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On Fractional Differential Equations with Riesz-Caputo
Derivative and Non-Instantaneous Impulses

Wafaa Rahou®, Abdelkrim Salim?*, Jamal Eddine Lazreg® and Mouffak Benchohra*

ABSTRACT. This article deals with the existence, uniqueness and
Ulam type stability results for a class of boundary value problems
for fractional differential equations with Riesz-Caputo fractional
derivative. The results are based on Banach contraction principle
and Krasnoselskii’s fixed point theorem. An illustrative example is
given to validate our main results.

1. INTRODUCTION

Fractional calculus has recently proven to be a very important tool
in modeling numerous phenomena in applications and sciences such as
physics, engineering, electrochemistry, geology, stability, controllability,
and signal theory, among many others. We refer the reader to [2-4, 11,
14, 15, 17, 21, 26, 29-32] and the references therein for more details.

The stability of functional equations was originally raised by Ulam
[B8]. Next, by Hyers [19]. Thereafter, this_type of stability is called
the Ulam-Hyers stability. In 1978, Rassias [27] demonstrated the exis-
tence of unique linear mappings near approximate additive mappings,
generalizing Hyers’ findings. Several research articles in the literature
address the Ulam stabilities of various types of differential and integral
equations, see [5-10, 22, 23, B4, B6] and the references therein.

Real-world processes and phenomena can exhibit rapid shifts in state.
These modifications have a very brief duration in contrast to the en-
tire longevity of the process, and thus are irrelevant to the evolution

1991 Mathematics Subject Classification. 26A33, 34B37, 34A08.
Key words and phrases. Riesz-Caputo fractional derivative, Existence, Measure of
noncompactness, Fixed point, Ulam stability, Non-instantaneous impulses.
Received: 13 October 2022, Accepted: 28 January 2023.
* Corresponding author.
109


http://scma.maragheh.ac.ir

110 W. RAHOU, A. SALIM, J. E. LAZREG, M. BENCHOHRA

of the examined process. In such instances, impulsive equations can be
employed to construct appropriate mathematical models. Physics, biol-
ogy, population dynamics, ecology, pharmacokinetics, and other fields
all contain such operations. Noninstantaneous impulses are actions that
begin at an arbitrary fixed moment and last for a specified time interval.
Hernandez and O’Regan [1§], studied the existence of solutions to this
novel class of abstract differential equations with non-instantaneous im-
pulses. The papers [13, B335, B9, 41/] can be consulted for fundamental
results and recent developments on differential equations with instanta-
neous and non-instantaneous impulses.

In [25], the authors studied the existence of weak solutions for a class
of impulsive nonlinear differential equations with periodic boundary con-
ditions and non-instantaneous impulses. Abbas et al. [l] presented
some existence results based on Schauder’s and Monch'’s fixed point the-
orems and the technique of the measure of noncompactness for Cauchy
problem of Caputo-Fabrizio fractional differential equations with non-
instantaneous impulses. For some applications of non-instantaneous im-
pulses, we recommend the papers [12, 24].

The authors of [14] studied the existence of solution for the following
boundary value problem:

0Dy (9) = g0,y (9), VeO:=[0,5,

y(0) = o, Y(3) = Y,

where é%CDf‘, is a Riesz-Caputo derivative of order 0 < o < 1, g : O xR —
R is a continuous function and yy € R. Their arguments are based on
Leray-Schauder fixed point theorem, and Schauder fixed point theorem.

The authors of [33] established existence and stability results, with
relevant fixed point theorems, to the boundary value problem:

(pmi}%) (@) = 1 (9,2(9), (PD%’%) @) veQ,i=0,....m,

z(9) = Vi (9, 2(9)); Ve, i=1,...,m,

o1 (P10 (%) + 62 (P 0a) () = s,
where ”ID)S;CZ, infS are the generalized Hilfer fractional derivative of

order (y 61(0, 1) and type (2 € [0,1] and generalized fractional integral

of order 1 —(3, ((3 = (1 + (2 — (1(2), respectively, ¢1, g2, ¢3 € R, ¢1 # 0,

Q= (g, 01si = 0,...,m, Q; == (Vs,56);i = 1,...,m, a = 9 =

g <V < < Koo < Kty < Uy <3ty < U1 = b < 00,

z(9)) = liI(l)’l+ (¥ +¢€) and z(¥; ) = IiI(I)l (Vi +e€), f:(a,b] x RxR —
€E— e—U™
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R is a given function and ¥; : QL xR — R; ¢ =1,...,m are given
continuous functions.

Motivated by the above-mentioned papers, we present some existence,
uniqueness and Ulam stability results for the following fractional prob-
lem:

1) (5D5,y) ) =Wy @) Ve, j=0,....m,
(1.2) y(v) =¥, (29,3/(193_)); ﬂEQ], 1=1,...,m,
(1.3) 61y(0) + 02y (s) = 3,

where é%chj represent the Riesz-Caputo derivative of order 0 < a <

1, © = [0,%], (51,52,53~€ R where 41 75 0, Qo := [0,191], QJ =

(s, 004150 = 1,...,m, Q, :== (V),5¢);0=1,...,m, 0 = ¥y = s <

U1 <o <02 <op < oo Koy < Uy <ty < Uy = 2 < 00,

Y (ﬂj) = lim+ y(¥,+¢€) and y (19;) = lim y(Y¥, + €) represent the right
e—0 e—0~

and left hand limits of y(J) at ¥ = 9,, ¢ : © x R xR — R is a given
function and ¥, : Q] xR —=R; 3=1,...,m are given continuous func-
tions.

The following are the primary novelties of the current paper:

e Given the varied conditions we imposed on problem (EI), our
study may be viewed as a partial continuation of the ones in
the aforementioned studies.

e The Riesz derivative is a two-sided fractional operator that in-
cludes both left and right derivatives, allowing it to capture
both past and future memory effects. This capability is useful
for fractional modeling on a finite domain in particular.

e By modifying the constants d1, ds and d3, we can obtain several
problems studied in the literature, see for example [[14, 15, 17].

e The study of Ulam-Hyers-Rassias stability of a problem with
non-instantaneous impulses, delay and anticipation.

The following is how the current paper is arranged. In Section E,
we present certain notations and review some preliminary information
on the Riesz-Caputo fractional derivative and auxiliary results. Section
3 presents two solutions to the problem (I)-(I=3) based on the Ba-
nach contraction principle and Krasnoselskii’s fixed point theorem. The
Ulam-Hyers-Rassias Stability for our problem is discussed in Section 4.
Finally, in the final part, we provide an example to demonstrate the
application of our study results.



112 W. RAHOU, A. SALIM, J. E. LAZREG, M. BENCHOHRA

2. PRELIMINARIES

In this section, we introduce some notations, definitions, and prelim-
inary facts which are used throughout this paper.

We denote by C(0,R) the Banach space of all continuous functions
from © to R, with the norm

1€lloo = sup{[§ (9) | : ¥ € ©}.

Consider the Banach space
PC(O,R) = {y 0> R: y\QJ =V;y=1,...,m, y]QJ € C(Q,,R);
7=0,...,m, and there exist u (19;) , Y (19?) y(2) ),

and y(5¢") with y (9]) = ?/(19])}7

ol = {sup (o)}

Definition 2.1 ([20]). Let o« > 0. The Riemann-Liouville fractional
integral of a function ¢ € C(©,R) of order « is given by

1 9

I () = — [ (0= 0)* "p(0)do.

oI5 (0) = e [ 0= 0" (e
Definition 2.2 ([20]). Let a > 0. The Riesz fractional integral of a
function ¢ € C(O,R) of order « is defined by

1 »
o (W) = = [ 19— 0" "plo)d
20 () = o |1 ele)e
=olfe () + 9Zp (),

where oI is the fractional integral of Riemann-Liouville.

with the norm

Definition 2.3 ([20]). Let « € (n,n+1], n € Ng. The Caputo fractional
derivative of a function ¢ € C"*1(0,R) of order «a are given by

1 9

- 9 — o)V (n+1) do.
T [, 00 e
Definition 2.4 ([20]). Let « € (n,n + 1], n € Ny. The Riesz-Caputo
fractional derivative of a function ¢ € C"*(0,R) of order « is given by

1

RC ma _ g _In—a, (n+1)
D = -
o D%e(9) T 1=a) /0 [ — 0" (0)do

6 Djo () =

- % (505 () + (-1 D2 (9))
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where Df; is the Caputo derivative. If we take 0 < o < 1 and ¢ €
C(0,R), we obtain

« 1 (0% «
0 Do (9) = 5 (G D5 (9) =5 D (9)) .-
Lemma 2.5 ([20]). If £ € C""Y(O,R) and o € (n n + 1], then we have
oI5 § D3¢ (0 Zé

and

(-1’0 ()

J=0 7

Dge (0) = (=)™ £ (9) - (5 —0)

Consequently, we may have

ol3 (“D5E (0) = % (oI§ § DFE () + (~=1)" yI2 §DIE(9)) -

In particular, if 0 < a < 1, then we obtain
1
0I2 ¢CD2E (W) = £ (9) — 5 (£0) +£ ().
Lemma 2.6. Let w € C(O,R) and 0 < a < 1. Theny € C(O,R) is a

solution of

(2.1) BOpsy () == (d), Ve,

if and only if y verifies the following integral equation:
(2.2)

y(9) =y(0) — F(la) /0% 0* 'w(o)do + F(la) /O% 9 — 0|* '@ (o)do

Proof. From Definition P22, Definition Z4, and Lemma P4, we have

1

oI2 FCDey (9) =y () — 5 W(0) +y()),

which implies that

y(0) = 5 W(O0) +y() + o3 ().
= 5 00) 490 + s [ 19— e o)
1 o
= 5 () + y(x >>+@ [ 0= oo

+ 5 ! /; (o —9)* 'w(0)do.
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For ¥ = 0, we have

Then, the final solution is given by:

v (0) = y(0) - F(la) /O T w(o)de + F(la) /O " 19— o wl(o)de

Conversely, we can easily show by Lemma P23 that if £ verifies equation
(@), then it satisfied the equation (R.1)). O

2.1. Some Fixed Point Theorems.

Theorem 2.7 (Banach’s fixed point theorem [37]). Let E be a Banach
space and H : E — E be a contraction, i.e. there exists 3 € [0,1) such
that

[H(&1) = H&)I < Jll6r — &, V&1, € E.
Then H has a unique fized point.

Theorem 2.8 (Krasnoselskii’s fixed point theorem [16]). Let D be a
closed, convez, and nonempty subset of a Banach space E, and A, B the
operators such that

1) Ax+ By € D for all z,y € D;
2) A is compact and continuous;
3) B is a contraction mapping.

Then there exists z € D such that z = Az + Bz.

3. MAIN RESULTS

Definition 3.1. By a solution of problem (IT)-(IZ3), we mean a func-
tion y € PC(©,R) that verifies the equations (1), (I2) and the bound-
ary condition (I3).
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Theorem 3.2. The function y verifies (I)-(I=3) if and only if it verifies

(3.1)
573 . 52\IJm (%may (t;z))
51 52 é;} a—1
(), ). ° ¢ (0,y(0)) do
62 o a—1
—F(a)él/ 72— 0|* ¢ (0,y(0)) do
1 /ﬂf o (0 y(0)d
P(la) 01919 ¢ (0,y(0)) do
)= ) - e,

v, (%va (793_))1
_r(la)/ 0* o (0,y(0)) do
1

I'(«)

]

Proof. Assume y satisfies (IC0)-(I33). If ¢ € Qp, then

0 D3y (9) = ¢ (9,y (D).
By Lemma @, we get

91
y () = y(0) — 1)/0 0* o (0,y(0)) do

I«
R )
+/ U —o|* ¢ (0, y(0)) do

I'(a) Jo
If 9 € Q, then we have y () = Wy (9, y(97)).
If 9 € Q4, then Lemma implies

J2
y (9) = y(sa) — / 0* o (0,y(0)) do

1

Vg1 .
+/ [0 —o|* " (0,y(0)do, VEQy;y=1,...

w, (0,y (9;)), 9ey=1,...
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If ¥ € Qg, then we have y (9) = Uy(0, y(d5)).
If ¥ € Q9, then Lemma implies

93
y (0) = y(sa) — P(la)/ 0* o (0,y(0)) do

I3
+ F(la) / 19— " (0,4(0)) do

2

I3
+ r(la)/ 19— ol* "o (0,y(0)) do.

Repeating the process in this way, for 9 € © we can obtain

2

(3.2)
L N a—1
y(0) _1[‘(05)194 0" (0, y(0)) do
+F(a)/0 [0 — ol* ' (0,y(0)) do, Y € Q,
y () = v, (%]iy (19]_19221
_p(a)/ 0* o (0, y(0)) do
1 %’93+1
+1“(06)/ [0 — 0| p (0. y(0) do, D EQy=1,...
v, (9,9 (97)) ped=1,...

Taking ¥ = » in (B2), we obtain

Y(3) = Ui (50m, 9 (tn,)) — F(la) /% 0* Lo (0,y(0)) do

+ F(la)/% | — 0]* "¢ (0,y(0)) do.

Using the condition (I=3), we get

Am

G 0V Gy (), O /”Qalgo(g,y(g))d@

v =5 - 5 T(a)0;

F(ff)él /% |5 — 0" "¢ (0, 5(0)) do

Substituting the value of y(0) in (82), we obtain (871).

Am
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Reciprocally, for @ € g, taking ¥ = 0, we get

4(0) = g;i B 02V, (%grlny (tm)) i P(i2)51 /% gaflgo(g,y(g)) do

02 ” a—1
(@) /%m |22 — 0" " (0,y(0)) do,

Am

and for 9 € Q,,, taking 9 = », we get

y(50) = Uy (5t y (t)) — F(la) /% 0* 1o (0, y(0)) do

1 g a—1
— - do.
* ) /%m\% el* e (o,y(o)) deo
Thus, we can obtain d;y(0) + d2y(3¢) = I3, which implies that (I=3)
is verified. Next, apply ZCDO‘ ,(+) on both sides of (BW), where 5 =
0,...,m. Then, by Lemma we get the equation (). Also, it is
clear that y verifies (I2). O

We are now in a position to prove the existence result of the problem
(ICM)-(I3) based on the Banach’s contraction principle.

Let us assume the following assumptions:

(Az1) The function ¢ : © x R — R is continuous.
(Az2) There exists a constant ¢ > 0 where

|0(9,€) — (9, )| < ¢r1l€ — &,

for any £,€ e Rand ¥ € Q,; 7=0,...,m.
(Az3) The functions ¥, are continuous and there exist constants p, >
0 such that

’\P](ﬁag) - \I/J(ﬁvgﬂ < pj’f - g’v
for any £,£ €R, 7=1,...,m.
Set

" = ]:rga?fm{pg}-

Theorem 3.3. Assume that the assumptions (Ax1)-(Ax3) hold. If

o |82 2(01 + 02) 91 2*
(3.3) Bi=¢ (1+|61’>+ STt D <L

then the implicit fractional problem (IC1)-(I=3) has a unique solution on
O.
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Proof. Let us transform the problem (IC0)-(I=3) into a fixed point prob-
lem by defining the operator X : PC'(0,R) — PC(0,R) by:

(3.4)

1 J+1 o1

T / 0" o (0 y(e)) do

1 19]+1 a—1

T )/ [0 —o|* v (0y(e))do, ¥ € Qy5=1,....m

\Ifj(ﬁ,y(ﬁj_)), ﬁefl];jzl,...,m

Obviously, the fixed points of the operator ¢ are solutions of the problem
(=)~ (I=3).
Let y,z € PC(©,R). Then for 9 € Qy we have

Ry () — Rz (9)] < :gf: Wi (5t y (t)) = Ui (52m, 2 (1)) |

F(ff)él }:n " (e,9(0) — (e, 2(0))de
F(ff)al -~ [ — ol Hw (0, 9(0)) — ¢(e,2(0)|do

1

Y1
G /0 "¢ (0, 9(0)) — lo, 2(0))lde

91
+ p(la)/o 19— o|* e (0,y(0)) — ¢(0, 2(0))|do.

Then, by (Az2) we find that

]
Iy (9) e 0) < 220y — ol e
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o291 ©
+ rely=le [ o lae

2t ” a-1
sl slee | e ol e

1/}1 /191 a—1
+F(a)Hy zllpc 0 do

1/}1 /191 a—1
Tl —Flee | 10— " de
O e By e

HI'(a+1) |01 .

For ¥ € Q;;9=1,...,m, we have
[Ny (9) = Rz ()| <[, (4, (97)) = O, (34,2 (9]))

V1
i F(la) / e Teeale) — vle =(o)lde

V541
+ r(la)/ 19— o|* e (0, 9(0) — ¢lo, 2(0)) do.

Then by (Az2) and (Ax3), we find that

7

Ry (0) =Rz (0) | < g,lly — =l pc

( /19]+1 a—1
Ly — d
+ F(Q)Hy zl|lpc 3 0% do

wl Uyt1 1
+ 5w =lly = zllpe | —o|*"do
I(a)

. 29p1 ™
< _ — .
[@ + o+ 1)} ly — 2llpc

FOI“’l?EQJ;j: 1,...,m, we have
Ry (9) =Rz () | < |, (9,9 (9;) = (0, 2 (9))]
< ¢'lly — zllpc-
Thus, we can conclude that
IRy —Rz|lpc < Blly — 2| pc-

Consequently, by the Banach’s contraction principle, the operator X has
a unique fixed point which is solution of the problem (I)-(I=3). O

Our second result is based on Krasnoselskii’s fixed point theorem.
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Remark 3.4. Let us put
A2(?) = |(?,0)], O5(0) = [¥,(9,0)], 1 =X, p* =Py,
then the hypothesis (Az2) implies that
|o(9, )| < Ail¢] + Aa(9),
and the hypothesis (Ax3) implies that
W) (9, 8)] < @1¢] + Do,
for ¥ € ©, £ € R and o, ®5 € C(O,R ), with

Ap = sup Ap(¥), ®y = sup O5(1).
9e0 9e0

Theorem 3.5. Assume (Ax1)-(Ax3) hold. If

2’52|> 2525\1%04
b1
( o) Tar@r

(3.5) B =

<1,

then the problem (ICW)-(I=3) has at least one solution in PC(O,R).
Proof. Consider the set
To ={§ € PC(O,R) : [[¢][pc <0},

where

o> 2max{<1>1a + o,

|03] 4 |02| P N 2|82 | 5% Ag
|01] I'(a+1)[é1]

. 152|<1>1+ 2|82 |5 A1
01 Dla+ D)ol |

We define the operators Ny and Ny on T, by

(3.6)
03 02V (50, y (t))
01 é}
2 a—1
()0, /% 0" v (0,y(0)) do
J _
Ml = ~fras oo ee) do. 0 €,
\IIJ(%J,y(ﬁJ_)), veQ;r=1,...
07 19 S Q],] = 17
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and
(3.7)
: /ﬂ o (0,y(0)) d
- 0" " (0,y(0)) do
[(a) /s,
Noa(¥) 1 /%Iﬂ "o (0, y(0)) do, ¥ € Q
22(V) = = —o|“ “p(o,y(o)do, Y €Q);7=0,...
() /.,
W](ﬁ,y(ﬁj_)), ﬁEQJ;]:L...

Then, we can write the following operator equation
Ry(9) = Riy(d) + Nay(9), y € PC(O,R).

Step 1: We prove that Nz + Noy € YT, for any x,y € 1.
For ¥ € Q, by (8@) and Remark B.4, we obtain
03], [62Wm (e, 2 (£)) |

() (9] < 17 + P

|62 S
a 7 d
O %m@ |l (0,2(0)) |do

|52‘ /% _ja—1
+F(a)‘51| %m!% o|“ e (0,2(0)) |do

] |al(@i + By 2052l (Mo +3o)

105] + |02| @2 2|d2[3*Ns ]

|01 I'(a + 1)]041]

+o

|01 I'(a + 1)]01]

102|®1 2|0a|s N ]

and for ¥ € Q;;7=1,...,m, we have

((R12)(9)] < [P (5,2 (9])) |
< @0 + Do,

then for each ¥ € © we get

3.8 X < P10+ @
(3.8) | 1x||Pc_maX{ 10 + P, |61] [+ 1)04]

03] + [62] D2 2[d2] 3% N ]

+ o

01]  Tla+1)[on]

162]®1  2|82]5% N ] }

121
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For ¥ € Q,;7=0,...,m, by (82) and Remark @, we obtain

(R (9 / o (0,y(0)) de

J

4 @ / 19— "o (0. 9(0)) |do

2|02 (5\10 + 5\2>
Do+ 1)|01] ’

and forﬁEQ];jzl,...,m, we have

[(Rey) ()] < [, (9,9 (9)))]
< ®y0 + Do,

then for each ¥ € © we get
2|02 | ™ (5\10 + :\2>
I'(a+1)]61]

(39) HNQZ-/HPC <max<{ ®10 + Do,

From (BR) and (BM), for each ¥ € © we have,
[Riz 4+ Royl[pe < [Riz|po + Ryl po
< o,

thus Xyz + Ny € 1.

Step 2: Ny is a contraction.
Let y,z € PC(O,R). Then for ¢ € Qy we have

< 19|

’le(ﬂ) —Nyz (79) |5 | ‘\I’ (%M)y (tr_n)) - (%m,Z (tr_n>)‘

%2 [ 0115 (0, 0(0)) — (o, 2(0))|do

F(a)(51
%2 [ e oo (0(0) ~ ol (o) ldo
F(Oé)dl m ’ ’
Then, by (Az2) and Remark @, we find that
5 *
Py (9) Nz (0) < 2Ty sl
J s
+ ‘ 2’1/}1 ||y_Z|PC/ Qa ldQ
INCY s
02|11

+

r
ly — zlpe / 15— o*dg

Hm

IRCY
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2d2[1py |02 ly = 2|lro.
~ 0T (e +1) |01
For ¥ € Q);9=1,...,m, we have
((R1y)(9) = Ru2)(D)] < ¥, (35,9 (97)) = ¥, (5,2 (9)) |
< &4y — [l pc-

Then, for each ¥ € O, we have
IRy = Nyzl|lpe < Blly — 2l pe-
Then by (BH), the operator ¥; is a contraction.

Step 3: Ny is continuous and compact. Let {y,} be a sequence where
yn — y in PC(O,R).
For ¥ € Q);7=0,...,m, we have,

| (Rayn) () — (Ray) ()]

Uy41
< L / U (0,n(0) — ¢ (0, y(0)) |de

@/,
V41
+ F(la) / 0=l e (0.n(0) — 2 (0. 9(0) o

For each 9 € Q];j =1,...,m, we have,
|(R2ya) (9) = (Re)(W)] < 2,9, wm (7)) = ¥, (9,9 (9;))]
Since y,, — y and since ¢ and V¥, are continuous, then we may obtain
N2y — Rayllpc — 0 as n — oo.

Then N, is continuous. Now we demonstrate that No is uniformly
bounded on Y,. Let y € T,. Thus, for ¥ € ©,

2|52|%o< (5\10 + :\2>
I+ 1)]04]

[Ray||pc < max { @10 + o,

Consequently, Ny is uniformly bounded on Y,. We take y € T, and
0 <1 <72 <. Then for 1,72 € 2,;7=0,...,m,

|(R2y) (1) — (Ray) (72|

: /%\ " (0,4(0)) d
<|=— 7 —o|* "¢ (o,y(0))do
() /.,

1 /%! o (0.(0)) d
=YY Y2 — 0 @ (0,Ylo Y
M)/,
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1 ﬂﬁ_l a—1 a—1
< 71 = 0|*™" = |y = o|* M| ¢ (0, y(0)) |do

() /.,
5\10' -+ :\2 U1 _ _
SI‘/ “’YI—Q’a 1_’72_0’04 1|d07
(@) Jy
note that

[(Ray) (1) = (Ray)(72)| = 0 as 71— 72,
And for y1,v € QJ;]: 1,...,m,

[(Ray) (1) — Rag) (2) < |9, (1,9 (9;)) =¥, (2,5 ()],

note that since ¥, are continuous

|(R2y)(71) — R2y)(72)] = 0 as 71 — 2.

Thus, Ny T, is equicontinuous on O, which implies that Ny Y, is relatively
compact. By Arzela-Ascoli Theorem, Ny is compact. By Theorem I8,
we conclude that & admit, at least a fixed point which is a solution to
the problem (ICT)-(I=3). O

4. ULAM-HYERS-RASSIAS STABILITY

Now, we consider the Ulam stability for problem (IZ)-(I73). For
this, we take inspiration from the following papers [28, B4, 40] and the
references therein. Let y € PC(©,R), ¢ >0, ( > 0and £ : © — [0, 00)
be a continuous function. We consider the following inequalities:

(4.1) ‘(EJCD%I?J) (v) —w(ﬁ,y(é‘))\ <e VEQ,)=0,...m,

|y(19)—\I/](19,y(19;))‘§e, Ve, =1,...,m.

(4.2)
(5D5 ,0) ) = 0,y ()| S€W), ¥ EQy=0,....m,

(5Dg ,,0) ) = ¢ 0,y (9)| < (), D€y =0,....m,

’y(ﬁ)—\lfj(ﬂ,y(ﬂ]_))‘gec, ﬁEQ],]:l,...,m.

Definition 4.1. Problem (I1)-(I=3) is Ulam-Hyers (U-H) stable if there
exists a real number a, > 0 such that for each € > 0 and for each solution
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x € PC(O,R) of inequality (@) there exists a solution y € PC(O,R)
of (W)-(=3) with

|z (¥) —y (V)| < eap, U €O,

Definition 4.2. Problem (IC0)-(I23) is generalized Ulam-Hyers (G.U-H)
stable if there exists K, : C([0,00),[0,00)) with K,(0) = 0 such that
for each € > 0 and for each solution z € PC(O,R) of inequality (@)
there exists a solution y € PC(0,R) of (IT)-(I=3) with

|z (0) =y ()] < Ky(e), J€O.

Definition 4.3. Problem (I[0)-(I33) is Ulam-Hyers-Rassias (U-H-R)
stable with respect to (&, () if there exists a real number a, ¢ > 0 such
that for each ¢ > 0 and for each solution =z € PC(0,R) of inequality
(@) there exists a solution y € PC(©,R) of (I)-(I33) with

[ (9) — y (0)] < eape(£() +¢), V€.

Definition 4.4. Problem (I)-(I=3) is generalized Ulam-Hyers-Rassias
(G.U-H-R) stable with respect to (&,() if there exists a real number
ap¢ > 0 such that for each solution z € PC(©,R) of inequality (@)
there exists a solution y € PC(0,R) of (I0)-(I=3) with

2 (9) —y (9)] < ape(£(0) +¢), ¥ € 6.

Remark 4.5. It is clear that :
(i) Definition = Definition
(ii) Definition = Definition
(iii) Definition @.3 for £(.) = ( = 1 = Definition @
Remark 4.6. A function x € PC(O,R) is a solution of inequality (@)

if and only if there exist v € PC(O,R) and a sequence v,,7=0,...,m
such that

(i) lv()] <€), ¥ € Q,,7)=0,...,m; and |v,| < €, ¥ € QJ,] =

1,...,m,
(i) <§]CD§]Hy> ) =@,y () +v@), ) €Q),y=0,...,m,

(iii) y(v¥) =¥, (19,y (?9]_)) +uv,), V€ Q],j =1,...,m.
Theorem 4.7. Assume that in addition to (Ax1)-(Ax3) and (@), the
following hypothesis holds.

(Az4) There exist a nondecreasing function § : © — [0,00) and ke >
0 where for 9 € Q,;7=0,...,m, we have

(0128)(9) < re&(0).
Then the problem ([CW)-(I=3) is U-H-R stable with respect to (&, ().
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Proof. Let x € PC(O,R) be a solution of inequality (@), and let us
suppose that y is the unique solution of the problem

(505 v) () = (0.y(0): Ve, j=0,...m,
y(ﬂ):\I’J(ﬂay(ﬁj_)); 196(2]7]:1,...,771,

619(0) + 2y () = 83,

y(s) = (52)); 7=0,...,m,

By Theorem B2, we obtain for each ¥ € ©

03 62U (3m, y (tn))

5 5,

52 a—1

+I‘(a)(51 0" v (0,y(0)) do
62 ” a—1

_1“(a)51/ |5 —0|* v (0,y(0)) do
o

—F(a)/o 0* o (0,y(0)) do

v =] e [ P-dTeesende vem,

¥, (o (7))

o[ e e etend
—= Y @ o, Yylo 0

I(a) /.,

L[5y et do, De:)=1
+F(a)/%J | _Q| SO(Q,?J(Q)) 0, € ]7.]_ yee ey 1O,
\Il](ﬂ,y(ﬁj_)), 0EQJ;j:1,...,m.

Since x is a solution of the inequality (@), by Remark B8, we have

(4.4)
(RCDO‘ x) (9) =,z (9)) + v(v), Ve, )=0,...,m;

#y T

2(9) =, (0,2 (0))) + vy, Ve, =1,...,m.
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Clearly, the solution of (£4) is given by

Vg1
y(54) — F(la)/%] 0* (¢ (0,2(0)) + v(0)) do

Vg1
= FEa Pl e e ae) + vlo)de

<

it veQ,3=1,...,m,

\I/](ﬁ,y(ﬂ;))—i—vj, ifﬁefl],jzl,...,m.

Hence, for each ¥ € Q,,7=0,...,m, we have

1 191-!—1
uow—ywﬂs/ 19— 0" Yo (0. 2(0)) — ¢ (0, 9(0)) ldo

x—ypc/ 9 — 0|*'do
F(a)” | 0! |

< enc(9) + Pl vl

And for each ¥ € Q],] =1,...,m, we have
o () =y )] <[, (0,2 (9))) =¥, (9,9 (9;))] + [v)
<p'lz ) -y )|+ €
< 'l —yllpo + .
Thus

rm—mwoskwaw+fq+bf+?{jpm—mwa

Then for each ¥ € O, we have

[z = yllpe < age(¢ +£(9)),

where
1+ K¢

P
1 _ *
B
Hence, the problem (IZM)-(I=3) is U-H-R stable with respect to (&, 7). O

agz

Remark 4.8. If the conditions (Az1)-(Az3) and (@) are satisfied, then
by Theorem @ and Remark {.5, it is clear the problem (IC)-(I=3) is
U-H-R stable and G.U-H-R stable. And if £(-) = ¢ = 1, then problem
(M)~ (I3) is also G.U-H stable and U-H stable.
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5. AN EXAMPLE

Consider the following impulsive problem which is an example of our
problem (I)-(I=3).

50 (505 0) 0 =@ vemun

796@1,

ly (97) |+ 3e?
5.2 9) = J
(5:2) Y = 3330 + 133y @)

(5-3) y(0) +y(>) =0,
where Qp = (0,¢], Q1 = (3,7], Q1 = (e,3], 50 =0, 91 = e and s = 3,
WithOt:%,jG{O,l}, 01 =03 =1 and 63 = 0.

Set

| cos(9)|9 4 | sin(¥)|
¥ (ﬂay(ﬁ)) - 3226194_2(1 4 ’y‘) ’

Clearly, the function ¢ is continuous. Hence the condition (Axz1) is
satisfied.
For each z,Zz € R and 9 € ¢ U 2y, we have

| cos(9)|9 + | sin(0)]

PeQUQ, yeR.

1+7
< — 7.
S ez [T
1
Hence condition (Az2) is satisfied with ¢ = 3—12_2\/2%. And let
e
X
Uy (0,2 (97)) = —
1 (02 (00) = 5337 1ma ©E€[0)
and z,y € [0,00). Then, we have
_ _ x Y

Uy (9,2 (97)) — Uy (0,2 (07))| = _

V1 (0 (00)) = W2 (02 (0] = | 033075 1330~ 23307 + 133y
B 233¢? |z — y|
~(233¢? + 1331)(233¢Y + 133y)
< rle—y

e
< 533le —ul,

1
and so the condition (Az3) is satisfied with p* = 233"

Also, the condition (@) of Theorem @ is satisfied, for

!52\> 2(61 + 02) 915

o1+ 22
f=p < e S (a+1)
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2 8+8y7

=533 T 3222
~ 0.0179056991156396

<1.

Then the problem (61)-(623) has a unique solution in PC([0, 7], R).
Hypothesis (Az4) is satisfied with ( = 1, £(¢) = /7 and k¢ = 4. Indeed,
for each ¥ € Qg U Q1, we get

1 4 _
017?\/7?:@/0 |¥ — o|® 1ﬁdQ

ﬁ v a— ﬁ " a—
<3 |00t 2 [T 00

Consequently, Theorem @ implies that the problem (5)-(63) is U-H-
R stable.
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