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New Iteration Algorithms for Solving Equilibrium Problems
and Fixed Point Problems of Two Finite Families of

Asymptotically Demicontractive Multivalued Mappings

Imo Kalu Agwu1∗ and Donatus Ikechi Igbokwe2

Abstract. ln this paper, we introduce a new class of mapping
called asymptotically demicontractive multivalued mapping in the
setting of a real Hilbert space. Furthermore, a new iteration scheme
was constructed and it was proved that our algorithm converges
strongly to the common element of solutions of an equilibrium prob-
lem and the set of common fixed points of two finite families of type-
one asymptotically demicontractive multivalued mappings without
any sum conditions imposed on the finite family of the control se-
quences. Also, we provided a numerical example to demonstrate the
implementablity of our proposed iteration technique. Our results
improve, extend and generalize many recently announced results in
the current literature.

1. Introduction

Many physical phenomena of the type
Γ(ω) = ξ,

arising from physical formulations can equivalently be transformed into
a fixed point problem of the form
(1.1) Γ(ω) = ω.

The solution of (1.1) can be achieved using approximate fixed point
theorem. In 1922, Banach demonstrated a remarkable conclusion for
fixed point theory on the metric space, which was later called Banach
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2 I. K. AGWU AND D. I. IGBOKWE

contraction principle. Subsequently, several notable works have been
published about fixed point theory for different kinds of contractions
on different spaces, with real life applications cutting across different
disciplines; see, for example, [51–54] and the references contained in
them.

Since fixed point theory for multivalued mappings has invaluable ap-
plications in different fields, it is natural to extend the known results for
single-valued mappings to the setup of multivalued mappings.

In 1969, Nadler [24] introduced multivalued contraction mapping and
proved corresponding convergence theorem. Later on, a lot of very in-
teresting results have been obtained in this direction: Markin [22] in-
troduce the idea of using the Hausdorff metric to study the fixed points
for multivalued contraction and nonexpansive mappings, Hu et al [38]
proved the convergence theorem for finding common fixed points of two
multivalued nonexpansive mappings satisfying certain contractive con-
ditions, Bunyawat and suntain [34] introduced an iterative scheme for
finding common fixed point of a countable family of multivalued quasi-
nonexpansive mappings in uniformly convex Babcn space, Isogugu [17]
introduced type-one multivalued mapping which guarantees strong con-
vergence without the condition that the fixed point set is stirct, Agwu
and Igbokwe [55] proved convergence theorem for finding common ele-
ment of solution for minimization problems and fixed point problems of
asymptotically quasi-nonexpansive multivalued mappings etc. But what
captures the interest of the authors, basically because of the introduction
of a new scheme that solves the problem of ’sum condition’ (i.e., for any
given nonnegative sequence

{
{αin}Ni=1

}∞

n=1
of real numbers,

m∑
i=1

αin = 1,

where m ∈ N), is the following theorems:

Theorem 1.1 ([40]). Let K be a nonempty convex and closed subset
of a real Hilbert space H. Suppose that {Si}Ni=1,N ≥ 2 is a countable
family of type-one demicontractive mappings Si : K → P(K) from K
into the family of all proximinal subsets of K with contractive coeficient
λi ∈ [0, 1) for each i. Suppose that ∩N

i=1F (Si) ̸= ∅ and for each i, (I−Si)
is weakly demiclosed at zero; then, unsder appropriate conditions on the
control sequence, the sequence {xn} defined by

xn+1 = cn,1xn+
N∑
i=1

cn,i

i−1∏
j=1

(1− cn,j) yn,i−1+
N∏

j=1

(1− cn,j) yn,N, n ≥ 1,

where yn,i ∈ Sixn for each i, converges weakly to q ∈ ∩N
i=1F (Si). Also,

if in addition, Si is L-Lipschitizian and satisfies condition (I) (see Def-
inition 2.8) for each i, then {xn} converges strongly to q ∈ ∩N

i=1F (Si).
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Theorem 1.2 ([40]). Let C be a nonempty convex and closed sub-
set of a real Hilbert space H, f : C × C → R a bifunction satisfying
(B1) − (B4) and {Ti}Ni=1be such that Ti:C→P(C) is type-one λi-strictly
pseudocontractive-type mappings and (I − Ti) is weakly demiclosed at
zero for each i = 1, 2, . . . ,N. Suppose F = ∩N

i=1Fs(Ti) ∩ EP (f) ̸= ∅. Let
{xn} be a sequence generated from arbitrary x0 ∈ C as follows:

(1.2)


yn = cn,1xn +An,

un ∈ K : F (un, y) +Bn,

xn+1 =
1
2(un + xn),

where

An =

N∑
i=1

cn,i

i−1∏
j=1

(1− cn,j) yn,i−1 +

N∏
j=1

(1− cn,j) yn,N,

Bn =
1

rn
⟨y − un, un − yn⟩ ≥ 0, ∀y ∈ K.

Let Ti satisfies condition ???? and {rn} ⊂ [a,∞) for some a > 0. Then,
under appropriate conditions on the control sequences, {xn} converges
strongly to p ∈ F.

The iteration schemes defined by (1.2) and (1.2) were recently intro-
duced by Isogogu, Izuchukwu and Okeke [40].

Further studies, in line with constructing iteration schemes for the
case in which more than one auxiliary maps are used, of the modified
version of the lshikawa iterative scheme are developed; and it has been
noted (see, for example, [32] for details) that those iteration schemes for
which more than one multivalued mapping is used as auxiliary mapping
are more robust against certain numerical errors than the ones that
involve only one auxiliary mapping. Thus, the following natural question
arises:

Question 1.3. Is it possible to construct an iteration scheme with more
than one auxiliary mappings that would guarantee strong convergence
for multivalued mappings larger than the one considered in [40]?

Moltivated and inspired by the above works, the purpose of this paper
if of three folds:

(a) To introduce a new class of multivalued mapping called strict
asymptotically demicontractive multivalued mapping in the set-
ting of a real Hilbert space;

(b) To give an affirmative answer to Question 1.3 above and
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(c) To prove strong convergence theorem for the solution of equi-
librium problems and fixed point problems for a finite family of
asymptotically demicontractive multivalued type-one mappings
in the setting of a real Hilbert space.

2. Relevant Preliminaries

In the sequel, we shall need the following concepts and known results:
Let K be a convex, closed and nonempty subset of a real Hilbert space
H with the inner product ⟨, ., ⟩ and the norm ∥.∥. In this paper, the set
of natural numbers shall be denoted as N, the set of real numbers shall
be denoted as R and if {xn}∞n=1 is a sequence in H, then weak and strong
convergence of {xn}∞n=1 shall be denoted as ⇀ and →, respectively.

Let Γ, G : K → K be two nonlinear mappings.The set of fixed points
of Γ and G shall be denoted by F (Γ) and F (G), respectivly. We shall
denote the set of common fixed point of Γ and G by F = {y ∈ K : y ∈
Γ ∩G}.

Definition 2.1. Recall that Γ is called:
(a) k-strictly asymptotically pseudocontractive if there exist sequence

{kn}∞n=0 ⊆ [1,∞) with lim
x→∞

kn = 1 and a constant k ∈ [0, 1)

such that for all x, y ∈ K, we have
(2.1)
∥Γnx− Γny∥2 ≤ k2n ∥x− y∥2 + k ∥(I − Γn)x− (I − Γn) y∥2 , n ≥ 1.

The class of mapping defined by (2.1) properly contains the
class of asymptotically nonexpansive mapping(where Γ is called
asymptotically nonexpansive if for all x, y ∈ K, there exists a se-
quence {kn}∞n=1 ⊆ [1,∞) with lim

x→∞
kn = 1 such that

∥Γnx− Γny∥ ≤ kn ∥x− y∥ ,∀n ≥ 1) introduced by Goebel and
Kirk [1]; in fact, every asymptotically nonexpansive mapping is
0-strictly asymptotically pseudocontractive.

(b) β-strictly asymptotically pseudononspreading [46] if there exists
a sequence {kn}∞n=0 ⊆ [1,∞) with lim

x→∞
kn = 1 such that for all

x, y ∈ K and for some β ∈ [0, 1), we have

∥Γnx− Γny∥2 ≤ k2n ∥x− y∥2 + β ∥(I − Γn)x− (I − Γn) y∥2(2.2)
+ 2 ⟨x− Γnx, y − Γny⟩ , n ≥ 1.

The class of asymptotically nonspreading type (where Γ is said
to be asymptotically nonspreading type if ∀x, y ∈ K, we have
∥Γnx− Γny∥2 ≤ ∥x− y∥2 + 2 ⟨x− Γnx, y − Γny⟩ , n ≥ 1) is a
subclass of the class mapping defined by (2.2). In [48] and [49],
Osilike and Chima [48] (respectively Osilike et al [49]) showed
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that the classes of β-strictly pseudononspreading (where a non-
linear map Γ is called β-strictly pseudononspreading if for all
x, y ∈ K, there exists some β ∈ [0, 1) such that ∥Γx− Γy∥2 ≤
∥x− y∥2 + β ∥(I − Γ)x− (I − Γ)y∥2 + 2 ⟨x− Γx, y − Γy⟩) and
β-strictly asymptotically pseudononspreading (respectively k-
strictly pseudocontractive and k-strictly asymptotically pseudo-
contractive, where a nonlinear map Γ is called k-strictly pseu-
docontractive if for all x, y ∈ K, there exists some k ∈ [0, 1)

such that ∥Γx− Γy∥2 ≤ ∥x− y∥2 + k ∥(I − Γ)x− (I − Γ)y∥2)
mappings are independent.

Remark 2.2. Note that if F (Γ) ̸= ∅, then (2.1) and (2.2) coincide. The
coincidence gives birth to a map called asymptotically demicontractive
mapping and is defined as follows:

Definition 2.3. Let K and H retain their usual meaning. A mapping Γ
is called asymptotically demicontractive if, for any (x× q) ∈ K × F (Γ),
there exist a sequence {kn}∞n=1 ⊆ [1,∞) with limn→∞ kn = 1 and a
constant δ ∈ [0, 1) such that
(2.3) ∥Γnx− Γnq∥2 ≤ k2n ∥x− q∥2 + δ∥x− Γnx∥, n ≥ 1.

This class of map was introduced by Qihou [47], contains the class of
mapping studied in [12] and has been extensively studied in literature
(see, e.g,. [32, 39] and the reference therein).

Let Ψ : K ×K → R be a bifunction. The equilibrium problem for Ψ
(for short EP) is to find ω ∈ K such that
(2.4) Ψ(ω, y) ≥ 0, ∀y ∈ K.

A point z ∈ K solving problem (2.4) is called equilibrium problem. The
set of solution of problem (2.4) is denoted by EP(Ψ); that is,
(2.5) EP (Ψ) = {ω ∈ K : Ψ(ω, y) ≥ 0, ∀y ∈ K} .
Due to the indispensable nature of equilibrium problems, different tech-
niques and algorithms have been employed to analyze the existence and
approximation of a solution to problem (2.4); see [25]. In about 40
years or so, many researchers studied the problems of finding a common
element of solution of equilibrium problems and the common element
of the set of fixed points of nonexpansive mappings and some of their
generalizations in the setting of a real Hilbert space; see for example,
[25–28, 33–35, 40, 43, 45] and the reference therein.

Let B be a strong positive bounded linear operator on a real Hilbert
space; that is, there exists a constant ᾱ > 0 such that

⟨By, y⟩ ≥ ᾱ∥y∥2, ∀y ∈ H.
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The problem of interest is to minimize a quadratic function over the set
of fixed points of a nonexpansive mapping τ on a real Hilbert space:

min
s∈F (τ)

1

2
⟨Bs, s⟩ − ⟨s, b⟩ ,

where b is a given point in H.
Moltivated by the work of Xu [29], Marino and Xu [6] studied the

following iteration scheme for solving a fixed point problem of nonex-
pansive mapping using viscosity iteration scheme due to Moudafi [7]:

(2.6) sn+1 = αnγg(sn + (1− αnA)τsn,

where g is a contraction and τ is a nonexpansive mapping. They showed
that under mild condions on the control sequences, {sn} converges to
the unique solution of the variational inequality:

(2.7) ⟨(B − γg)s⋆, s− s⋆⟩ ≥ 0, ∀s ∈ F (τ),

which is the optimality condition for the minimization problem:

min
s∈F (τ)

1

2
⟨Bs, s⟩ − ℓ(s),

where ℓ is a potential function for γg (i.e., ℓ′(s) = γg(s),∀s ∈ H).
In all, it is not difficult to see that approximation of fixed points

for nonlinear single-valued mappings is easier to handle as compared to
the corresponding multivalued nonlinear mappings. However, many au-
thors have intensively studied the fixed point theorems for multivalued
mappings possibly because of their invaluable applications in the areas
of control theory, economics, convex optimisation, variational inequali-
ties and differential inclusions (see [19–24] and the reference therein for
details).

Let Z be a normed space. A subset K of Z is called proximinal if for
each x ∈ Z, there exists a point t ∈ K such that

ρ(x,K) = inf{∥x− y∥ : y ∈ K}(2.8)
= ρ(x, t).

It is well known that a closed and convex subset of a uniformly convex
Banach space and a weakly compact convex subset of a Banach space is
proximinal.

We denote CB(Z), C(K) and P(K) as the family of nonempty
bounded closed subsets of Z, the family of nonempty compact subsets
of K and the family of nonempty bounded proximinal subsets of k, re-
spectively. The Hausdorff metric induced by the metric ρ of Z for all
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A,B ∈ CB(Z) is defined by

(2.9) H(A,B) = max

{
sup
x∈A

ρ(x,B), sup
y∈B

ρ(y,A)

}
,

where ρ(x,B) = inf{∥x− y∥ : y ∈ B} is the distance from the point x
to the subset B. A point q ∈ K is called a fixed point of the mulrivalued
mapping Γ if q ∈ Γq. The set of fixed points of Γ is denoted by F (Γ) =
{x ∈ K : x ∈ Γx}.
Definition 2.4. Let Γ : D(Γ) ⊆ Z → 2Z be a multivalued mapping.
Then Γ is said to be:

(1) uniformly η-Lipschitizian if there exists η ≥ 0 such that
(2.10) H(Γnx,Γny) ≤ η ∥x− y∥ , ∀x, y ∈ D(Γ).

If η = kn in (2.10), where {kn}∞n=1 ⊆ [1,∞) with limn→∞ = 1,
then Γ is called asymptotically nonexpansive multivalued map-
ping.

(2) type-one [17] if given a pair x, y ∈ D(Γ), then
(2.11) ∥u− v∥ ≤ H(Γx,Γy), ∀u ∈ PΓx, v ∈ PΓy,

where PΓx = {u ∈ Γx : ∥x− u∥ = ρ(x,Γx)} .
(3) µ-strictly asymptotically pseudocontractive in the sense of Qi-

hou [47] for single-valued mapping if there exist a sequence
{kn}∞n=1 ⊆ [1,∞) with lim

x→∞
kn = 1 and a constant k ∈ [0, 1)

such that given any pair x, y ∈ D(Γ) and u ∈ Γnx, there exists
v ∈ Γny satisfying ∥u− v∥ ≤ H(Γnx,Γny) and

(2.12) H(Γnx,Γny)2 ≤ kn ∥x− y∥+ µ∥x− u− (y − v)∥2.
If k = 1 in (2.12), then Γ is called asymptotically pseudocon-
tractive; whereas Γ is 0-strictly pseudocontractive (or asymp-
totically nonexpansive) if k = 0 in (2.12).

Definition 2.5. Let G : D(G) ⊆ Z → 2Z be a multivalued mapping.
Then G is said to be:

(a) asymptotically β-nonspreading if there exists β > 0 such that
H(Gnx,Gny)2 ≤ β

(
ρ(Gnx, y)2 + ρ(x,Gny)2

)
, ∀x, y ∈ K.

Note that G is called asymptotically nonspreading-type if β =
1

2
; that is,

2H(Gnx,GTny)2 ≤ ρ(Gnx, y)2 + ρ(x,Gny)2, ∀x, y ∈ K.

It is easy to see that if G is an asymptotically nonspreading-type
and F (G) ̸= ∅, then T is asymptotically quasi-nonexpansive
mapping.
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(b) β-strictly asymptotically pseudononspreading in the sense of
Zhaoli and Wang [46] for single-valued mapping if there exist
a sequence {kn}∞n=1 ⊆ [1,∞) with lim

x→∞
kn = 1 and a constant

β ∈ [0, 1) such that given any pair x, y ∈ D(G) and u ∈ Gnx,
there exists v ∈ Gny satisfying ∥u− v∥ ≤ H(Gnx,Gny) and

(2.13)
H(Gnx,Gny)2 ≤ kn ∥x− y∥+ β∥x− u− (y − v)∥2 + 2 ⟨x− u, y − v⟩ .

If β = 1 in (2.13), then G is called asymptotically pseudonon-
spreading; whereas G is 0-strictly pseudononspreading if β = 0
in (2.13).

Definition 2.6 ([17]). Let X be a Banach space and S : D(S) ⊆ X →
2X be a multivalued mapping. I − S is weakly demiclosed at zero if
for any sequence {xn}∞n=1 ⊆ D(S) such that {xn} converges weakly to
q and a sequence yn with yn ∈ Sxn for all n ∈ N such that {xn − yn}
strongly converges to zero. Then, q ∈ Sq(i.e., 0 ∈ (I − S)q).

Definition 2.7 ([17]). Let X be a normed space and S : D(S) ⊆ X →
2X be a multivalued map. S is of type-one is given any x, y ∈ D(S),
then ∥u− v∥ ≤ H(Sx, Sy),∀u ∈ PSx, v ∈ PSy.
Definition 2.8. [40] A multivalued mapping Γ : K −→ P (K) is said
to satisfy Condition (I) (see, for example, [40]) if there exists a nonde-
creasing function f : [0,∞) −→ [0,∞) with f(0) = 0 and f(r) > 0 for
all r ∈ [0,∞) such that d(x,Γx) ≥ f(x, F (Γ)), ∀x ∈ K.

Lemma 2.9 ([6]). Asumme that A is a strongly positive self adjoint
bounded linear operator on H with coeficient ᾱ > 0 and 0 < ρ ≤ ∥A∥−1,
then ∥1− ρA∥ ≤ 1− ρᾱ.

Lemma 2.10 ([39]). Let H be a real Hilbert space. Then
∥x+ y∥2 ≤ ∥x∥2 + 2 ⟨y, x+ y⟩ , ∀x, y ∈ H.

Lemma 2.11 (see [29]). Let {an} be a sequence of nonnegative real
numbers with an+1 = (1− αn)an + bn, n ≥ 0, where αn is a sequence in
(0, 1) and bn is a sequence in R such that

∞∑
n=0

αn = ∞ and lim sup
n→∞

bn
αn

≤

0. Then, limn→∞ an = 0.
Lemma 2.12 ([30]). For each x1, x2, . . . , xm and α1, α2, . . . , αm ∈ [0, 1]

with
m∑
i=1

αi = 1, we have

(2.14)

∥α1x1 + α2x2 + · · ·+ αmxm∥2 =
m∑
i=1

αi∥xi∥2 −
∑

0≤i<j≤m

αiαj∥xi − xj∥2.
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Lemma 2.13 ([31]). Let {wn} be a sequence of real numbers that does
not decrease at infinity, in the sense that there exists a subsequence {wnj}
of wn such that wnj < wnj+1 for all j ≥ 0. For every n ≥ n0, define
an integer sequence {τ(n)} as τ(n) = max{k ≤ n : wn < wn+1}. Then,
τ(n) → ∞ as n → ∞ and for all n ≥ n0,max{wτ(n), wn} ≤ wτ(n)+1.

For solving the equilirium problem, we assume that the ifunction Ψ :
K ×K satisfies the following conditions:

(B1) Ψ(x, x) = 0, ∀x ∈ K;
(B2) Ψ is monotone, i.e, Ψ(x, y) + Ψ(y, x) ≤ 0, ∀x, y ∈ K;
(B3) Ψ is upper hemicontinous, i.e., for each x, y, z ∈ K,

lim sup
t→0+

Ψ(tz + (1− t)x, y) ≤ Ψ(x, y);

(B4) Ψ(x, .) is convex and lower semicontinuoua for each x ∈ K.

Lemma 2.14 ([44]). Let K be a nonempty closed and convex subset of a
real Hilbert space H and let Ψ be a bifunction of K×K into R satisfying
(B1)− (B4). Let r > 0 and x ∈ H. Then, there exists z ∈ K such that

(2.15) Ψ(x, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ K.

Lemma 2.15 ([25]). Assume that Ψ : K×K satisfies (B1)− (B4). For
r > 0 and x ∈ H, define a mapping Tr : H → K in the following way:

Trx =

{
z ∈ K : Ψ(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ K

}
.

Then, we have
(i) Tr is single-valued;
(ii) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩ ;

(iii) F (Tr) = EP (Ψ);

Proposition 2.16 ([40]). Let {αi}∞i=1 ⊆ N be a countable subset of the
set of real numbers R, where k is a fixed nonnegative integer and N ∈ N
is any integer with k + 1 ≤ N. Then, the following holds:

(2.16) αk +
N∑

i=k+1

(
αi

i−1∏
j=k

(1− αj)

)
+

N∏
j=k

(1− αj) = 1.

Proposition 2.17 ([40]). Let t, u and v be arbitrary elements of a real
Hilbert space H. Let k be any fixed nonnegetive integer and N ∈ N be
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such that k+1 ≤ N. Let {vi}N−1
i=1 ⊆ H and {αi}Ni=1 ⊆ [0, 1] be a countable

finite subset of H and R, respectively. Define

y = αk +
N∑

i=k+1

(
αi

i−1∏
j=k

(1− αj)vi−1

)
+

N∏
j=k

(1− αj)v.

Then,

∥y − u∥2 = αk ∥t− u∥2 +
N∑

i=k+1

αi

i−1∏
j=k

(1− αj) ∥vi−1 − u∥2


+

N∏
j=k

(1− αj) ∥v − u∥2

− αk

 N∑
i=k+1

αi

i−1∏
j=k

(1− αj) ∥t− vi−1∥2
+

i−1∏
j=k

(1− αj)∥t− v∥2


− (1− αk)

[
N∑

i=k+1

αi

i−1∏
j=k

(1− αj) ∥vi−1 − (αi+1 + wi+1)∥2


+ αN

i−1∏
j=k

(1− αj) ∥v − vN−1∥2
]
,

where

wk =

N∑
i=k+1

αi

i−1∏
j=k

(1− αj)vi−1

+

i−1∏
j=k

(1− αj)v, k = 1, 2, . . . , N

and wn = (1− cn)v.

3. Results

In this section, we prove our main results. In the sequel, we provide
the following definition:

Definition 3.1. Let Z be a normed space and Γ : D(Γ) ⊆ Z → 2Z be a
multivalued mapping. Then, Γ is called asymptotically demicontrctive
if F (Γ) ̸= ∅ and Definition 2.4 (3) and Definition 2.5 (b) hold; that is, Γ
is asymptotically demicontractive in the sense of Qihou [47] for single-
valued mapping if F (Γ) ̸= ∅ and for all (x × q) ∈ D(Γ) × F (Γ) and
µ ∈ [0, 1), there exist a sequence {kn}∞n=1 ⊆ [1,∞) with lim

x→∞
kn = 1 and

u ∈ Γnx such that

(3.1) H(Γnx,Γnq)2 ≤ k2n ∥x− q∥2 + µ∥x− u∥2.
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Remark 3.2. If F (Γ) ̸= ∅ and F (G) ̸= ∅ in Definition 2.4 and Def-
inition 2.5, then (3) in Definition 2.4 and (b) in Definition 2.5 reduce
to Definition 3.1. Thus, the class of asymptotically demicontractive
mapping is larger than the classes of k-strictly asymptotically pseudoco-
tractive multivalued mapping and β-strictly pseudononspreading multi-
valued mapping.

Example 3.3 ([41]). Let X = R be endowed with the usual metric.
Define Γ : [−9, 3) → P(Z) by

Γx =


[
−1

3x,−
1
2x
]
,[

−1
2x,−

1
3x
]
,

x ∈ (−3, 0],

x ∈ [0, 3).

Then, Γ is uniformly 1

2
−Lipschitizian and asymptotically demicontrac-

tive mapping with F (Γ) = {0}. Indeed, for all x ∈ (−3, 0], we have

H(Γnx, 0)2 = max

{∣∣∣∣ 13nx
∣∣∣∣2 , ∣∣∣∣ 12nx

∣∣∣∣2
}

(3.2)

=

∣∣∣∣12x
∣∣∣∣2

≤
(
1 +

1

2n

)
|x− 0|2 + |x− 0|2.

Again, for un ∈ Γnx, un = −δnx, where
1

3n
≤ δn ≤ 1

2n
, we have

(3.3) |x− un|2 = |x+ δx|2 = (1 + δn)2|x− 0|2.
(3.2) and (3.3) imply that

H(Γnx, 0)2 ≤
(
1 +

1

2n

)
|x− 0|2 + 1

(1 + δn)2
|x− un|2

≤
(
1 +

1

2n

)
|x− 0|2 + 1(

1 +
1

3

)2 |x− un|2

=

(
1 +

1

2n

)
|x− 0|2 + 9

16
|x− un|2.

For x ∈ [0, 3), the result follows as in Example 4.1 in [41] with i = 1.
Hence, Γ is an asymptotically demicontractive multivalued mapping.

Now, we show that Γ is uniformly L-Lipschitizian. Indeed, for x, y ∈
(−3, 0], we have

H(Γnx,Γny) = max

{∣∣∣∣− 1

3n
x+

1

3n

∣∣∣∣ , ∣∣∣∣− 1

2n
x+

1

2n

∣∣∣∣}
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=
1

2n
|x− y|

≤ 1

2
|x− y| ;

For x ∈ (−3, 0] and y ∈ [0, 3), we have

H(Γnx,Γny) = max

{∣∣∣∣− 1

3n
x+

1

2n

∣∣∣∣ , ∣∣∣∣− 1

2n
x+

1

3n

∣∣∣∣}
=
∣∣∣−(x

2
− y

3

)∣∣∣
=
∣∣∣x
2
− y

3

∣∣∣
≤
∣∣∣x
2
− y

2

∣∣∣
=

1

2
|x− y| .

and for x, y ∈ [0, 3), we have

H(Γnx,Γny) = max

{∣∣∣∣− 1

2n
x+

1

2n

∣∣∣∣ , ∣∣∣∣− 1

3n
x+

1

3n

∣∣∣∣}
=

1

2n
|x− y|

≤ 1

2
|x− y|.

In all cases, Γ is uniformly 1

2
− Lipschitizian.

Theorem 3.4. Let K be a convex, closed and nonempty subset of
a real Hilbert space H and let Ψ be a bifunction of K × K into R.
Suppose that {Γi}Ni=1 and {Gi}Ni=1,N ≥ 2 are two finite families of
type-one and Li-uniformly Lipschitizian asymptotically demicontractive
multivalued mappings Γi : K → P(K) and Gi : K → P(K), re-
spectively from K into the family of all proximinal subsets of K with
contractive coeficient µ

(1)
i , µ

(2)
i ∈ [0.1) for each i. Assume that F =(

∩N
i=1F (Γi)

)
∩
(
∩N
i=1F (Gi)

)
∩ EP (Θ) ̸= ∅ and for each i, (I − Γi) and

(I − Gi) are weakly demiclosed at zero. let gi be a contraction of K
into itself with constant ρ ∈ (0, 1) and A be a strong positive self adjoint
bounded linear operator on H with coeficient ᾱ such that 0 < ργ+2ϵ < ᾱ.
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Let the sequence {xn} be given iteratively as follows:

(3.4)



un ∋ Ψ(un, y) +
1

rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ K;

ωn = γn,1un +
N∑
i=2

γn,i
∏i−1

j=1(1− γn,j)νn,i−1Dn1;

sn = βn,1ωn +
N∑
i=2

βn,i
∏i−1

j=1(1− βn,j)zn,i−1 +Dn2;

xn+1 = PK (αnγg(xn) + δnsn + ((1− δn)I − αnA)sn) ,

where

Dn1 = +

N∏
j=1

(1− γn,j)νn,N, Dn2 =

N∏
j=1

(1− βn,j)zn,N,

νn,i ∈ Γn
i un and zn,i ∈ Gn

i ωn for each i, {αn}, {δn} ∈ [0, 1],
{
{βn,i}∞n=1

}N
i=1

and
{
{γn,i}∞n=1

}N
i=1

are countably finite families of real sequences in [0, 1].
Suppose the following conditions are satisfied:

(i) βn,1 ≥ γn,1 > max{µi}Ni=1 : βn,i ≤ γn,i < γ ≤ β < 1, for each i;
(ii) lim inf

n→∞
βn,i

∏i−1
j=1(1−βn,j)(βn,1−µi−1) > 0 and lim inf

n→∞

∏i−1
j=1(1−

βn,j)(βn,1 − µN > 0;

(iii) lim inf
n→∞

γn,i
∏i−1

j=1(1−γn,j)(γn,1−µi−1) > 0 and lim inf
n→∞

∏i−1
j=1(1−

γn,j)(γn,1 − µN > 0;

(iv) lim
x→∞

αn = 0,
∞∑
n=1

αn = ∞ and lim
x→∞

(1− βn,j)
(
k2n − 1

)
αn

= 0;

(v) {rn} ⊂ [a,∞) for some a > 0.

Then, the sequence defined by (3.4) converges strongly to q ∈ F , which
solves the variational inequality ⟨(A− γg)q, x− q⟩ ≥ 0, ∀x ∈ F .

Proof. Firstly, we show that the map PF [δI+(αγg+((1−δ)I−αA))] is a

contraction of K into itself. Now, for any two points α, δ ∈
(
0,min

{
1,

1

ᾱ

})
and for all x, y ∈ H, using Lemma 2.13 with Q = PF [δI + (αγg + ((1−
δ)I − αA))]x and R = PF [δI + (αγg + ((1− δ)I − αA))]y, we have

∥PFQ− PFR∥ ≤ ∥PF [δI + (αγg + ((1− δ)I − αA))]x

− PF [δI + (αγg + ((1− δ)I − αA))]y∥
≤ αγ∥g(x)− g(y)∥+ δn ∥x− y∥+ ∥((1− δn)I − αA)(x− y)∥
≤ αγρ ∥x− y∥+ δn ∥x− y∥+ ((1− δn)I − αᾱ) ∥x− y∥
= (1− (ᾱ− γρ)α)) ∥x− y∥ .
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Hence, there exists a unique point q ∈ K such that q = PF [δI + (αγg+
((1− δ)I − αA))]q, which is equivalent to

⟨(I −A+ γg)q − q, q − p⟩ ≥ 0, ∀p ∈ F

Now, since limn→∞ αn = 0, we may assume that αn ∈
(
0,

1

∥A∥

)
for all

n ≥ 0. By condition (iv), there exists a constant ϵ with 0 < ϵ < 1 − δ

and
N∑
i=1

βn,i
∏i−1

j=1(1 − βn,j)
(
k2n − 1

)
< ϵαn for each i. Also, by Lemma

2.9, we get ∥(1− δn)I − αnA∥ ≤ (1− δn)I − αnᾱ.

Let q ∈ F and kn = max
{
k
(1)
n,i , k

(2)
n,i

}
, i = 1, 2, . . . ,m. Since un =

Trnxn and q = Trnq, we obtain (using Lemma 2.15) that

(3.5) ∥un − q∥ ≤ ∥Trnxn − Trnq∥ ≤ ∥xn − q∥.

Next, we show that the sequence {xn} is bounded. Since Γi : K → P(K)
and Gi : K → P(K) are both asymptotically demicontractive, F (Γ) ̸=
∅ and F (G) ̸= ∅. Thus, there exist two sequences

{{
k
(1)
n,i

}m

i=1

}∞

n=1
,{{

k
(2)
n,i

}m

i=1

}∞

n=1
⊆ [1,∞) : k

(1)
n,i , k

(2)
n,i → 1, for each i, as n → ∞ and

real positive constants µ(1)
i , µ

(2)
i ∈ [0, 1) such that for any (x×q) ∈ K×F ,

we have

(3.6) ∥vn,i − q∥2 ≤ k
(1)
n,i∥xn − q∥2 + µ

(1)
i ∥ωn − vn,i∥2, vn,i ∈ Gn

i ωn,

and

(3.7) ∥zn,i − q∥2 ≤ k
(2)
n,i∥xn − q∥2 + µ

(2)
i ∥un − zn,i∥2, zn,i ∈ Gn

i ωn.

Using (3.4) and Proposition 2.16 with sn = y, ωn = t, q = u, k = 1 and
zn,N ∈ Gn

i ωn, we get

∥sn − q∥2 ≤ βn,1∥ωn − q∥2 +
N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)∥zn,i−1 − q∥2(3.8)

+

i−1∏
j=1

(1− βn,j)∥zn,N − q∥2

− βn,1

[ N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)∥ωn − zn,i−1∥2

+

i−1∏
j=1

(1− βn,j)∥ωn − zn,N∥2
]
.
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Since Gi is type-one asymptotically demicontractive, it follows from (3.8)
that

∥sn − q∥2 ≤ βn,1∥ωn − q∥2 +
N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)
[ (

k
(1)
n,i

)2
∥ωn − q∥2

+ µ
(1)
i−1∥ωn − zn,i−1∥2

]
+

i−1∏
j=1

(1− βn,j)

[(
k
(1)
n,i

)2
∥ωn − q∥2 + µn,N∥ωn − zn,N∥2

]

− βn,1

[ N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)∥ωn − zn,i−1∥2

+

i−1∏
j=1

(1− βn,j)∥ωn − zn,N∥2
]

≤

βn,1 +
N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j) +
i−1∏
j=1

(1− βn,j)

 ∥ωn − q∥2

+
N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)

((
k
(1)
n,i

)2
− 1

)
∥ωn − q∥2

+

i−1∏
j=1

(1− βn,j)

((
k
(1)
n,i

)2
− 1

)
∥ωn − q∥2

−
(
βn,1 − µ

(1)
i−1

) N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)∥ωn − zn,i−1∥2

−
(
βn,1 − µ

(1)
n,N

) i−1∏
j=1

(1− βn,j)∥ωn − zn,N∥2.

With k = 1 in Proposition 2.17, we have

∥sn − q∥2 ≤ ∥ωn − q∥2 +
N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)

((
k
(1)
n,i

)2
− 1

)
∥ωn − q∥2

(3.9)

+
i−1∏
j=1

(1− βn,j)

((
k
(1)
n,i

)2
− 1

)
∥ωn − q∥2



16 I. K. AGWU AND D. I. IGBOKWE

−

 N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)
(
βn,1 − µ

(1)
i−1

)
∥ωn − zn,i−1∥2

+

i−1∏
j=1

(1− βn,j)
(
βn,1 − µ

(1)
n,N

)
∥ωn − zn,N∥2

 .

Similarly, from (3.4) and Proposition 2.17 with ωn = y, un = t, q =
u, k = 1 and νn,i ∈ Γn

i un, it is easy to see (using the same argument as
above) that

∥wn − q∥2 ≤ ∥un − q∥2 +
N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j)

((
k
(2)
n,i

)2
− 1

)
∥un − q∥2

(3.10)

+
i−1∏
j=1

(1− γn,j)

((
k
(2)
n,i

)2
− 1

)
∥un − q∥2

−

 N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j)
(
γn,1 − µ

(2)
i−1

)
∥un − νn,i−1∥2

+
i−1∏
j=1

(1− γn,j)
(
γn,1 − µ

(2)
n,N

)
∥ωn − zn,N∥2

 ,

(3.9) and (3.10) imply that

∥sn − q∥2 ≤

1 + N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)
(
k2n − 1

)
+

i−1∏
j=1

(1− βn,j)
(
k2n − 1

)
(3.11)

×


1 + N∑

i=2

γn,i

i−1∏
j=1

(1− γn,j)
(
k2n − 1

)

+
i−1∏
j=1

(1− γn,j)
(
k2n − 1

) ∥xn − q∥2

−

 N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j)
(
γn,1 − µ

(2)
i−1

)
∥un − νn,i−1∥2
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+

i−1∏
j=1

(1− γn,j)
(
γn,1 − µ

(2)
n,N

)
∥ωn − zn,N∥2


−

 N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)
(
βn,1 − µ

(1)
i−1

)
∥ωn − zn,i−1∥2

+
i−1∏
j=1

(1− βn,j)
(
βn,1 − µ

(1)
n,N

)
∥ωn − zn,N∥2


≤

1 +

 N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j) +

i−1∏
j=1

(1− γn,j)

(k2n − 1
)

+

 N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j) +

i−1∏
j=1

(1− βn,j)


×

1 +
 N∑

i=2

γn,i

i−1∏
j=1

(1− γn,j)

+
i−1∏
j=1

(1− γn,j)

(k2n − 1
) ∥xn − q∥2

−

 N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j)
(
γn,1 − µ

(2)
i−1

)
∥un − νn,i−1∥2

+

i−1∏
j=1

(1− γn,j)
(
γn,1 − µ

(2)
n,N

)
∥ωn − zn,N∥2


−

 N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)
(
βn,1 − µ

(1)
i−1

)
∥ωn − zn,i−1∥2

+
i−1∏
j=1

(1− βn,j)
(
βn,1 − µ

(1)
n,N

)
∥ωn − zn,N∥2

 .

Furthermore, we obtain from (3.4) that

∥xn+1 − q∥ ≤ ∥αnγg(xn) + δnsn + ((1− δn)I − αnA)sn − q∥
(3.12)

≤ αn∥γg(xn)−Aq∥+ δn∥sn − q∥+ ∥(1− δn)I − αnA∥∥sn − q∥
≤ αnγ∥g(xn)− g(q)∥+ αn∥γg(q)−Aq∥+ δn∥sn − q∥
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+ ((1− δn)I − αnᾱ) ∥sn − q∥
≤ αnγρ∥xn − q∥+ αn∥γg(q)−Aq∥+ (1− αnᾱ)∥sn − q∥.

From (3.11) and conditions [(i) and (iv)], we get

∥sn − q∥ ≤

1 + N∑
i=2

γn,i

i−1∏
j=1

(1− βn,j)
(
k2n − 1

)
+

i−1∏
j=1

(1− βn,j)
(
k2n − 1

)
(3.13)

× ∥xn − q∥
≤ (1 + 2ϵαn)∥xn − q∥,

(3.12) and (3.13) imply that
∥xn+1 − q∥ ≤ αnγρ∥xn − q∥+ αn∥γg(q)−Aq∥

+ (1− αnᾱ)(1 + 2ϵαn)∥xn − q∥
≤ αnγρ∥xn − q∥+ αn∥γg(q)−Aq∥
+ (1 + 2ϵαn − αnᾱ)∥xn − q∥

= [1− (ᾱ− 2ϵ− γρ)αn]∥xn − q∥+ αn∥γg(q)−Aq∥.

Using mathematical inductional argument, we get

∥xn − q∥ ≤ max

{
∥x0 − q∥, ∥γg(q)−Aq∥

ᾱ− 2ϵ− γρ

}
, ∀n ∈ N,

which implies that the sequence {xn} is bounded; and from which we
conclude that the following sequences: {un}, {sn} and {g(xn)} are as
well bounded.

Next, for each i, we show that ∥ωn − zn,i∥ → 0 and ∥un − νn,i∥ → 0
as n → ∞. From Lemma 2.9, (3.11) and (3.13), we get

∥xn+1 − q∥2 ≤ ∥αnγg(xn) + δnsn + ((1− δn)I − αnA)sn − q∥2

(3.14)

≤ ∥αn(γg(xn)−Aq)− δn(q − sn)

+ ((1− δn)I − αnA)(sn − q)∥2

= ∥αn(γg(xn)−Aq)− δn(q − sn)∥2

+ ∥((1− δn)I − αnA)(sn − q)∥2

+ 2αn∥γg(xn)−Aq∥∥((1− δn)I − αnA)(sn − q)∥
≤ α2

n∥γg(xn)−Aq∥2

+ δ2n∥q − sn∥2 + ((1− δn)I − αnᾱ)
2∥sn − q∥2

+ 2αn((1− δn)I − αnᾱ)∥γg(xn)−Aq∥∥sn − q∥
≤
(
1− 2δn + δ2n − 2(1− δn)αnᾱ+ α2

nᾱ
2
)
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× ∥sn − q∥2 + δ2n∥q − sn∥2 + α2
n∥γg(xn)−Aq∥2

+ 2αn((1− δn)I − αnᾱ)∥γg(xn)−Aq∥∥sn − q∥
= (1− 2δn(δn − 1) + αnᾱ(αnα− 2) + 2δnαnᾱ)∥sn − q∥2

+ α2
n∥γg(xn)−Aq∥2

+ 2αn((1− δn)I − αnᾱ)∥γg(xn)−Aq∥∥sn − q∥
≤ (1 + 2δnαnᾱ)∥sn − q∥2 + α2

n∥γg(xn)−Aq∥2

+ 2αn((1− δn)I − αnᾱ)∥γg(xn)−Aq∥∥sn − q∥

≤

1 +

 N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j) +

i−1∏
j=1

(1− γn,j)

(k2n − 1
)

+

 N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j) +

i−1∏
j=1

(1− βn,j)


×

1 +
 N∑

i=2

γn,i

i−1∏
j=1

(1− γn,j) +

i−1∏
j=1

(1− γn,j)

(k2n − 1
)

× ∥xn − q∥2 −

 N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j)
(
γn,1 − µ

(2)
i−1

)

×∥un − νn,i−1∥2 +
i−1∏
j=1

(1− γn,j)
(
γn,1 − µ

(2)
n,N

)
∥ωn − zn,N∥2


−

 N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)
(
βn,1 − µ

(1)
i−1

)
∥ωn − zn,i−1∥2

+

i−1∏
j=1

(1− βn,j)
(
βn,1 − µ

(1)
n,N

)
∥ωn − zn,N∥2


+ 2δnαnᾱ

1 +

 N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j) +

i−1∏
j=1

(1− γn,j)


×
(
k2n − 1

)
+

 N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j) +

i−1∏
j=1

(1− βn,j)


×

1 +
 N∑

i=2

γn,i

i−1∏
j=1

(1− γn,j) +

i−1∏
j=1

(1− γn,j)

(k2n − 1
)

× ∥xn − q∥2 −

 N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j)
(
γn,1 − µ

(2)
i−1

)
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×∥un − νn,i−1∥2 +
i−1∏
j=1

(1− γn,j)
(
γn,1 − µ

(2)
n,N

)
∥ωn − zn,N∥2


−

 N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)
(
βn,1 − µ

(1)
i−1

)
∥ωn − zn,i−1∥2

+

i−1∏
j=1

(1− βn,j)
(
βn,1 − µ

(1)
n,N

)
∥ωn − zn,N∥2


+ α2

n∥γg(xn)−Aq∥2 + 2αn(1 + 2ϵαn)((1− δn)I − αnᾱ)

× ∥γg(xn)−Aq∥∥xn − q∥.

Set

M =

N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j)
(
γn,1 − µ

(2)
i−1

)
∥un − νn,i−1∥2

+
i−1∏
j=1

(1− γn,j)
(
γn,1 − µ

(2)
n,N

)
∥ωn − zn,N∥2.

Then, we obtain from the last inequality that

M ≤ ∥xn − q∥2 − ∥xn+1 − q∥2

(3.15)

+



 N∑

i=2

γn,i

i−1∏
j=1

(1− γn,j) +

i−1∏
j=1

(1− γn,j)

(k2n − 1
)

+

 N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j) +

i−1∏
j=1

(1− βn,j)

1 +
 N∑

i=2

γn,i

i−1∏
j=1

(1− γn,j)

+

i−1∏
j=1

(1− γn,j)

(k2n − 1
) ∥xn − q∥2

−

 N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)
(
βn,1 − µ

(1)
i−1

)
∥ωn − zn,i−1∥2

+

i−1∏
j=1

(1− βn,j)
(
βn,1 − µ

(1)
n,N

)
∥ωn − zn,N∥2


+ 2δnαnᾱ

1 +

 N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j) +

i−1∏
j=1

(1− γn,j)

(k2n − 1
)
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+

 N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j) +

i−1∏
j=1

(1− βn,j)

1 +
 N∑

i=2

γn,i

i−1∏
j=1

(1− γn,j)

+

i−1∏
j=1

(1− γn,j)

(k2n − 1
) ∥xn − q∥2

−

 N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)
(
βn,1 − µ

(1)
i−1

)
∥ωn − zn,i−1∥2

+

i−1∏
j=1

(1− βn,j)
(
βn,1 − µ

(1)
n,N

)
∥ωn − zn,N∥2

+ α2
n∥γg(xn)−Aq∥2

+ 2αn(1 + 2ϵαn)((1− δn)I − αnᾱ)∥γg(xn)−Aq∥∥xn − q∥.

Now, to show xn → q as n → ∞, we consider the following cases:
Case A: Suppose the sequence {∥xn − q∥} is monotonically decreasing.
Then, {∥xn − q∥} is convergent. Hence,
(3.16) lim

n→∞
[∥xn − q∥ − ∥xn+1 − q∥] = 0.

Consequently, from (3.15), (3.16), conditions [(i), (ii) and (iv)] and the
fact that limn→∞ kn = 1, we obtain
(3.17) lim

n→∞
∥un − νn,i∥ = 0.

Since νn,i ∈ Γn
i un, using (3.17), we have

(3.18) lim
n→∞

∥un − Γn
i un∥ = 0.

Using the same argument as above (considering (3.15), (3.16), conditions
[(i), (iii) and (iv)] and the fact that limn→∞ kn = 1), we easily see that
(3.19) lim

n→∞
∥ωn − zn,i∥ = 0.

Since zn,i ∈ Gn
i ωn, using (3.19), we get

(3.20) ∥ωn −Gn
i ωn∥ = 0.

Next, we show that limn→∞ ∥xn − un∥ = 0. For any q ∈ F , we have
∥un − q∥2 ≤ ∥Trnxn − Trnq∥2

≤ ⟨Trnxn − Trnq, xn − q⟩
= ⟨un − q, xn − q⟩

=
1

2

(
∥un − q∥2 + ∥xn − q∥2 − ∥xn − un∥2

)
,

and hence
(3.21) ∥un − q∥2 ≤ ∥xn − q∥2 − ∥xn − un∥2 .
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(3.9), (3.10) and (3.13) imply that

∥xn+1 − q∥2 ≤ ∥ωn − q∥2 +
N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)
(
k2n − 1

)
∥ωn − q∥2

+
i−1∏
j=1

(1− βn,j)
(
k2n − 1

)
∥ωn − q∥2 + 2αn[δnᾱ∥sn − q∥2

+ ((1− δn)I − αnᾱ)∥γg(xn)−Aq∥∥sn − q∥]

≤ ∥un − q∥2 +
N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j)
(
k2n − 1

)
∥un − q∥2

+

i−1∏
j=1

(1− γn,j)
(
k2n − 1

)
∥un − q∥2

+

N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)(kn − 1)∥ωn − q∥2

+

i−1∏
j=1

(1− βn,j)
(
k2n − 1

)
∥ωn − q∥2 + 2αn[δnᾱ∥sn − q∥2

+ ((1− δn)I − αnᾱ)∥γg(xn)−Aq∥∥sn − q∥],

which by (3.21) yields

∥xn − un∥2 ≤ ∥xn − q∥2 − ∥xn+1 − 1∥2 +

 N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j)
(
k2n − 1

)(3.22)

+

i−1∏
j=1

(1− γn,j)
(
k2n − 1

)
+

N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)
(
k2n − 1

)

+

i−1∏
j=1

(1− βn,j)
(
k2n − 1

)Q

+ 2αn [δnᾱQ+ ((1− δn)I − αnᾱ)∥γg(xn)−Aq∥∥sn − q∥] ,

where Q⋆ = sup ∥un − q∥2,Q⋆⋆ = sup ∥ωn − q∥2 and Q = max{Q⋆, Q⋆⋆}.
From (3.16), condition (iv) and the fact that limn→∞ kn = 1, we obtain
from the last inequality that

(3.23) lim
n→∞

∥xn − un∥ = 0.
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Moreover, from (3.4), we have the following estimates:

∥xn+1 − sn∥ ≤ ∥αnαg(xn) + δnsn + ((1− δn)I −A)sn − sn∥
(3.24)

= αn∥αg(xn)−Asn∥ → 0 as n → ∞ (by condition (iv)),

∥sn − ωn∥ =

∥∥∥∥∥∥
βn,1 +

N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j) +
i−1∏
j=1

(1− βn,j)

ωn

(3.25)

+

N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)(zn,i−1 − ωn)

+

i−1∏
j=1

(1− βn,j)(zn,N − ωn)− ωn

∥∥∥∥∥∥
≤

N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)∥zn,i−1 − ωn∥

+
i−1∏
j=1

(1− βn,j)∥zn,N − ωn∥ → 0,

as n → ∞ [by (3.15) and (3.16)], and by following the argument as was
used for (3.15), we have (using (3.14) and (3.16)) that

∥ωn − un∥ =

∥∥∥∥∥∥
γn,1 +

N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j) +
i−1∏
j=1

(1− γn,j)

un

(3.26)

+

N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j)(νn,i−1 − un)

+
i−1∏
j=1

(1− γn,j)(νn,N − un)− ωn

∥∥∥∥∥∥
≤

N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j) ∥νn,i−1 − un∥

+

i−1∏
j=1

(1− γn,j) ∥νn,N − un∥ → 0 as n → ∞.
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Observe rhat

∥xn+1 − xn∥ ≤ ∥xn+1 − sn∥+ ∥sn − ωn∥+ ∥ωn − un∥+ ∥un − xn∥

(3.23), (3.24), (3.25), (3.26) and the last inequality imply

(3.27) lim
x→∞

∥xn+1 − xn∥ = 0.

Also, observe that

∥ωn −Giωn∥ ≤ ∥ωn −Gn
i ωn∥+ ∥Gn

i ωn −Gn
i un∥

(3.28)

+
∥∥Gi(G

n−1
i un)−Gi(G

n−1ωn−1

∥∥
+
∥∥Gi(G

n−1
i ωn−1)−Giωn)

∥∥
≤ ∥ωn −Gn

i ωn∥+ L ∥ωn − un∥+ L ∥un − ωn−1∥
+ L

∥∥Gn−1
i ωn−1 − ωn

∥∥
≤ ∥ωn −Gn

i ωn∥+ L ∥ωn − un∥+ L[∥un − xn∥
+ ∥xn − sn−1∥+ ∥sn−1 − ωn−1∥] + L

[∥∥Gn−1
i ωn−1 − ωn−1

∥∥
+ ∥ωn−1 − sn−1∥+ ∥sn−1 − xn∥+ ∥xn − un∥+ ∥un − ωn∥]

≤ ∥ωn −Gn
i ωn∥+ L

∥∥Gn−1
i ωn−1 − ωn−1

∥∥+ 2L[∥ωn − un∥
+ ∥un − xn∥+ ∥xn − sn−1∥+ ∥sn−1 − ωn−1∥],

(3.20), (3.23), (3.24), (3.25), (3.26) and (3.28) imply that

(3.29) lim
n→∞

∥ωn −Giωn∥ = 0.

Again, observe that

∥un − Γiun∥ ≤ ∥un − Γn
i un∥+ ∥Γn

i un − Γn
i xn∥

(3.30)

+
∥∥Γi(Γ

n−1
i xn)− Γi(Γ

n
i un−1)

∥∥+ ∥Γi(Γ
n
i un−1)− Γiun∥

≤ ∥un − Γn
i un∥+ L ∥un − xn∥+ L ∥xn − un−1∥

+ L ∥Γn
i un−1 − un∥

≤ ∥un − Γn
i un∥+ L ∥un − xn∥+ L[∥xn − sn−1∥

+ ∥sn−1 − ωn−1∥+ ∥ωn−1 − un−1∥]
+ L[∥Γn

i un−1 − un−1∥+ ∥un−1 − ωn−1∥
+ ∥ωn−1 − sn−1∥+ ∥sn−1 − xn∥+ ∥xn − un∥]

≤ ∥un − Γn
i un∥+ L ∥Γn

i un−1 − un−1∥+ 2L[∥un − xn∥
+ ∥xn − sn−1∥+ ∥sn−1 − ωn−1∥+ ∥ωn−1 − un−1∥].
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(3.18), (3.23), (3.24), (3.25), (3.26) and (3.30) imply that
(3.31) lim

n→∞
∥un − Γiun∥ = 0.

Next, we show that
(3.32) lim sup

n→∞
⟨A− γg)q, q − xn⟩ ≤ 0, ∀n ∈ N,

where q = PF (1 − A + γg)q is a unique solution of the variational in-
equality (2.7). To do this, choose a subsequence {xnki

} of {xnk
} such

that
(3.33) lim

i→∞
⟨A− γg)q, q − xnk

⟩ = lim
n→∞

⟨A− γg)q, q − xn⟩ .

Now, since the sequence is bounded (as shown above),there exists a
subsequence {xnki

} of {xnk
} that converges weakly to x⋆ ∈ F . We

assume (without loss of generality) that xnk
⇀ x⋆ as n → ∞. Since

∥un − xn∥ → 0 as n → ∞, we have unk⇀ → x⋆ as k → ∞. We show
that x⋆ ∈ F . To do this, we proceed as follows:
First, we show that x⋆ ∈ EP (Ψ). By un = Trnxn, we get

Ψ(un, y) +
1

rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ K.

From (B2), we also get
1

rn
⟨y − un, un − xn⟩ ≥ Ψ(y, un), ∀y ∈ K,

consequently, 〈
y − unk

,
unk

− xnk

rnk

〉
≥ Ψ(y, unk

).

Since unk
− xnk

rnk

→ 0 and unk
⇀ x⋆ as k → ∞, from (B4), we have

0 ≥ Ψ(y, x⋆), ∀y ∈ K.

Let yt = ty+(1− t)x⋆, where y ∈ K and 0 < t ≤ 1. Since y, x⋆ ∈ K and
K is convex, we have yt ∈ K and Ψ(yt, x

⋆) ≤ 0. Hence, from (B1)and
(B4), we obtain

0 = Ψ(yt, yt)

≤ tΨ(yt, y) + (1− t)Ψ(yt, x
⋆)

≤ tΨ(yt, y),

which yields Ψ(yt, y) ≥ 0. From (B3), we get Ψ(x⋆, y) ≥ 0,∀y ∈ K.
Thus, x⋆ ∈ EP (Ψ).

Also, from unk
⇀ x⋆, the fact that limn→∞ ∥un − Γiun∥ = 0 and

demiclosedness of I−Γi at zero for each i, following standard argument,
we conclude that x⋆ ∈ ∩m

i=1F (Γi). Again, since limn→∞ ∥ωn −Giωn∥ = 0
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and limn→∞ ∥un−sn∥ = 0, by our assumption that I−Gi is demiclosed
at zero for each i, we obtain x⋆ ∈ ∩m

i=1F (Gi). Hence, x⋆ ∈ F . Since
q = PF (i−A+ γg)q and x⋆ ∈ F , it follows from (3.31) that

lim sup
n→∞

⟨A− γg)q, q − xn⟩ = lim
i→∞

〈
A− γg)q, q − xnki

〉
(3.34)

= lim
i→∞

⟨A− γg)q, q − x⋆⟩

≤ 0,

as required.
Now, using (3.4) and Lemma 2.10, we get

∥xn+1 − q∥2
(3.35)

≤ ∥αnγg(xn) + δnsn + ((1− δn)I − αnA)sn − q∥2

= ∥αn(γg(xn)−Aq) + δn(sn − q) + ((1− δn)I − αnA)(sn − q)∥2

≤ ∥((1− δn)− αnA)(sn − q)− δn(q − sn)∥2

+ 2αn ⟨γg(xn)−Aq, xn+1 − q⟩
≤ ((1− δn)I − αnα)

2∥sn − q∥2 + δ2n∥sn − q)∥2

+ 2αnγ ⟨g(xn)− g(q), xn+1 − q⟩
+ 2αn ⟨(A− γg)q, q − xn+1⟩

≤ [1− 2δn + δ2n − 2(1− δn)αnα+ α2
nα

2]∥sn − q∥2

+ δ2n∥sn − q)∥2 + 2αnγρ∥xn − q∥∥xn+1 − q∥
+ 2αn ⟨(A− γg)q, q − xn+1⟩

= [1 + 2δn(δn − αnα− 1)− 2αnα+ α2
nα

2]∥sn − q∥2

+ αnγρ[∥xn − q∥2 + ∥xn+1 − q∥2]
+ 2αn ⟨(A− γg)q, q − xn+1⟩

≤ (1− 2αnα)∥sn − q∥2 + α2
nα

2∥sn − q∥2 + αnγρ[∥xn − q∥2

+ ∥xn+1 − q∥2] + 2αn ⟨(A− γg)q, q − xn+1⟩ .

By (3.5), (3.9), (3.10) and (3.35), we have

∥xn+1 − q∥2

(3.36)

≤ (1− 2αnα)∥ωn − q∥2 +
N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)
(
k2n − 1

)
∥ωn − q∥2
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+

i−1∏
j=1

(1− βn,j)
(
k2n − 1

)
∥ωn − q∥2 + α2

nα
2∥sn − q∥2

+ αnγρ[∥xn − q∥2 + ∥xn+1 − q∥2] + 2αn ⟨(A− γg)q, q − xn+1⟩

≤ (1− 2αnα)∥xn − q∥2 +
N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j)
(
k2n − 1

)
∥un − q∥2

+
i−1∏
j=1

(1− γn,j)
(
k2n − 1

)
∥un − q∥2

+
N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)
(
k2n − 1

)
∥ωn − q∥2

+
i−1∏
j=1

(1− βn,j)
(
k2n − 1

)
∥ωn − q∥2 + α2

nα
2∥sn − q∥2

+ αnγρ
[
∥xn − q∥2 + ∥xn+1 − q∥2

]
+ 2αn ⟨(A− γg)q, q − xn+1⟩

≤ [1− (2ᾱ− γρ)αn]∥xn − q∥2 +
N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j)
(
k2n − 1

)
Q⋆

+
i−1∏
j=1

(1− γn,j)
(
k2n − 1

)
Q⋆ +

N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)
(
k2n − 1

)
Q⋆⋆

+

i−1∏
j=1

(1− βn,j)
(
k2n − 1

)
Q⋆⋆ + α2

nα
2Q⋆⋆ + αnγρ∥xn+1 − q∥2

+ 2αn ⟨(A− γg)q, q − xn+1⟩
≤ [1− (2ᾱ− γρ)αn]∥xn − q∥2

+

α2
nα

2 + 2
(
k2n − 1

) N∑
i=2

γn,i

i−1∏
j=1

(1− βn,j) +
i−1∏
j=1

(1− βn,j)

Q


+ αnγρ∥xn+1 − q∥2 + 2αn ⟨(A− γg)q, q − xn+1⟩ ,

where Q,Q⋆ and Q⋆⋆ still retain their usual meaning.
The last inequality implies that

∥xn+1 − q∥2 ≤
[
1− 2(ᾱ− γρ)αn

1− αnγρ

]
∥xn − q∥2

(3.37)
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+
αn

1− αnγρ


αnα

2 +
2
(
k2n − 1

)
αn

 N∑
i=2

γn,i

i−1∏
j=1

(1− βn,j)

+

i−1∏
j=1

(1− βn,j)

Q+ 2 ⟨(A− γg)q, q − xn+1⟩

 .

Set

σn =
2(ᾱ− γρ)αn

1− αnγρ
,

λn =
αn

1− αnγρ


αnα

2 +
2
(
k2n − 1

)
αn

 N∑
i=2

γn,i

i−1∏
j=1

(1− βn,j) +

i−1∏
j=1

(1− βn,j)

Q


+ 2 ⟨(A− γg)q, q − xn+1⟩

}
,

and
ℓn =

λn

σn

=
1

2(ᾱ− γρ)


αnα

2 +
2
(
k2n − 1

)
αn

 N∑
i=2

γn,i

i−1∏
j=1

(1− βn,j) +

i−1∏
j=1

(1− βn,j)

Q


+ 2 ⟨(A− γg)q, q − xn+1⟩

}
.

Then, we obtain from (3.37) that
(3.38) bn+1 ≤ (1− σn)bn + ℓn,

where bn = ∥xn− q∥2. It is easy to see, using condition (iv) and the fact
that lim

x→∞
kn = 1, that

σn → 0 as n → ∞,
∞∑
n=1

σn = ∞ and lim sup
n→∞

ℓn ≤ 0.

Therefore, by Lemma 2.11 and (3.38), the sequence {xn} converges
strongly to q ∈ F .
Case B: Assume that sequence {∥xn − q∥} is monotonicalyy inreasing.
Then, we can define an integer sequence {τn} for all n ≥ 0 (for some n0

large enough) as follows:
(3.39) τn = max {k ∈ N : k ≤ n : ∥xk − q∥ < ∥xk+1 − q∥} .
It is obvious that τ is a nondecreaing sequence such that τn → ∞ as
n → ∞ and for all n ≥ n0, we have
(3.40) ∥xτ(n) − q∥ < ∥xτ(n)+1 − q∥.
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From (3.15), (3.18), (3.23) and (3.31) with (n replaced by τ(n)), we have

(3.41) lim
x→∞

∥uτ(n) − Γiuτ(n)∥ = 0,

and
(3.42) lim

x→∞
∥xτ(n) − uτ(n)∥ = 0.

Following the same argument as in Case A, we obtain
(3.43) bτ(n)+1 ≤ (1− στ(n))bτ(n) + ℓτ(n),

στ(n) → 0 as n → ∞,
∞∑
n=1

στ(n) = ∞ and lim sup
n→∞

ℓτ(n) ≤ 0. Thus, by

Lemma 2.11, we have limn→∞ ∥xτ(n) − q∥ = 0 and limn→∞ ∥xτ(n)+1 −
q∥ = 0. Hence, by Lemma 2.13, we obtain

0 ≤ ∥xn − q∥
≤ max{∥xn − q∥, ∥xτ(n) − q∥} lim

n→∞
≤ ∥xτ(n)+1 − q∥.t.

Therefore, {xn} converges to q = PF(1 − A + γg)q and this completes
the proof. □

Theorem 3.5. Let K be a convex, closed and nonempty subset of a
real Hilbert space H and let Ψ be a bifunction of K ×K into R. Sup-
pose that {Γi}Ni=1 and {Gi}Ni=1,N ≥ 2 are finite families of type-one and
Li-uniformly Lipschitizian asymptotically strictly pseudocontractive mul-
tivalued mapping Γi : K → P(K)and type-one and Li-uniformly Lips-
chitizian asymptotically strictly pseudononpreading multivalued mapping
Gi : K → P(K), respectively from K into the family of all proximinal
subsets of K with contractive coeficient µ

(1)
i , µ

(2)
i ∈ [0.1) for each i. As-

sume that F = (∩N
i=1(F (Γi))∩ (∩N

i=1F (Gi)∩EP (Θ) ̸= ∅ and for each i,
(I − Γi) and (I −Gi) are weakly demiclosed at zero. let gi be a contrac-
tion of K into itself with constant ρ ∈ (0, 1) and A be a strong positive
self adjoint bounded linear operator on H with coeficient ᾱ such that
0 < ργ + 2ϵ < ᾱ. Let the sequence {xn} be given iteratively as follows:

(3.44)


un ∋ Ψ(un, y) +Qn1, ∀y ∈ K;

ωn = γn,1un +Qn2,

sn = βn,1ωn +Qn3,

xn+1 = PK(αnγg(xn) + δnsn + ((1− δn)I − αnA)sn),

where

Qn1 =
1

rn
⟨y − un, un − xn⟩ ≥ 0,
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Qn2 =

N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j)νn,i−1 +
N∏
j=1

(1− γn,j)νn,N ,

Qn3 =

N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)zn,i−1 +

N∏
j=1

(1− βn,j)zn,N ,

νn,i ∈ Γn
i un and zn,i ∈ Gn

i ωn for each i, {αn}, {δn} ∈ [0, 1],
{
{βn,i}∞n=1

}N
i=1

and
{
{γn,i}∞n=1

}N
i=1

are countably finite families of real sequences in [0, 1].
Suppose the following conditions are satisfied:

(i) βn,1 ≥ γn,1 > max{µi}Ni=1 : βn,i ≤ γn,i < γ ≤ β < 1, for each i;
(ii) lim inf

n→∞
βn,i

∏i−1
j=1(1−βn,j)(βn,1−µi−1) > 0 and lim inf

n→∞

∏i−1
j=1(1−

βn,j)(βn,1 − µN > 0;

(iii) lim inf
n→∞

γn,i
∏i−1

j=1(1−γn,j)(γn,1−µi−1) > 0 and lim inf
n→∞

∏i−1
j=1(1−

γn,j)(γn,1 − µN > 0;

(iv) lim
x→∞

αn = 0,
∞∑
n=1

αn = ∞ and lim
x→∞

(1− βn,j)(kn − 1)

αn
= 0;

(v) {rn} ⊂ [a,∞) for some a > 0.

Then, the sequence defined by (3.44) converges strongly to q ∈ F , which
solves the variational inequality ⟨(A− γg)q, x− q⟩ ≥ 0, ∀x ∈ F .

Proof. Since F = (∩N
i=1(F (Γi))∩(∩N

i=1F (Gi)∩EP (Θ) ̸= ∅, it follows that
both Γi and Gi are type-one and Li-uniformly Lipschitizian asymptot-
ically demicontractive multivalued mappings. Consequently the results
of Theorem 3.5 follows immediately from Theorem 3.4. □
Theorem 3.6. Let K be a convex, closed and nonempty subset of a real
Hilbert space H . Let {Γi}Ni=1 and {Gi}Ni=1, N ≥ 2 be finite families of
type-one and Li-uniformly Lipschitizian asymptotically strictly pseudo-
contractive multivalued mapping Γi : K → P(K)and type-one and Li-
uniformly Lipschitizian asymptotically strictly pseudononpreading mul-
tivalued mapping Gi : K → P(K), respectively from K into the family of
all proximinal subsets of K with contractive coeficient µ

(1)
i , µ

(2)
i ∈ [0.1)

for each i. Assume that F = (∩N
i=1(F (Γi)) ∩ (∩N

i=1F (Gi) ̸= ∅ and for
each i, (I − Γi) and (I −Gi) are weakly demiclosed at zero. let gi be a
contraction of K into itself with constant ρ ∈ (0, 1) and A be a strong
positive self adjoint bounded linear operator on H with coeficient ᾱ such
that 0 < ργ + 2ϵ < ᾱ. Let the sequence {xn} be given iteratively as
follows:

(3.45)


ωn = γn,1un +Wn1,

sn = βn,1ωn +Wn2,

xn+1 = αnv + ((1− δn)sn,
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where

Wn1 =

N∑
i=2

γn,i

i−1∏
j=1

(1− γn,j)νn,i−1 +

N∏
j=1

(1− γn,j)νn,N ,

Wn2 =
N∑
i=2

βn,i

i−1∏
j=1

(1− βn,j)zn,i−1 +

N∏
j=1

(1− βn,j)zn,N ,

νn,i ∈ Γn
i un and zn,i ∈ Gn

i ωn for each i, {αn}, {δn} ∈ [0, 1],
{
{βn,i}∞n=1

}N
i=1

and
{
{γn,i}∞n=1

}N
i=1

are countably finite families of real sequences in [0, 1].
Suppose the following conditions are satisfied:

(i) βn,1 ≥ γn,1 > max{µi}Ni=1 : βn,i ≤ γn,i < γ ≤ β < 1, for each i;
(ii) lim inf

n→∞
βn,i

∏i−1
j=1(1−βn,j)(βn,1−µi−1) > 0 and lim inf

n→∞

∏i−1
j=1(1−

βn,j)(βn,1 − µN > 0;

(iii) lim inf
n→∞

γn,i
∏i−1

j=1(1−γn,j)(γn,1−µi−1) > 0 and lim inf
n→∞

∏i−1
j=1(1−

γn,j)(γn,1 − µN > 0;

(iv) lim
x→∞

αn = 0,
∞∑
n=1

αn = ∞ and lim
x→∞

(1− βn,j)(kn − 1)

αn
= 0.

Then, the sequence defined by (3.45) converges strongly to q ∈ F , which
solves the variational inequality ⟨(A− γg)q, x− q⟩ ≥ 0, ∀x ∈ F .

Proof. If Ψ(x, y) = 0 for all x, y ∈ K, r = 1 for all n ≥ 0 then un = xn.
Hence, with g(x) = v and A = I (where I is an identity map on H), the
results follows immediately from Theorem 3.4. □

4. Numerical Example

Now, we give an example to illustrate that our proposed iteration
scheme is implementable.

Example 4.1. Consider the nonempty closed convex subset k = (−3, 3)
of a Hilbert space R. Define the mappings Γi : K → PK and Gi : K →
PK, for i = 1, 2, 3, as follows:

(4.1) Γix =


[
− 1

3i
x,− 1

2i
x
]
, x ∈ (−3, 0],[

− 1
2i
x,− 1

3i
x
]
, x ∈ [0, 3),

and

(4.2) Gix =


[
− 1

3i+1x,− 1
2i+1x

]
, x ∈ (−3, 0],[

− 1
2i+1x,− 1

3i+1x
]
, x ∈ [0, 3).
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Then,

(4.3) Γn
i x =


[
− 1

3in
x,− 1

2in
x
]
, x ∈ (−3, 0],[

− 1
2in

x,− 1
3in

x
]
, x ∈ [0, 3).

and

(4.4) Gn
i x =


[
− 1

3(i+1)nx,− 1
2(i+1)nx

]
, x ∈ (−3, 0],

[
− 1

2(i+1)nx,− 1
3(i+1)nx

]
, x ∈ [0, 3).

Note that, using the same argument as in Example 4.1 in [41] and
Example ?? above, it is easy to see that both maps are uniformly L-
Lipschitizian and asymptotically demicontractive multivalued mappings.

Now, define the bifunction Ψ as follows:

(4.5)
{
Ψ : K ×K → R
Ψ(x, y) = y2 + xy − 2x2.

It is not hard to see that Ψ satisfies conditions (B1) − (B4). If we set
rn = 1, then un = Trn(xn) =

xn
3rn + 1

=
xn
4
, ( see [50] for details). For

N = 3, (3.4) becomes
un ∋ Ψ(un, y) +

1

rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ K,

ηn = γn,1un + Yn,

sn = βn,1ωn +Wn,

xn+1 = PK(αnγg(xn) + δnsn + ((1− δn)I − αnA)).

where

Yn = (1− γn,1)γn,2νn,1 + (1− γn,1)(1− γn,2)γn,3νn,2

+ (1− γn,1)(1− γn,2)(1− γn,3)νn,3,

Wn = (1− βn,1)βn,2zn,1 + (1− βn,1)(1− βn,2)βn,3zn,2

+ (1− βn,1)(1− βn,2)(1− βn,3)zn,3.

Put g(x) =
x

2
, A = 1, γ = 1, γn,1 = γn,2 = γn,3 =

1

4
, βn,1 = βn,2 = βn,3 =

1

3
and αn =

n

n+ 1
. Then, for arbitrary x0 ∈ K, the above iteration
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scheme yields:

(4.6)



ωn =
xn
4

+
3

16
νn,1 +

3

64
νn,2 +

1

64
νn,3,

sn =
ωn

3
+

2

9
zn,1 +

2

27
zn,2 +

1

27
zn.3,

xn+1 =
xn

2(n+ 1)
+

n

n+ 1
sn,

where

νn,1 ∈
[
− 1

2n
xn,−

1

3n
xn

]
,

νn,2 ∈
[
− 1

4n
xn,−

1

9n
xn

]
,

νn,3 ∈
[
− 1

8n
xn,−

1

27n
xn

]
,

for xn ∈ (−3, 0] and

νn,1 ∈
[
− 1

3n
xn,−

1

2n
xn

]
,

νn,2 ∈
[
− 1

9n
xn,−

1

4n
xn

]
,

νn,3 ∈
[
− 1

27n
xn,−

1

8n
xn

]
,

for xn ∈ [0, 3) whereas

zn,1 ∈
[
− 1

4n
xn,−

1

9n
xn

]
,

zn,2 ∈
[
− 1

8n
xn,−

1

27n
xn

]
,

zn,3 ∈
[
− 1

16n
xn,−

1

81n
xn

]
,

for xn ∈ (−3, 0] and

zn,1 ∈
[
− 1

9n
xn,−

1

4n
xn

]
,

zn,2 ∈
[
− 1

27n
xn,−

1

8n
xn

]
,

zn,3 ∈
[
− 1

81n
xn,−

1

16n
xn

]
,
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for xn ∈ [0, 3).
Observe that the sequence {xn} converges to zero ad n → ∞. That

is, F =
(
∩3
i=1 (F (Γi))

)
∩
(
∩3
i=1F (Gi)

)
̸= ∅ ∩ EP (Ψ) = {0}.

Remark 4.2. Since every asymptotically quasi-nonexpansive multival-
ued mapping is asymptotically demicontractive multivalued mapping
with the constant k = 0, Theorem 3.4 holds true for this class of map-
ping.
Remark 4.3. Theorem 3.4 improves results of Isogugu, lzuchukwu and
Okeke [40]. Indeed, Isogugu, lzuchukwu and Okeke considered a hori-
zontal iteration scheme with one auxiliary multivalued (demicontractive)
mapping, but here we presented a modified horizontal iteration scheme
with two auxiliary multivalued (asymptotically demicontractive) map-
ping.
Remark 4.4. Theorem 3.4 generalises the results of Ali and Umar [35]
and Osilike and Aniagbosor [39] from single-valued multivalued quasi-
nonexpansive and single-valued asymptotically demicontractive map-
ping to finite family of asymptotically demicontractive multivalued map-
ping, respectively.
Remark 4.5. Theorem 3.5 generalises the results of Zhaoli and Wang
[46] from single-valued asymptotically strictly pseudononspreading map-
ping to finite families of two asymptotically pseudononspreading map-
ping.

5. Conclusion

In this paper, we have introduced and studied a new class of asymp-
totically demicontractive multivalued mapping and proved convergence
results for equilibrium problems and fixed point problems of type-one
asymptotically demicontractive multivalued mapping without an impo-
sition of any sum conditions on the control parameters, in the setup of
a real Hilbert space. Also, we provided a numerical example to demon-
strate the implementablity of our proposed iteration technique. The
results obtained in this paper extend, improve and generalise several
known results so far obtained in this direction.

Acknowledgment. The authors thank the anonymous reviewers for
their careful reading of this paper and approved the final manuscript.
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