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ABSTRACT. We first construct new Hermite-Hadamard type in-
equalities which include generalized fractional integrals for convex
functions by using an operator which generates some significant
fractional integrals such as Riemann-Liouville fractional and the
Hadamard fractional integrals. Afterwards, Trapezoid and Mid-
point type results involving generalized fractional integrals for func-
tions whose the derivatives in modulus and their certain powers are
convex are established. We also recapture the previous results in
the particular situations of the inequalities which are given in the
earlier works.

1. INTRODUCTION

The inequalities discovered by C. Hermite and J. Hadamard for convex
functions are considerable significant in the literature (see, e.g.,[14, 21],
[B7, p.137]). These inequalities state that if f : I — R is a convex
function on the interval I of real numbers and k1, ke € I with k1 < Ko,
then
11 (M) < 1/'€2 I (30)dse < F (k) 41 (k2)

2 R2 — K1 Jk, 2

Both inequalities hold in the reversed direction if f is concave.

Over the last few decades, many papers have focused on generaliza-
tion of the inequality (EI) and obtaining trapezoid and midpoint type
inequalities which give bounds for the right-hand side and left-hand side
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of (EI), respectively. For instance, in [15] and [29] authors first obtained
trapezoid and midpoint inequalities for convex functions, respectively.
Sarikaya et al. extended the inequalities in (@) for Riemann-Liouville
fractional integrals and the authors also proved some corresponding
trapezoid type inequalities in [41]. On the other hand in [22], Igbal
et al. obtained some midpoint type inequalities for convex functions
via Riemann-Liouville fractional integrals. Moreover, Jleli and Samet
obtained Hermite-Hadamard type inequalities and some corresponding
trapezoid type inequalities for generalized fractional integrals in [25].
Fractional calculus, on which many studies have been made in recent
years, can be said to be a generalization of classical calculus. General-
ized fractional integrals are one of the cornerstones of fractional calculus.
Generalized fractional operators generalize many fractional types. For
the other similar inequalities, please refer to [2, 9, 12, 27, B0, B1].

The overall structure of the study takes the form of five sections with
introduction. The remainder of this work is organized as follows: we first
give definitions of some kinds of fractional integrals and we also men-
tion some works which focus on fractional version of Hermite-Hadamard
inequality. In Section P, the new version of Hermite-Hadamard type
inequalities for generalized fractional integrals is proved. By utilizing
generalized fractional integrals, we present some midpoint and trape-
zoid type inequalities for functions whose_first derivatives in absolute
value are convex in Section f and Section @, respectively. Finally, some
conclusions and further directions of research are discussed in Section 5.

Definitions of Riemann-Liouville and Hadamard fractional integrals
are given as follows.

Definition 1.1 (see, [28]). Suppose that F is the element of L[k, K2].
The left-sided Riemann-Liouville fractional integral Jg ,F and right-
sided Riemann-Liouville fractional integral J _F of order a > 0 with
k1 > 0 are defined by

T2 () = F(la) / (e 1 (€)de, x>,

and

JO_F () = F(la) / Tt (O de, <

respectively. Here, I'(«) is the Gamma function and
Tor o F () = Jg, F (30) = F (52).

Definition 1.2 (see, [20, 28]). Suppose that f is an element of Lj [k1, k2]
The left-sided Hadamard fractional integral Ji | F and right-sided.
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Hadamard fractional integral J;, _F of order a > 0 with k1 > 0 are
defined by

1 [~ ol d
JgﬁF(%):P(a)/ﬁ (111?) F(ﬁ);, % > K1,

1

and

S PR T L (R L. S
JnQ—F(%)_F(a)/ (1 ) F(g)f’ < K2,

B »
respectively.

We now give generalized fractional integrals which will be used in our
main results.

Definition 1.3 (see, [28]). Assume that p: [k1, k2] — R is positive and

monotone increasing function on (k1, k2] such that the derivative p/()

is a continuous on (k1, k2) and let a > 0. The left-sided (I:+.pF(%)) and
10

right-sided (I:;pF (5¢)) generalized fractional integrals of f with respect

to the function g on [k1, k2] of order « are defined by

Igl"l';PF(%) = F(la) /N )

lfadg’ > ki,

 To2) — ple)]
e ©r (©)
a ) = 1 " PEI(E < K
B 0= |, = g <
respectively.

The Hermite-Hadamard type inequalities involving left and right-
sided Riemann-Liouville fractional integrals are first proved by Sarikaya
et al. in [41].

Theorem 1.4. Assume that F : [k1, k2] — R is a positive mapping for
0 < K1 < Ka, and let F be an element of Ly [k1,ke]|. If F is a convex
function on [k1, ke|, then one has the inequalities

F (k1) + F (k2)

2 )

Also, a new version of the inequalities (@) is provided by Sarikaya
and Yildirim in [40].

< for a > 0.

Theorem 1.5. Assume that F : [k1, k2] — R is a positive mapping for
K1 < ka2, and let F be an element of Ly [k1, k2] . If F is a convex function
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on [k1,ka|, then we have the inequalities

(1.3)
K1+ Ko 20‘_1F(OZ + 1) o o o o
F(5) < T g 000+ g F00)
< ) 41 (52)
— 2 °

Whereupon the Hermite-Hadamard type inequalities (@) which in-
volve left and right sided Riemann-Liouville fractional integrals are given
by Sarikaya et al., a great many mathematicians have studied to es-
tablish new Hermite-Hadamard type inequalities including various frac-
tional integrals such as k-fractional, Hadamard, Katugampola, Con-
formable and local fractional integrals. For some of them, please see
[, B-6, B, 10, 11, 13, 1719, 22-24, 26, 33-36, B9, 42-53] and the refer-
ences included there. Additionally, the interested reader is also referred
to [[7, 20, 28, B2, B8] for more details about fractional calculus.

In [25], Jleli and Samet proved the following Hermite-Hadamard type
inequality:

Theorem 1.6. Suppose that p : [k1, k2] — R is a positive and monotone
increasing function on (K1, k2] such that the derivative p'(5) a continuous
on (K1, k2) and let o > 0. If F is convex on [k1, k2|, then, for s € [k1, k2],
one has

(14) F (”1 _g ”2) e

¥ (R2) + I, , W (k1))

IMNa+1) (
4[p(k2) — p(r1)]*
F (k1) + F (k2)

- 5

IN

IN

where
(1.5) U(s) = F (32) + F (k1 + k2 — ).

The main aim of this work is to establish new Hermite-Hadamard type
integral inequalities including generalized fractional integrals for convex
mappings. Moreover, some trapezoid and midpoint type inequalities
which involve generalized fractional integrals are obtained. We should
also note that the results developed in this paper produce the inequalities
involving Riemann-Liouville and Hadamard fractional integrals.

2. GENERALIZED HERMITE-HADAMARD TYPE INEQUALITIES

In this section, we first define some notations. Supposing that p :
[k1, k2] — R is a positive and monotone increasing function on (k1, k2]
such that the derivative p’(s) is continuous on (k1,k2) and let a > 0.
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We define the following positive mapping on [0, 1],

21 AJ©) = [p(’%m)_p(l;fmﬂ;ﬁ@)]a

+ [p(lggmrl— 1;552) —p<m—;ﬁ2>r

Specifically, if we choose £ =1 in (@), we possess the notation

A3 = [t = o () | [0 () = )]

We also consider the identity mapping ¢ instead of p (i.e. p(§) = £(§) =
€), then we have

(2.2) A1) = W

Moreover, for p(§) = In¢&, one has
(2.3)

0o (g o (0]

and if we take £ =1 in (@), then we possess

K1+ Ko 1< 2K9 @
(1) := [ln —= |
ln( ) |:n 2K :| + |:nf£1+l<62:|

In this section, we examine how Hermite-Hadamard type inequalities
come out for convex functions and generalized fractional integrals.

Theorem 2.1. Assume that p : [k1, k2] — R is a positive and monotone
increasing function on (K1, ke| such that the derivative p'(s¢) is contin-
uous on (k1,kK2), and let a > 0. If F is a convex function on [k1, k2],
then we have Hermite-Hadamard type inequalities including generalized
fractional integrals

(2.4)

K1+ K2 Lla+1) [, K1+ K2 a K1+ K2
<
F< 2 > — 2A%(1) Ifiﬁ-;p\lj 9 +Ifi2—;ﬂ\1] 2

< F (k1) + F (k2)

— 2 9
where the mappings ¥ and Af) are defined as in (@) and (@), respec-
tively.

Proof. Due to the fact that F is a convex mapping on [k1, k2|, we can
write

(2.5) r <”2+y> L e+ FQ)
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for s,y € [k1, ko] . Using convexity of F after taking » = 1+§ R e
and y = 585, + 1k, for € € [0, 1], we find that

(2.6)
r (”1;"32> < %F <1—£§m+ 1;€/<52> +%F <1;§m+ 1;5@)
< F (K1) + F (ko)
<

After integrating the resulting inequality with respect to £ over (0,1)
after multiplying both sides of (R.6) by

Ko — K1 4 <1+£'i1 + ”2>

20 [y (ge) - p (s + SEa)]

then one has

_ 1 r <17/<61 + 12;5@)
K9 K&1F<I€1+/€2>/ de
*

+£
2
2I' (o) 2 K1tk 14 1-¢ 1o
p(=52) —P( “1+T’f2>}
1-¢
2

< R2 k1 /1 p/<1%£’ﬂ+ "2
— 11—«
ANCGY I [p (m-s-@) —) (1+£/<c1 i ?é 2)}

X [F<1+§n1+ 1_6/432) —i—F(l_gm—l— 1_55/@2)} d¢

¥ ‘
7ays

N—

2 2 2

Ko — K1 {F(m) + F(@)] /1 0 (1%5%;1 + %m) de.
0
|

- 2r 2 _ 1-a
“> p(=552) o (M4 + 55 ) |

By change of the variable u = %m + 12;51@ with du = —"2571d¢, it is
observed that

K1+ K2 1 e P (u)
F — T du

20 0@ e [p(m2) — p(u)]
K1tkg
R J (W)
— 2l() Ji, [p (BF52) — p (u)]
K1+kK

F (k1) + F (K2) / kR

2I'(«) K1

= [F (u) + F (k1 + ko — u)] d€

IN
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If we use the Definition and the integral equality

’:;m [p(’”?”p)/ (—u)p ] é [p <K1;H2> - P(m)r,

we establish the

1 K1+ ko * K1+ Ko
Ny (U o] (250)
1., K1+ K2
SQIHH-;P\IJ( 9 )

< F(;;z;fl(?) [p<m;ﬁ2) —p(m)]a-

In a similar way, integrating the resulting inequality with respect to &
over (0,1) after multiplying both sides of (R.6) by

K2 — K1 pl (%/{1 + 12i£'%2)
or _ H 1—a’
) o (M5t + 55a) = (252)]

we conclude that

1 K1+ Ko\ ]? K1+ Ko
2. e —
ey e ()] (%)
1 o K1+ Ko
< ijffz—;P\Il < 9 >
F (k1) + 1 (k2) k1 +r2\]”
< DAL P A2 _
S e t) plr2) =p | —
If we sum the inequalities in (@) and (@), then we have

A7 (1) K1+ R\ 1 K1+ Ko K1+ Ko
L < = |I¢,. W e v
o’ (M57) 53 B (5 +eow (25
AZ(L) [F (k1) + F (k2)
“D(a+1) 2 ’
which completes the proof of the theorem. O

Remark 2.2. If we choose p(§) = ¢ in (@), then we possess
K1+ K2 20-1T (a + 1) K1+ K2 K1+ K9
< > U O U ——
r ( 2 > = (ke — k) et 2 e 2
I (r1) + I (K2)
2 Y
which is given by Dragomir in [16].

IN
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Corollary 2.3. Under assumptions of Theorem @ with p(§) = Ing&,
one has the recent result including Hadamard fractional integrals

K1+ Ko MNa+1) K1+ Ko K1+ Ko
< ) a v
F< 2 >“2A%@) Tt 2 I 2
< F (k1) + F (K2)
= 2 )
where the mapping Af: is defined as in (@)

3. GENERALIZED TRAPEZOID TYPE INEQUALITIES

We present some trapezoid type inequalities involving generalized
fractional integrals and their particular results in this section. For this,
we first give an equality involving generalized fractional integrals in the
following Lemma.

Lemma 3.1. Assume that the mapping p is defined as in Theorem @
and let a > 0. If F : [k1, k2] — R is a differentiable mapping on (K1, k2)
with k1 < Ka, then we possess the identity including generalized fractional
integrals as

(3.1)
F (k1) +F (k2) T(a+1) o K1+ Ko o K1+ Ko
2 g o (5 e (M5
1
_ k7K1 o
X [F/<1g§/€1+1;§/€2> —F/<1;£/€1+1;§/€2>] dg,

where the mappings ¥ and A§ are defined as in (@) and (@), respec-
tively.

Proof. By integration by parts, it is easy to see that

1 _ a
) o)
X\I//<1;—§/€1+ 1;€I€2> d€
. 2 K1+ K2\ 1+£l€+1_§f€ «
S L G Pl T

1+¢ 1-¢ !
)\
X < 5 K1 + 5 /@2)

0
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L (Bt i)
—l—a/ s
O () <o (M o+ )

X@<1;£ﬁ1+1ggﬁ2>d§

- [ (22) - ]| v

K2 — K1

K1+KQ

200 2 pl(u)
+ W (u)de
Ko — K1 /m1 o (5552) — p(u)] (u)

_2l(a+1) , T K1+ Ko
- Ko — K1 K1+3p 2

2 [p (”1+”2) —p(m)r[F (k1) + F (r2)].

Ko — K1 2

Similarly, by integration by parts, it is observed that

! 1- 1 «
(3.3) I = /0 [P( 5 glﬂ + ;51‘?2) - P(m;@)]
x U’ <1 —glﬂ—i— 1+€I€2> dé

2 2
= [t = ()] 4 )
(e +1) K1+ K
e —— 152_;[,\1/( 1 : 2>.
From () and (@), it follows that
" (k) +F (k) T(a+1)
Ko — K F (k1) +F (K I'la+1
43\3(1)1(12_11): : 2 - - 2A4(1)

K1+ K2 K1+ K2
[t (55 sy (2]

Also, owing to the fact that U'(3¢) = F'(5¢) — F (k1 + k2 — %), it is found
that

1 «
he (55) o (e )|

X |:F/<1+§/€1+1_§/€2> —F’<1_651+1+€m2>} d¢

2 2 2 2
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and

1 _ «@
)

X [F’(lggnﬁr 1;_5/@2) —F'(lgénﬁr 1;§n2)]d§-

Thus, one possesses the integral identity
(3.5)

I, — I

1 _ —
—/0 AZ(8) {F/ (1 5 §K1+1_;§n2> —F' (1;§H1+ ! 5 gm)] d€.

If we substitute the equality (@) in (@), then we can readily attain
the required identity (@) O

Theorem 3.2. Assume that the mapping p is defined as in Theorem @
and let a« > 0. If |F'|is a convex mapping on [k1, ka], then we have the
trapezoid type inequality including generalized fractional integrals as

‘F(H1)+F(/€2) MNa+1)

2 2A4(1)

o K1+ K2 o K1 + Ko
o (255) rimer (25

K9 —

1
K1 @
< ‘s Il + )] /0 A3(6)] de.
where the mappings ¥ and AZ‘ are defined as in (@) and (@), respec-
tively.
Proof. Taking absolute value of both sides of (@), we find that
‘F(m)%—F(m) I'a+1)

(3.6)

2 240 (1)
a K1+ K2 a K1+ K2
o (257 i (250
Ko — K1 r 1-¢ 1+¢
< AS (¢
<m0 /} \‘ ( SR ke | de

/%'2—/%1 1+¢€ 1-¢
s [ (15

Because |F'| is a convex function on [k1, ko), it is easy to see that

F’<1;5 1+17+g 2)

(3.7)

<]+ S ).
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and

1 1— 1 1 —
(e ) < e 5

Finally, substituting the above inequalities in (@), by the elementary
analysis operations, it is found that

F (/ﬂ) + I (Rg) F(Oé + 1) o K1 + Ko o K1+ Ko
B IHQ—W\II IH1+ p\I/ 9

2 2A5(1) 2
< ey Il 1) / A%(6)] de,
which finishes the proof. O

Remark 3.3. If we write ¢ instead of p(§) in (@), we reach the result

e B b () e (257

K2

7WHF /‘?1}+‘F K2 H

Corollary 3.4. Under assumptions of Theorem @ with p(§) = Iné&,
one has the inequality involving Hadamard fractional integrals as

F(m)‘gF(fiz) B 1;(;3;; 1)) {ng‘l’ <’i1;—@> +J54 Y (Iﬂ;—@)”

reoy —
3411%( [|F/ (k)| + |F'(k2) /\A )| de,

where the mapping Af: is defined as in (@)

Theorem 3.5. Suppose that the mapping p is defined as in Theorem

and let « > 0. If |[F'|?, ¢ > 1, is a convex function on [k1, ka] with
%4—% =1, then we possess the inequality including generalized fractional
integrals as

(3.8)

'm [I€W>+;p\y(ﬁ2) +IZ”'§“2)—W\II(M)} —F </~c1 —QF m)’

4Aa p—— (/ ‘Aa ‘pd§>

<IF (k)" +3 \F’(nz)lq> : N <3 IF (k)" + |F’(/<52)|‘1> 3]

4 4
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Ko — K L up v . ,
< i) (4 JALYG] dﬁ) [1FGs)] + 1F s2)]]

where the mappings W and A§ are defined as in (@) and (@), respec-
tively.

Proof. Applying the well known Hélder’s inequality after taking modulus
in both sides of (@), we find that

(3.9)

(4 s ()

§4j\a(/<;1/ A% () “ ( 5"‘1+1;§n2>‘d5
Zi\?ml/ A% < ;£“1+1;£/@2>‘d§
B (e w (] (555 )
g () ([ (555 )

2 2
Using the fact that |F’]|? is a convex mapping on [k1, ko], it is seen that

1 _ q
(3.10) /OF’<1 §n1+1+§n2>

d
2 2 ¢

11—5, o }
S d
< [[F5Erers E r] ac

_ F s+ 31F (ko)
4 )

F’<1;£m1+1;£/€2> dg

1+¢ q 1-&, ., q
g/o[ (o \+2]F(f€2)wd§

_ 3 (s 4 [F (k2) |

1 )
If we substitute the results (H and H) in (@), then we achieve
the first inequality in (B.§).

and

(3.11) /01
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For we to proof the second inequality, assume that x11 = |[F’ (k1)|?,
K91 = 3’1(/ (K2)|q, K12 = 3|F/ (/{1)|q and Koo = |F/ (/4,2)‘(1. Using the
inequalities

n

n n
(3.12) Z (Kik + kog)® < Zﬁfk + ank, 0<s<1,

k=1 k=1 k=1

and 1+ 3% < 4, then the desired result can be readily attained. O

Remark 3.6. If we take p(§) = £ in (@), we acquire the inequalities
involving Riemann-Liouville fractional integrals as

(3.13)

<I<,2—I€1 1
- 4 ap+1

<|F’(m)lq +3 |f'<f~e2>|q>3 . <3 ()7 + w@)w) ;]

X

4 4

< () ]+ )]

Corollary 3.7. Under assumption of Theorem with p(§) = In&, one
possesses the inequalities involving Hadamard fractional integrals as
(3.14)

i) o) P sz W] = (572

< g () wore)

<|F'<m>|q '3 \F'<n2>\Q>i . (3 |F'(/<a1)|q4+ |Ff<@>|q> 2]

X

K2 — K1

1 »
< it (o [ @) el + ]

where the expression Af} is defined as in (@)
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4. GENERALIZED MIDPOINT TYPE INEQUALITIES

In this section, some generalized midpoint type inequalities involving
the generalized fractional integrals are established by using the identity
given in the following Lemma.

Lemma 4.1. Supposing that the mapping p is defined as in Theorem

and let o > 0. If F : [k1,K2] — R is a differentiable mapping on
(K1, K2) with k1 < Ko, then we have the identity including generalized
fractional integrals as

(4.1)

K1+ Ko I'(a+1) K1+ Ko K1+ Ko
- ¢ .. v I8 v
F ( 9 > QA%(l) K1+;p 2 + K2 —;p 2
R9 — K1

1
=T, (e - ag@)
X [F’(lgngrl;g/@)—F’<1;§&1+1—;€ﬁ2>}d€,

where the mappings W and A§ are defined as in (@) and (@), respec-
tively.

Proof. By integration by parts, it is deduced that

L) ] b (235 55

X\I//<1+§/€1+1£I€2> df

2 2

. 2 K1 + Ko ¢
— 2 (o (B52) - o)
1*614*/432 1+§ 175 @
() o (S 5] )
1
X@<1;—£N1+1;§I€2>

1 I (iﬁ/ﬁ + 5@) 1 1—
—a/ 2 2 1a\Il< +§/<;1+ 5/12) d€
O o (m5m2) = (k1 4 )|

2 K1 + Ko « K1+ K2
() - ot] v (572)

K1+ko

— 2a ’ p(w) U (u) du
/| n (u)

K2 — K1

b (42) el (25
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2N (a+1) K1+ Ko
-1 U .
Ko — K1 r1t3p < 2

In a similar way, it is easy to see that

1 . « a
ne [ (P (e 5te) o (052 o= (25)])
X\P/<12§H1+1;£I€2> df
4 K1 + Ko @ K1+ K2
s (22 (259

B 2F(a+1)Ia v (Hl+l{2>'

Ro — K1 m2Ts 2

Then, if we sum the integrals J; and Jo and later we multiply the
resulting equality by Z’ff\%(“ll), then we possess
P

(4.2)

Ko — K1 K1+ K2

A3 =1 (M)
Fa+1)

K1+ Ko K1+ K2
- 1Y,V e v(——)|.
gy e (572) i (7572
Also, using the fact that W' () = F/(3)—F (k14 K2 — ), it is observed
that

(4.3)
[ (57) ]
) (e )

X [F'(l_;gm—kl;gﬁg) —F’<1;£m1+1;£/€2>] dg,

(4.4)
e [ (5250 o (252
- [P(/‘GQ) —p (Kl;@ﬂa)

X [F’(lggfcﬁrl;Hz)—F’(lgéerlggHz)]dé

Substituting the identities () and (@) in (
(1.1) can be easily obtained.

@), the required equality
O
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Theorem 4.2. Assuming that the mapping p is defined as in Theorem
and let « > 0. If |F'| is a convex function on [k1, k2|, then the fol-

lowing midpoint type inequality involving generalized fractional integrals
holds:

! (””’”)- aip [ (57) 1w (M5

1
B ] + 1 ()] /0 [A%(1) — A%(E)] de,

/\

- 4Aa

where the mappings ¥ and Ay are defined as in ) and @), respec-
tively.

Proof. If we take modulus in both sides of (@), from the absolute value
inequality for integrals, then we get

K1+ K2 MNa+1) [, K1+ K2 o K1+ K2
r(5) - g [ (257 e (5
— K1 o AS( 14+¢ 1-¢
—4Aa /|A \‘F’( SRt Hz)'dé

K2 — K1 o o A 1=& 1+¢
+4Ag( /]A — A9 F< 5k 5 ﬁz)‘dg

Owing to the fact that |F’| is a convex mapping on [k1, k2], it follows
that

K1+ K2 I'(a+1) K1+ K2 K1+ K2
- I8 .. v 2 v ——=
'F< 2 ) 2A5(1) [’“” < 2 >+ e ( 2 >H

K « Ct
< S Gl 1 ) [ a0 - a3(6) e
which finishes the proof of the theorem. O

Remark 4.3. Taking p(§) = ¢ in (@), we have the inequality

K1+ K2 2070 (e + 1) [, K1+ K2 o K1+ K2
' ( >_ e e (M) (M

<o (@H) (1 (5] + | (2]

Corollary 4.4. Under the same assumptions of Theorem, @ with p(§) =
In&, the following inequality involving Hadamard fractional integrals




HERMITE-HADAMARD, TRAPEZOID AND MIDPOINT TYPE ... 101

holds:
(4.7)
K1+ K2 Fla+1) [, K1+ K2 a K1+ K2
(") 2m«>Pw&< : >+%r@<zz>ﬂ
Rg — [e]
< AT (1 HF (k)| +|F' (k2) \A m(&)] d&,

where the notation A is defined as in (@)

Theorem 4.5. Suppose that the mapping p is defined as in Theorem

and let o > 0. If |[F'|", ¢ > 1, is a convex function on [k, ks)
with Il) + % = 1, then the following midpoint type inequalities including
generalized fractional integrals hold:

(4.8)
() - S e (M57) e (5]

< ([ -

(Bl )t ) (Lol sl o >]

4 4

< GheC (s / A5 () ;}(ﬁ)\pds);[\F’<m>\+\F’<m>],

where the mappings ¥ and A§ are defined as in (@) and (@), respec-
tively.

Proof. Taking absolute value of both sides of (@) and later using Holder’s
inequality, we conclude that

K1+ Ko MNa+1) [, K1+ K2 o K1+ K2
(5 - iy et (M572) + 1 (252
k2 — K1 ! o o %
< i ([ 10 - sz ac)
1 _ ¢ \i
(L3855

2
([ wara
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1 1 1 q 2
— + q
X </ r’ < €:‘-<u1 + éh/£2> d§>

2 2
Ko — K o
= 43\0 ] </ [450) — K50 ds

i
<3|F<m>|q+v m) ( mq+3|F<m>|)1]_

4

The proof of the first inequality in (@) is thus completed.
Using the inequality (@) for k11 = 3|F' (k1)|*, k21 = |F' (k2)|7,
1
o = |F' (k1)L and ko2 = 3|F' (k2)|?, form 1 + 3¢ < 4, the second
inequality in (4.§) can be readily deduced. The proof is thus completed.
O

Remark 4.6. Under the same assumptions of Theorem @ with p(§) =

&, the following inequalities involving Hadamard fractional integrals
hold:

(4.9)
K1+ Ko 204711—\(06 + 1) o K1+ K9 o K1+ K9
'F ( . ) e |t (T e (P

<t ([ameya)

<3 F (k)| + \F’(m)lq>3 . (!F’(,ﬁ)q +3 |F,(ﬂ2)|q);]

4 4

1
Ko — K ! o

([ a-ey ) ]+l
4a 0
Corollary 4.7. Choosing p(§) =1n¢ in (@), then one has the inequal-
ities

(4.10)
K1+ K2 MNa+1) [, K1+ K2 o K1+ K2
() S Wb )av (252

<o m ([ i - s de)

<3|F (k1)|? + |F (m)lq>3 ) <\F’(n1)|q +3|F,(H2)|q>;]

=

4 4
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K2 — K1

1 :
< et (4 [ 1t - agiorac)” [ o)+ )

where the notation A, is defined as in (@)

5. CONCLUSIONS

In this paper, we present several generalized inequalities for convex
functions via generalized fractional integrals. It is also shown that the
results given here are the strong generalization of some already pub-
lished ones. It is an interesting and new problem that the forthcoming
researchers can use the techniques of this study and obtain similar in-
equalities for different kinds of convexity in their next works.

Acknowledgment. The authors would like to express their sincere
thanks to the editor and the anonymous reviewers for their helpful com-
ments and suggestions.

REFERENCES

1. G.A. Anastassiou, General fractional Hermite—Hadamard inequal-
ities using m-convexity and (s, m)-convezity, Front. Time Scal.
Ineq., 1 (2016), pp. 237-255.

2. M.A. Ardic, A.O. Akdemir and E. Set, On New Integral Inequali-
ties via Geometric-Arithmetic Convexr Functions with Applications,
Sahand Commun. Math. Anal. 19(2) (2022), pp. 1-14.

3. H. Budak and M.Z. Sarikaya, Hermite-Hadamard type inequalities
for s-convex mappings via fractional integrals of a function with
respect to another function, Fasc. Math., 27 (2016) pp.25-36, 2016.

4. H. Budak, On Fejér type inequalities for convex mappings utilizing
fractional integrals of a function with respect to another function,
Result. Math., 74(1) (2019), 29.

5. H. Budak, New Hermite-Hadamard type inequalities for convex
mappings utilizing generalized fractional integrals, Filomat, 33(8)
(2019), pp. 2329-2344.

6. H. Budak, H. Kara, R Kapucu, New midpoint type inequalities
for generalized fractional integral, Comput. Methods Differ. Equ.,
10(1) (2022), pp. 93-108.

7. H. Budak, C.C. Biligik, M.Z. Sarikaya, On Some New Eztensions of
Inequalities of Hermite-Hadamard Type for Generalized Fractional
Integrals, Sahand Commun. Math. Anal., 19(2) (2022), pp. 65-79.

8. S.I. Butt, M. Umar, S. Rashid, A. O. Akdemir and Y. M. Chu, New
Hermite—Jensen—Mercer-type inequalities via k-fractional integrals,
Adv. Difference Equ., 1 (2020), pp. 1-24.



104

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

H. KARA, S. ERDEN AND H. BUDAK

B. Celik, M.E. Ozdemir, A.O. Akdemir and E. Set, Integral In-
equalities for Some Convexity Classes via Atangana-Baleanu Inte-
gral Operators, TJOI, 5(2) (2021), 82-92.

H. Chen and U.N. Katugampola, Hermite-Hadamard and Hermite-
Hadamard-Fejer type inequalities for generalized fractional inte-
grals,J. Math. Anal. Appl. 446 (2017), pp. 1274-1291

Z. Dahmani, On Minkowski and Hermite-Hadamard integral in-
equalities via fractional integration, Ann. Funct. Anal. 1 (2010),
pp- H1-58.

B. Daraby, . Generalizations of Some Inequalities for Sugino Inte-
grals, Sahand Commun. Math. Anal., 19(3) (2022), pp. 141-168.
J. Deng and J. Wang, Fractional Hermite-Hadamard inequalities
for (a,m)-logarithmically convex functions. J. Inequal. Appl. 2013
(2013), art. 364.

S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-
Hadamard Inequalities and Applications, RGMIA Monog., Vic.
Univ., 2000.

S.S. Dragomir, R.P. Agarwal, Two inequalities for differentiable
mappings and applications to special means of real numbers and to
trapezoidal formula, Appl. Math. lett., 11(5) (1998), pp. 91-95.
S.S. Dragomir, Some inequalities of Hermite-Hadamard type for
symmetrized convex functions and Riemann-Liouville fractional in-
tegrals, RGMIA Res. Rep. Coll., 20 (2017), 15.

S. Erden, Weighted inequalities involving conformable integrals and
its applications for random variable and numerical integration, Filo-
mat 34(8) 2020, pp. 2785-2796.

A. Ekinci, M. Ozdemir, Some mnew integral inequalities via
Riemann-Liouville integral operators, Appl. Comput. Math., 18(3)
(2019), pp. 288-295.

G. Farid, A. ur Rehman and M. Zahra, On Hadamard type in-
equalities for k-fractional integrals, Konuralp J. Math., 4(2) 2016,
79-86.

R. Gorenflo, F. Mainardi, Fractional calculus: integral and differ-
ential equations of fractional order, Springer Verlag, Wien (1997),
223-276.

J. Hadamard, FEtude sur les proprietes des fonctions entieres en
particulier d’une fonction consideree par Riemann, J. Math. Pures
Appl. 58 (1893), pp. 171-215.

M. Igbal, M.I. Bhatti and K. Nazeer, Generalization of inequalities
analogous to Hermite-Hadamard inequality via fractional integrals,

Bull. Korean Math. Soc., 52(3) (2015), pp. 707-716.



23

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

HERMITE-HADAMARD, TRAPEZOID AND MIDPOINT TYPE ... 105

I. Iscan and S. Wu, Hermite-Hadamard type inequalities for har-
monically convex functions via fractional integrals, Appl. Math.
Compt., 238 (2014), pp. 237-244.

I. Iscan, Hermite- Hadamard-Fejer type inequalities for convex func-
tions via fractional integrals, Stud. Univ. Babes-Bolyai, Math.,
60(3) (2015), pp. 355-366

M. Jleli and B. Samet, On Hermite-Hadamard type inequalities via
fractional integrals of a function with respect to another function,
J. Nonlinear Sci. Appl., 9 (2016), pp. 1252-1260.

U.N. Katugampola, New approach to a generalized fractional inte-
grals, Appl. Math. Comput., 218(4) (2011), pp. 860-865.

M.A. Khan, T.U. Khan, Parameterized Hermite-Hadamard Type
Inequalities For Fractional Integrals, TJOI, 1(1), 2017, 26-37.
A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Appli-
cations of Fractional Differential Fquations, North-Holland Math-
ematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.

U.S. Kirmaci, Inequalities for differentiable mappings and applica-
tions to special means of real numbers to midpoint formula, Appl.
Math. Comput., 147(5) (2004), pp. 137-146.

A.R. Khan, H. Nasir and S.S. Shirazi, Weighted Cebysev Type In-
equalities for Double Integrals and Application, Sahand Commun.
Math. Anal., 18(4) (2021), pp. 59-72.

M. Kunt, I. Iscan, Fractional Hermite-Hadamard-Fejer type in-
equalities for GA-convex functions, TJOI, 2(1), 1-20, 2018.

S. Miller and B. Ross, An introduction to the Fractional Calculus
and Fractional Differential Equations, John Wiley & Sons, USA,
1993, pp.2.

S. Mubeen, S. Igbal and M. Tomar, On Hermite-Hadamard type
inequalities via fractional integrals of a function with respect to an-
other function and k-parameter, J. Inequal. Math. Appl., 1 (2016),
pp- 1-9.

M.A. Noor and M.U. Awan, Some integral inequalities for two kinds
of convezities via fractional integrals, TIMM, 5(2) (2013), pp. 129-
136.

M.E. Ozdemir, New Refinements of Hadamard Integral inequlaity
via k-Fractional Integrals for p-convex function, Turkish J. Science,
6(1) (2021), pp. 1-5.

M.E. Ozdemir, M. Avc-Arding and H. Kavurmaci-Onalan,
Hermite-Hadamard type inequalities fors-convex ands-concave func-
tions via fractional integrals, Turkish J. Science, 1 (2016), pp. 28-40.
J.E. Pecari¢, F. Proschan and Y.L. Tong, Convex Functions,
Partial Orderings and Statistical Applications, Academic Press,



106

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

H. KARA, S. ERDEN AND H. BUDAK

Boston, 1992.

1. Podlubni, Fractional Differential Equations, Academic Press, San
Diego, 1999.

S. Peng, W. Wei and J-R. Wang, On the Hermite-Hadamard in-
equalities for convex functions via Hadamard fractional integrals,
Facta Univ., Ser. Math. Inf., 29(1) (2014), pp. 55-75.

M.Z. Sarikaya and H. Yildirim, On Hermite-Hadamard type in-
equalities for Riemann-Liouville fractional integrals, Miskolc Math.
Notes, 7(2) (2016), pp. 1049-1059.

M.Z. Sarikaya, E. Set, H. Yaldiz and N. Basak, Hermite -
Hadamard’s inequalities for fractional integrals and related frac-
tional inequalities, Math. Comput. Modelling, 57 (2013), pp. 2403-
2407.

M.Z. Sarikaya and H. Budak, Generalized Hermite-Hadamard type
integral inequalities for fractional integrals, Filomat, 30(5) (2016),
pp- 1315-1326.

M.Z. Sarikaya, A. Akkurt , H. Budak, M.E. Yildirim and H.
Yildirim, Hermite-hadamard’s inequalities for conformable frac-
tional integrals. RGMIA Res. Rep. Col., 19(83), (2016).

E. Set, M.Z. Sarikaya, M.E. Ozdemir and H. Yildirim, The
Hermite-Hadamard’s inequality for some convex functions via frac-
tional integrals and related results, JAMSI, 10(2) (2014), pp. 69-83.
E. Set, M.Z. Sarikaya, M.E. Ozdemir and H. Yildirim, The
Hermite-Hadamard’s inequality for some convex functions via frac-
tional integrals and related results, JAMSI, 10(2) (2014).

E. Set, J. Choi and B. Celik, New Hermite-Hadamard type inequal-
ities for product of different convex functions involving certain frac-
tional integral operators, J. Math. and Comp. Sci., 18(1) (2018),
pp- 29-36

E. Set, A. Gozpnar, A. Ekinci, Hermite-Hadamard type inequalities
via confortable fractional integrals, Acta Math. Univ. Comen., 86
(2017), art. 309320.

J. Wang, X. Li, M. Feckan, Y. Zhou, Hermite—-Hadamard-type in-
equalities for Riemann—Liouville fractional integrals via two kinds
of convexity, Appl. Anal., 92(11) (2012), pp. 2241-2253.

J.R. Wang, X. Li, C. Zhu, Refinements of Hermite-Hadamard type
inequalities involving fractional integrals, Bull. Belg. Math. Soc.
Simon Stevin, 20 (2013), pp. 655-666.

J.R. Wang, C. Zhu, Y. Zhou, New generalized Hermite—Hadamard
type inequalities and applications to special means, J. Inequal. Appl.

2013 (2013), art. 325.



HERMITE-HADAMARD, TRAPEZOID AND MIDPOINT TYPE ... 107

51. Y. Zhang and J. Wang, On some new Hermite-Hadamard inequal-
ities involving Riemann-Liowville fractional integrals, J. Inequal.
Appl. 2013 (2013), art. 220.

52. 7. Zhang, W. Wei, J. Wang, Generalization of Hermite-Hadamard
inequalities involving Hadamard fractional integrals, Filomat, 29(7)
(2015), pp. 1515-1524.

53. Z. Zhang, J.R. Wang and J.H. Deng, Applying GG-convex function
to Hermite-Hadamard inequalities involving Hadamard fractional
integrals, Int. J. Math. Comput. Sci., 2014 (2014), art. 136035.

! DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ARTS, DUzcE UNI-
VERSITY, DUZCE-TURKIYE.
Email address: hasan64kara@gmail.com

2 DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, BARTIN-TURKIYE.
Email address: erdensmt@gmail.com

3 DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ARTS, DUzZCE UNI-
VERSITY, DUZCE-TURKIYE.
Email address: hsyn.budak@gmail.com



	1. Introduction
	2. Generalized Hermite-Hadamard Type Inequalities
	3. Generalized Trapezoid Type Inequalities
	4. Generalized Midpoint Type Inequalities
	5. Conclusions
	References

