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Product-type Operators Between Minimal Mo6bius Invariant
Spaces and Zygmund Type Spaces

Mostafa Hassanlou', Ebrahim Abbasi?*, Mehdi Kanani Arpatapeh® and Sepideh
Nasresfahani®

ABSTRACT. In this work, we consider product-type operators Ty, .,
from minimal Mébius invariant spaces into Zygmund-type spaces.
Firstly, some characterizations for the boundedness of these opera-
tors are given. Then some estimates of the essential norms of these
operators are obtained. Therefore, some compactness conditions
will be given.

1. INTRODUCTION

By D being the open unit disc in the complex plane C, H (D) is denoted
as the space of all analytic functions on ID. The classic Zygmund space
Z consists of all functions f € H (D) which are continuous on the closed
unit ball D and

\f (ei(G-‘rh)) +f (ei(ﬁ—h)) —of (eiﬁ)‘
h

where the supremum is taken over all € R and h > 0. By [4, Theorem
5.3], an analytic function f belongs to Z if and only if
sup,ep (1 — [2]?) [f”(2)] < oo. Motivated by this, for each a > 0,
the Zygmund type space Z, is defined to be the space of all functions
f € H(D) for which

1 £llsza = sup (1= [21*)" [f"(2)] < oc.
zeD

sup < 00,
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The space Z, is a Banach space equipped with the norm

Ifllz. = £ O]+ [£Of + I flsz., VS € Zan

Let Aut(ID) be the group of all conformal automorphisms of D which
is also called the Md&bius group. It is well-known that each element of
Aut(D) is of the form

io @ —

0

eloa(z) =e a,zeD,f eR.

1—az’
Let X be a linear space of analytic functions on D, which is complete. X
is called Mobius invariant if for each function f in X and each element
Y in Aut(D), the composition function f o) also lies in X and satisfies
that || f o 9| v = || f||x. For example, the space H* of all bound analytic
functions are Mobius invariant. Also, the Besov space B,(1 < p < 00),
is Mobius invariant which is the space of all f € H(D) such that

[17EF @ =1 dae) < .

If p = 2, we have the well-known Dirichlet space. For p = co, Boo = B

is the classic Bloch space. Space B; which is called the minimal Mdbius

invariant is defined separately. The function f € H(D) belongs to By if
o0

and only if it has representation as f(z) = ) c,0q, where a; € D and
k=1

o0 o0
> |ek| < 0o. The norm on Bj is defined as infimum of Y |eg| for which
k=1 k=1
the above statement holds. Bj is contained in any Mobius invariant

space and it has been proved that it is the set of all analytic functions f
on D such that f” lies in L!'(ID,dA). Also, there exist positive constants
C'1 and C such that

Cillfllp, = [FO)]+ !f’(O)!Jr/D\f”(Z)\dA(Z)

<G| £l -

Let u,v,p € H(D) and ¢ : D — . The Stevié-Sharma type operator is
defined as follows

Tuwef(2) = u(2)f(p(2) +v(2)f (¢(2)), fe€HD), zeD.

Indeed T, 4,p, = uCy,+vC,D where D is the differentiation operator and
C, is the composition operator. More information about this operator
can be found in [2, B, 5-8, 11].

The generalized Stevi¢-Sharma type operator 77", , is defined by the
second author of this paper and et al. in [l as follows

Tl f(2) = (uCof)(2) + (DL f) (2)
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= u(2)f(p(2)) +v(2) f7™ (p(2)),
where m € Nand D7, is the generalized weighted composition operator.
When v = 0, then TZ’}W = uC, is the well-known weighted composition

operator. If u = 0, then 15, = Dg and form =1, 1), , = Tuve
is Stevi¢-Sharma type operator. T, , also includes other operators

as well as product type operators which have been studied in several
papers in recent years. The results of the papers can be explained by
many operators and obtained from the results of the papers published
before.

For Banach spaces X and Y and a continuous linear operator T : X —
Y, the essential norm is the distance of T from the space of all compact
operators, that is || 7|, = inf {||T — K| : K : X — Y is compact}, so T'
is compact if and only if ||7'||, = 0.

In this paper, we study the operator-theoretic properties in minimal
Mobius invariant space. In Section P, we first bring some lemmas on the
space B; and then obtain some characterizations for the boundedness
of operator TiTv,w : By — Z,. In Section B, some estimations of the
essential norms of these operators are given. As a result, some new
criteria for the compactness of T, , are presented.

By A = B we mean there exists a constant C' such that A > CB and
A ~ B means that A = B = A.

2. BOUNDEDNESS

In this section, we give some necessary and sufficient conditions for
the generalized Stevié-Sharma type operators to be bound. Firstly, we
state some lemmas which are needed for proving the main results.

According to the definition of the norm in minimal Mo6bius invariant
space, for each f € By, [|f[|, < [|f[/5,- Thus, from [9, Proposition 5.1.2]
and [10, Proposition 8] we have the following lemma.

Lemma 2.1. Let n € N. Then there exists a positive constant C such
that for each [ € B, (1 — ]z\Q)n ’f(”)(z” <C ||f||B,1 .

As a similar proof in Lemma 2.5 of [12] we get the following lemma.

Lemma 2.2. Let

fia(z) = (

Then fja € B1, suPgep || fiall g, < 00
Moreover, {fja.} — 0 uniformly on compact subsets of D as |a| — 1.

1—|a?

J
— > , J€NaeD.
1—az

The proof of the following lemmas are similar to the proof of Lemmas
2.6 and 2.5 [1], so they are omitted.
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Lemma 2.3. Foranym € N—{1,2},0# a € D andi, k € {0,1,2,m, m+
1,m + 2}, there exists a function g; o € By such that

(5ikak
(1—la]?)*’

where 8y, is Kronecker delta. For eachi € {0,1,2} andi € {m,m + 1,m + 2},
respectively

Gia (@) =

i,a

3 m—+3
9ia(2) =D ifia(2),  gia(2) = Y difial2),
=1 j=m+1

where ¢ is independent of a.

Lemma 2.4. Let m =1 o0r2, 0 #a € D and i,k € {0,1,...,m+ 2},
there exists a function g; , € B1 such that

k) \ _ Sina
gz,a (a) (1 _ |a!2)k'
Let f € By. Then

| S|z, = [T (O)]

+ (T o ) (0)| +sup (1= |2*)" (172, . 1) (2)] -
z€eD
We compute the above sentences separately. We have

(T, o f)" (0) =0 (0) £(2(0)) + u(0) (0) £ ((0)) + v'(0) £™ (9(0))
+v(0)¢(0) F T (0(0)),

and
2 .
( u v,gof Z )) + IH‘m( )f(ler) (QO(Z))),
=0
where,
IO — ul/7 Il — 2UIQDI + ’U,SOH7 I2 — u(p/27

"

Ip=v, ILn=20¢+ vgo//, Inga = vy’

Theorem 2.5. Let o > 0, u,v,0 € HD), o : D — D and m > 2 be an
integer. Then the following conditions are equivalent:

(i) The operator T}, , : By — Z4 is bounded.

(ii) For each j € {0,1,2,m,m+1,m+2}=9Q

max {sup H uvsofﬂ’aHza , sup (1 — 12‘2)06 !Ij(z)\} < 0.
z€D
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(iii)
(1= 12[*)" Hx(2)]
sup N
2D (1—[p(2)]?)
Proof. (iii) = (i) Suppose that f € By. By using Lemma @

MRV >‘

ke
(=)

oo, keQ.

(1= (T )" ()] = (1 = [2)

<> M) (112"

ke

5 (L= 1) ()
<C
L a- et e

Also, using the fact that || f||,, < [ f| 3, and Lemma @, we have
T2, o FO)] < [u(0) F(9(0)] + |0(0) £ ((0))]

[0(0)]

and

’(va,@ )/(0)‘ §C<\u’(0)y+| u(0)¢(0)]

0P
[v'(0)] [0(0)¢'(0)
b O+ ) Ul

Therefore me : By — Z, is bounded.
(1) = _(ii) Suppose that T}, , : B1 — Z, be a bounded operator.

Lemma P.2 implies that || fj [l g, < co. So
T Fiall 2, < [Tl 1 fiall g, < oo
Then
SupH uv#’fﬂvaHza H uvtpH E?D)lypoHfJ,GHBl
< 0.

Define fy(z) =1 € B;. The boundedness of the operator implies that
sug (1 — ]2]2)a |Io(z)] = sup (1 — \z\z)a ‘u"(z)‘
zE€

<||uywﬁﬂza

< || uvapHHfOHBl
< 00.
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Take f1(z) = z € By. Then, we have
sup (1= 1=1)" [u"(2)e(2) + 20/ ()¢ (2) + u(2)¢" (2)| < | T o 1l 2.
zE

<N Taw L f1ll By
< 00.

Using the previous equations, we can get that

sup (1 — |2[3)% [I1(z)] < oo.
z€D

Similarly by employing the functions fo(z) = 22, fi(2) = 2™, fmi1(2) =
2™ and fria(z) = 2F2 for the operator T}, , we get the other part
of (i7).
(1) = (#i7) For any, i € Q and a € D, by applying Lemma @, we
have
1— 212" |L(a a)l’ a
Ul BHOIT < (1 ey 02 10 )

SESUPHJZZ%¢Q@¢@QHZQ
ac€D

<

3
cisup |13, o fiall 2o

=1 a€D

m+3 )

£ s T
j=m+1 9€D

< Q.

Za

So, for any i € Q

(1-2%)" |Iz(a)| <
p@i>1/3 (1= [p(a)?)’
On the other hand
1—121%)" |Ii(a @
A=) O g (1 (212 1)
p@l<1/3 (1 —e(a)l?) ach
< Q.

From the last inequalities, we get the desired result. Il

In the special case m < 2, by using Lemma @, we have the following
theorems which are stated without proof.

Theorem 2.6. Let a > 0, u,v,0 € H(D) and ¢ : D — D. Then the
following conditions are equivalent:

i) The operator T2, . : B — 24 is bounded.
u,v,p



PRODUCT-TYPE OPERATORS 75

(11) FO’/“]' € {17 ---75}; SUDPgeD HTZLv,cp

Sup (1= 121" (Ju" ()] + 12u'e" + ug”)(2)] + [(ugp™ +0")(2)]) < oo,

fiallz, < oo and

sup (1= 12)" (12" + ve") (2)] + [(v"?)(2)]) < 0.

(iii)

wo + uo(z u/2 v (2
mmawﬁwiwu“2¢+¢x” “@*‘””><w

up e ER N GRS oY
R 0 G [ O A
sup (1 ”)( 0= o(:)P)? *a—wwm0< |

Theorem 2.7. Let a > 0, u,v,0p € H(D) and ¢ : D — D. Then the
following conditions are equivalent:
(i) The operator Ty, : B1 — 24 is bounded.

(ii) For j € {1,...,4}, supyep |13 o fiallz, < o0 and

sup (1= 121" (" (2)] + |2u'¢" + up” +0")(2)]) < o0,
S

Sup (1= 1=1)" (I(ug™ + 200" + 0p")(2)] + [(v9?) (2)]) < o0.

(iii)

2o " "
sup (1_ ‘2‘2)04 (‘u//(z)’+ ’( uwp tup” +v )(Z)|) < 00,
D

su e
e (e 2 @) | (e Y
sup (1 ‘)< 0 o) P *uwwmw><'

3. ESSENTIAL NORM

In this section, some estimations for the essential norm of the operator
T, from minimal Mdbius invariant spaces into Zygmund-type spaces
are given.

Theorem 3.1. Let u,v,po € HD), ¢ : D — D and 2 < m € N. Let the
operator T7", ., : B1 — Zq4 be bounded. Then

T3 ol max { B}
~ max {Fk}ke{o,l,z,m,m+1,m+2} ;
where,
1— |21
E; = limsup HTTTU780fi’a||Z& , Fy, = limsup ( |2| ) | k(2)|

la|—1 ()1 (L= lp(2)[2)*
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Proof. First, we prove the lower estimates. Suppose that K : By — Z,
be an arbitrary compact operator. Since {f;,} is a bounded sequence
in B; and converges to 0 uniformly on compact subsets of D as |a| — 1,
we have limsup|q_q [ K fiallz, = 0. So

1T = Kl sz, = Himsup |[(T o = KD ial
= E;.
Then
1T elle = mE (1T = Kl 5, 2,

> max {Ei}izl .

For the other part, let {2;},en be a sequence in D such that [¢(z;)] = 1
as j — oo. Since T}, , : B1 — Z, is bounded, using Lemmas 22 and 223

for any compact operator K : By — Z, andi € {0,1,2,m,m + 1,m + 2},
we obtain

H RIR7 KHBl—>Za = limsup H R go(gz,ga (z5) )”Za — lim sup HK(gz,ap (z5) )Hza

Jj—o0 Jj—00
O o 1 LN L
o0 (L= 1[e(z)?)

= [,
Therefore,
1T g lle = f [ 105 o — Kll iz,
= max {F;} .

Now, we prove the upper estimates. Consider the operators K, on B,
K, f(z) = fr(z) = f(rz), where 0 < r < 1. K, is a compact operator
and || K,| < 1. Let {r;} C (0,1) be a sequence such that r; — 1 as
j — oo. For any positive integer j, the operator T KTj By — 2, is
compact. Thus || u,v <pH6 < hmsupj—mo || U,V qunv L, AT ||

So it will be sufficient to prove that

limsup |7, , — Toy o Kr; || < min {max {E;} , max {F;}}.

uw,v,¢
]A)OO
For any f € By such that || f||5, <1,

H uv,cp uvgp Tj)fHZa:Al"i_AQ"i‘A&

where
Ay = |Tzzn'u © (0) - Ti’;?v,tpfrj (0)‘
= [w()(f = ) (£(0)) + v(O)(f = f:,) "™ ((0))]
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AQ = ‘(Tgfv,gof - T':?v,apf?“j )I(O)‘
u'(0)(f = fr;)(#(0)) + u(0)¢ (0)(f — fr,) (£(0))
+0'(0)(f = fr,)"™ ((0)) + v(0)' (0)(f — frj)(mﬂ)(SO(U))‘

Asg ::S‘éﬂg (1 - ’z‘Q)Q \(Tﬁ'fwf - TtTv»wf’“j)”(z)‘
z

=sup (1 — |z\2)a Z Ii(2)(f — frj)(k)W(z))

zeD ke{0,1,2,m,m+1,m+2}
< sup (1-— \z\z)a Z ‘Ik(z)(f - frj)(k)(w(z))‘
lp(2)|<rn ke{0,1,2,m,m+1,m+2}
+ s (1-1P)7 Y [REE - £)Pee),
le(z)[>rN ke{0,1,2,m,m+1,m+2}
::A4 + A57

Since (f — f,,j)(i) — 0 uniformly on compact subsets of D as j — oo, for
any nonnegative integer 7, then using Theorem P.5, we get

limsup A1 = limsup A,

Jj—00 Jj—00
= lim sup A4
Jj—o0
=0.
About As, we get
<Y sup (1= |=2) " 11k(2)| | £ ((2))|
ke{0,1,2,mm+1,m+2} [P(2)>rN
+ S sup (1= [32) " 11l 1O (rje(2))|

ke{0,1,2,m,m+1,m+2} P>

= > Ao + 3 Apr.

ke{0,1,2,m,m+1,m+2} ke{0,1,2,m,m+1,m+2}
For A6, using Lemmas @, @ and , we obtain
_ (1=l ()1 (p(2))] (1= [21%) [ r(2)lle(2)]*
Ape = sup k 2\k
lo(2) > o(2)] (1= le(2)*)

<Iflley  sup (T o9k o) 2a
lo(2)[>r
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6
<>k sup |1, o frallz.
j:

1 lal>ry

where k € {0,1,2,m,m+ 1,m + 2}. As N — oo,
6
limsup Ay < Z limsup (|13, ., fj.all 2,

Jj—o0 =1 lal=1

= max{Ej}?zl.

Also, for Ay ¢, we can write

(L= [21)" Hi(2)]
(1= le(2)|»)"

Ao = sup (1= [e(2))" |FP(e(2)

lp(2)[>rN
1—[22)" [ Ie(2)|
<fls, sup LG
le)>rn (1= [p(2)]?)
which can be deduced that

9

1— 21
limsup Ay ¢ =< limsup ( 2l ) | k(k’z)’
J=roo le(2)l»1 (1= ]p(2)]?)

< max {F;.}S.
A similar argument can be made for Ay 7. Thus, we prove that

6
sSup H(TLTLT,Lv,go - T?Tv,apKTj)fHZa = max {Ej}l )
I1£llp, <1

and

sSup ||(T1Tv,<p - T';?v,apKTj)fHZa = ma‘X{Fk}? :
IfllB, <1

Finally, we have

limsup |7, , — T3 o Kr; || < min {max {El}g , max {Fk}?} . O

- UV,
J o0

In_the case m < 2, a similar result can be stated using Theorems @
and

Theorem 3.2. Let a > 0, u,v,9o € H(D) and ¢ : D — D and the
operator Tiv’@ : By — Z, be bounded. Then

I 4 g lle

5
~ max {lim sup |13y o fiall 2 }
la]—1 1
(o + 22 o) g+ 1)

~ limsup (1 — |2|?) 1 —o(2)[%) (1 - le(2)]?)?

lp(2)| =1
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| D 12+ o) 1))
et (1 o) (1GEE Bl ).

Theorem 3.3. Let a > 0, u,v,0 € HD) and ¢ : D — D and the
operator Ty 4 .o« B1 — Z4 be bounded. Then

[T 00le

lp(2)| =1

4
/A max {lim sup || Tu,v,0fl.all 2. }

la]—1 1

e ‘(27/90, + USOH + U”)(Z)’
<’ A S o) )

<I(W’2 + 20"+ o) ()] 1(0e™)(2)] >
(1 —le(2)?)? 1 =le(x)?)? /)

By using Theorem @, we have the following Corollary.

~ limsup (1 — |2[*)®
lp(2)[—1

+ limsup (1 — \z|2)a
lo(2)|—1

Corollary 3.4. Let u,v,0p € HD), ¢ : D — D and 2 < m € N. Let
operator T, , : B1 — Zo be bounded. Then the following conditions
are equivalent:

(i) The operator T}, , : By — Z4 is compact.

(i) limsup|q1 113% o fiallza =0, i=1,2,...,6

o

(1) 1im sup|p() 1 % =0, ke{0,1,2,mm+1,m+2}.
Remark 3.5. From Theorems @ and @, we obtain similar results for
the compactness of operator Tiv#p i By = Zy and Ty : B1 — Za,
respectively.

Remark 3.6. By taking u = 0(v = 0), we can get the results of the
paper for generalized (weighted) composition operators.
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