MQ(C)
{ (4" —4™) A }
: 6(3" — 3m) (2" — 2m
_Ai 02(4_02) + ( 2)( ) zo’
24 (3" —3m) (2n — 2m)? (47 — 4m)
= = — — <
M3 = Ms(c) S (A — 4y (20 = 2m)c(4 c“)e—2) =0,
A? 2\2
My=My(c)=———(4—c)*20.
4= Mile) = Jg g g ) 2

Now we need to maximize F'(\, u) in the closed square
S={(\ W 0SAS10<u<1),
for ¢ € [0,2]. By differentiating the function F'(\, u) partially, we have

oF
(2.23) %= My + 2M3\ + 2My (A + p) = 0,
and

oF
(2.24) o My + 2M3zp + 2My (A + p) = 0.

By equating () and (), we obtain
A=, A= (—Ms) /2(Ms +2My).

Since, the function F'(A, i) cannot have a local maximum, we investigate
the maximum of F'(A, ) on the boundary. For A =0 and 0 £ A =1
(similar to 4 = 0 and 0 < p < 1), we obtain F(0, ) = My + Mau +
(M3 + My) u? = G(u). We attained the interior point of 0 < ¢ < 2 for
0 < pu =1 when M3+ My = 0. The function G'(u) > 0 for A > 0
indicates that F' is an increasing function. Therefore, the upper bound
for functional ‘a2a4 - a%‘ corresponds to 4 = 1 and ¢ = 0, which can be
simplified into G'(u) = 2 (M3 + My) p+ My = 0. Hence, the maximum
of G(u) occurs at =1 and

max{G(pn)} = G(1) = My + My + Mz + M.
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For the case when M3+ My < 0, we note that My +2 (Ms + My) p =
0 for 0 £ p £ 1 and any fixed ¢ with 0 £ ¢ < 2. It is clear that
My + 2(Ms+ My) < 2(Ms+ My)p+ My < My and so G'(u) > 0.
Hence, for ¢ = 2, we obtain

(2n _ 2m) (3m o 2m—1 o 22m—1)

2 (37— 3m) — (47 — 4™)

(@ —4m) (2 —2m)!

4A?

16 A% [

F(A p) =

T2y @ —am)
(2n . 2m) gm _ 2m—1 o 22m—1
o 4A? 142 [ +2m (3"(— 3m) — (4" —4™) ) ]
(47 —4m) (2n — gm)*
1
MRS } |

Next, we looking for A = 1 and 0 £ A < 1 (similar to 4 = 1 and
0 < p = 1), we obtained
F(1,p) = H(pu) = My + Mo+ Mz + My + (Ma + 2My) p+ (M3 + My) pi®.
Similarly, to the above cases of M3 + My where =1, we get
max{H (u)} = H(1) = My + 2My + 2M3 + 4My.

Since G(1) < H(1), we attained the interior point of ¢ € [0,2] where
maximum of F occurs at A = 1 and p = 1 . Therefore, F(\,u) =
F(1,1) = M1 +2Ms + 2Ms + 4M, = K(c). By substituting the value of
My + My + Ms + My in the function K, we have

(2n _ zm) (3m _ 2m—1 _ 22m—1)
K(C) _ A2 C4 16A2 +2m (3n o 3m) o (4n _ 4m) :|

16 (4 — 4m) (20 —gm)t
A 4™ 4(2n — 2m) (40 — 4m) — 8 (3" — 3m)2

(2n _ 2m)2 (3n _ 3m) (2n _ 2m) (3n _ 3m)2

48 (3" — 3m)?
) 16A (4™ — 4™) —32(2" — 2m) (47 — 4™)
B O e R I DI D,

64 (4™ — 4™)?
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Assume that K(c) has a maximum in an interior point ¢ of [0,2]. By
differentiating the function K(c) with respect to ¢, we have

(271 _ 2m) gm _ 2m—1 o 22m—1
K — A? 203 ] 4om (3”(— 3m) — (4" —4™) ) ] 4
(€)= Tgn—amy | ¥ (2n — om)
A —am) 4(27 —2m) (4" — 4™) — 8 (3" — 3™)?
(20— 2m)% (3" — 3m) (20 —2m) (37 — 3m)?
48 (3" — 3™m)?
o 16A4 (4™ — 4™) —32(27 — 2M) (47 — 4™)
(2 —2m)*(3n—3m) (20— 2m) (3" - 3m)°
By letting

1642 [(2n_2m)(3m_2m—1_22m—1)+2m(3n_3m)_(4n_4m)]
G2’

4A(47—4m)
(2n—2m)*(3n—3m)
4(27—2m) (4" —4™)—8(3"—3™)?

v
o

ey

that is
Ae [0, (I)(n,m)] ,

where

(4n _ 4m)(2n o 2m)2
(I)("vm) = (2n _ 2m) (3m _ 2m—1 _ 22m—1)

(30 3 (47 — 4™
16 (2n _ 2m) (3m o 2m—1 o 22m—1)

4+2m (3" — 3M) — (4" — 4™)
x {(4" — 4m)(2" — 2m) — 2(3" — 3™)?

1 1-—
X + (4n _ 4m)2(2n _ 2m)

Therefore, K'(c) > 0 for ¢ € [0,2]. Since K is an increasing function
in the interval [0, 2] so the maximum point of K is on the boundary for
¢ = 2. Thus,

max K (c) = K(2)
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4A2 <2n _ 2m) (3m _ 2m71 _ 22m71)
_ o 4A +2mM (3" — 3M) — (4™ — 4™)
(47 —4m) (27 — 2m)

(3n _ 3m)2 _ (2n _ 2m) (4n _ 4m) (4n _ 4m) } .

(2n —2m) (3" = 3m)° (8" —3m)°
Hence,
n __ om m _ om—1 _ 92m—1
9 4A 27 (3" —3M) — (4™ —4™)
a2y — a3‘ <
@ —am) @~ 2m)

A it O Gt WO Ot
(27 —2m) (37 — 3m)” (3n—3m)?* |
Also, by letting

16142 [(2n_2m)(3m_2m71_22m71)+2m(3n_3m)_(4n_4m)]
(2n_27n)4

4A(47—4™)
(2n—2m)%(3n—3m)
4(2m—2m) (4" —4™)—g(3"—3™)2
(2n=2m)(3n—3m)"

1\
o

_.I_

that is
Ac [(I)(n,m)v 1] .

We observe that ¢y < 2, that is ¢p is in the interval [0,2]. Since
K'(cp) £ 0, the maximum of K (¢) occurs at ¢ = ¢yg. Therefore,

2A(AT—A™) | 6(3n—3m)2—d(dn—4m)(2n —2m)
B (2n,2m)2(3n,3m) (2n,2m)(3n,3m)2
ma’X{K(CO)} - K 4A2[(2n72m)(3m72m—1722m—1)+2m(3n73m)(4n74m)]
(2n_2m)4
A(4n—4m) (21 —2m) (47 —4m)—2(3n—3m)2
- (2n_2m)2(3n_3m) + (2n_2m)(3n_3m)2
- At 64(4™ — 4™)
- 16(4n —4m) | (37 —3m)2

n_ om 2
X |B+ ey | (492 + 5E + €2)

3 2A(2n +2m 2
(B +€)° + | + iyt




80 H. ORHAN, H. ARIKAN AND M. CAGLAR

Hence,

At 64(4™ — 4™)
16(4n — 4m) { (37 — 3m)2

n | om 2
|+ ey | (492 + 5%E + £2)

a2a4 — a§! =

+ 5 )
3 2A(2n42m
(SB + 6) + |:% + W]
where
% — 6(3™ — 3™)2 — 4(4" — 4™)(2" — 2™)
- (2n _ 2m)(3n -3 )2 )
£ = —2(3" —3M)* 4+ (2" —2M)(4" —4™) A" +27M)
) (223 = 3" @ —2m)(3 3"’
e 4A2 [(3m —2m—1 —22m=1) 4 gm (37 — 3™) (2" 4-2)]
- (271 _ 2m)3 :
The proof of Theorem @ is completed. O

For n =1, and m = 0 in Theorem P.2, we obtained the result of Soh
et al. (2021) as given in Corollary R.3.

Corollary 2.3. Let f(z) given in ) be in the class Sk(B,6,1,0). Then
4
‘a2a4 — a%‘ < §A2 (4A2 + 1) .

For 3=0,0=0and n =1, m = 0 in Theorem PR.2, we obtained the
result of Deniz et al. (2015) as given in Corollary

Corollary 2.4. Let f(z) given in ) be in the class S3(0,0,1,0).
Then

20
lasas — a3| < 3

3. CONCLUSION

In the present paper, we found an upper bound of the initial Taylor-
Maclaurin coefficients |az|, |a3| and |a4| and also of the Fekete-Szego
functional for functions in the class Sk(3, 6, n, m), which we introduced
here. We also obtained a significantly-improved upper bound of the
functional ‘a2a4 — a%‘ for the functions in the class Sk(5,60,n,m).

Acknowledgment. The authors wish to thank the referees for their
valuable suggestions.
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