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A New Two-Step Iterative Algorithm and H(.,.)-Mixed
Mappings for Solving a System of Variational Inclusions

Sumeera Shafi

ABSTRACT. A system of generalized mixed variational inclusion
problem (SGMVIP) is considered involving H (., .)-mixed mappings
in g-uniformly smooth Banach spaces. By means of proximal-point
mapping method, the existence of solution of this system of vari-
ational inclusions is given. A new two-step iterative algorithm is
proposed for solving SGMVIP. Strong convergence of the proposed
algorithm is given.

1. INTRODUCTION

Variational inclusion problems are among the most interesting and
intensively studied classes of mathematical problems and have wide ap-
plications in the fields of optimization and control, economics and trans-
portation equilibrium, engineering science. For the past years, many
existence results and iterative algorithms for various variational inequal-
ity and variational inclusion problems have been studied. For details,
please refer [, B0, 8, 16-18, 20, 21] and the references therein. Zou
and Huang [22, 23] introduced and studied H(.,.)-accretive mappings,
Kazmi et al. [9-11] introduced and studied generalized H(.,.)-accretive
mappings, H(.,.) — n-proximal-point mappings. In 2011, Li and Huang
[14] studied the graph convergence for the H(.,.)-accretive mapping and
showed the equivalence between graph convergence and proximal-point
mapping convergence for the H(.,.)-accretive mapping sequence in a
Banach space.

Motivated and inspired by the above works and by the ongoing re-
search in this direction[2, 7, 12, 13], we introduce and study a system of
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generalized mixed variational inclusion problem involving H(.,.)-mixed
mappings, a natural generalization of accretive (monotone) mappings
in g-uniformly smooth Banach spaces. Using proximal-point mapping
method, we suggest a new two-step iterative algorithm for solving the
system. Furthermore, we prove that the sequences generated by the
algorithm converge strongly to a solution of the system.

2. PROXIMAL-POINT MAPPING AND FORMULATION OF PROBLEM

We need the following definitions and results from the literature.
Let X be a real Banach space equipped with norm ||.|| and X* be the
topological dual space of X. Let (.,.) be the dual pair between X and
X* and 2% be the power set of X.
Definition 2.1 ([19]). For ¢ > 1, a mapping J, : X — 2% is said to be
generalized duality mapping, if it is defined by
Jo(x) ={f € X*: {a, f) = || || T = | f]I}. VzeX.

In particular, Js is the usual normalized duality mapping on X, given
as
Jo(x) = ||z Ja(z), Va(#0) € X.
Note that if X = H, a real Hilbert space, then Js becomes the identity
mapping on X.

Definition 2.2 ([19]). A Banach space X is said to be smooth if, for
every x € X with [|z|| = 1, there exists a unique f € X* such that

IfIl = f(z) = 1.

The modulus of smoothness of X is the function px : [0,00) — [0, 00),

defined by
r+y|l+ir—y
pto) = sup { LRIy ol = 1) = o

Definition 2.3 ([19]). A Banach space X is said to be
px (o)

(i) uniformly smooth if lim =0,
c—=0 O

(ii) g-uniformly smooth, for ¢ > 1, if there exists a constant ¢ > 0
such that px (o) < col, o € [0,00).

Note that if X is uniformly smooth, J;, becomes single-valued.
Lemma 2.4 ([19]). Let ¢ > 1 be a real number and let X be a smooth
Banach space. Then the following statements are equivalent:

(i) X is q-uniformly smooth.
(ii) There is a constant ¢, > 0 such that for every xz,y € X, the
following inequality holds

2+ yll? < 2l + gy, Jo(2)) + cqllyll.
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Lemma 2.5 ([15]). Let {a"},{b"} and {c"} be sequences of non-negative
real numbers that satisfy:

an+1 S (1 o dn)an + bn + cn’ Yn Z 07
0

o0
where d" € (0,1), d" = 400, lim 0" =0 and ) " < co. Then
n=0 n—00 n=0
oo
> a”=0.
n=0

Lemma 2.6 ([7]). A mapping f: X — X is said to be
(i) d-strongly accretive with 6 > 0, if
<f($)_f(y)?‘]q(x_y)> 2(5”:6—:1/”‘17 V%ZJGX-
(ii) p-cocoercive with p > 0, if
(f(@) = f(), Jo(z —y)) = pllf(z) — fFW)I?, Vz,ye€X.
(iii) ~y-relazed cocoercive with v > 0, if
(f(@) = f(y), Jo(z —y)) = =l f (@) = fWII?, Vz,yeX.
(iv) B-Lipschitz continuous with 8 > 0, if
1f (@) = fWll < Bllz —yll, Vo,yeX.
(v) a-expansive with o > 0, if
If(@) = fWl =z ellz —yl, Va,yeX.
if a =1, then it is expansive.
Definition 2.7. Let H : X x X — X and A,B : X — X be single-
valued mapings. Then,

(i) H(A,.) is said to be p-cocoercive with respect to A if there
exists a constant > 0 such that

(H(Az,u) — H(Ay,u), Jo(x —y)) > pl[ Az — Ay[*,  Vz,y,u e X.

(ii) H(.,B) is said to be y-relaxed accretive with respect to B if
there exists a constant v > 0 such that

<H(U7B$) - H(U,By), Jq(l‘ - y)> Z _’YHx - y”q7 any>u € X.

i) H(A,.) is said to be r1-Lipschitz continuous with respect to A
) p p
if there exists a constant ;1 > 0 such that

|1H(Az,.) = H(Ay, )| < millz —yl, Va,y e X

(iv) H(., B) is said to be ro-Lipschitz continuous with respect to B
if there exists a constant 7o > 0 such that

IH (., Bz) = H(, By)|| < rallx —yll, Va,y e X.
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Example 2.8. Consider a 2-uniformly smooth Banach space X = R?
with the usual inner product. Let A, B : R? — R? be defined by

2sx1 — 2819 —25y1 + 2sy2
Az = , By =
—2sx1 + 3sx2 —2s1y1 — 2sYy2

for all scalers s € R and for all z = (z1,22),y = (y1,y2) € R2.
Suppose that H : R? x R? — R? is defined by H(Az, By) = Ax +
1
By. Then H(A, B) is 5——cocoercive with respect to A and 2s-relaxed
s

accretive with respect to B, and /13s-Lipschitz continuous with respect
to A and /8s-Lipschitz continuous with respect to B.
Indeed, for any u € X,

(H(Az,u) — H(Ay,u),z —y)
= (Az — Ay,z —y)
= ((2sx1 — 2sx9, —2571 + 3s1T2)
—(2sy1 — 2sy2, —2sy1 + 3sy2), (21 — Y1, 22 — Y2))
= (25(x1 — y1) — 2s(w2 — y2), —2s(x1 — Y1)
+3s(x2 — y2), (¥1 — Y1, 22 — ¥2))
= 2s(x1 — y1)® — 4s(z1 — y1)(22 — y2) + 3s(w2 — ),
and
| Az — Ay|®
= (Azx — Ay, Ax — Ay)
= ((2s21 — 2529, —2571 + 3sx2) — (25Y1 — 2SY2, —2SY1 + 3SY2),
((2s21 — 2879, —2521 + 3sx2) — (28Y1 — 28Y2, —2SY1 + 35Y2)))
= (2s(z1 — 1) — 2s(z2 — y2), —2s(z1 — y1) + 3s(z2 — ¥2),
(25(z1 — 1) — 2s(22 — y2), —2s(z1 — Y1) + 3s(z2 — 12)))
= 432(531 - y1)2 - 452@1 —y1)(z2 —y2) — 452(331 —y1)(z2 — y2)
+45% (w2 — y2)? + 45> (21 — 11)* — 65 (21 — y1) (22 — 1)
— 657 (21 — y1)(x2 — y2) + 982(362 —y2)°
= 85%(x1 — y1)? — 205% (21 — 1) (@2 — o) + 1357 (w2 — yo)?
<1082 (21 — y1)? — 2052 (21 — y1) (22 — o) + 1552 (29 — yo)?
=55 [2s(x1 — y1)? — 4s(x1 — y1) (22 — y2) + 3s(z2 — y2)?]
=5s [(H(Az,u) — H(Ay,u),z — y)],
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which implies that
1
(H(Az,u) - H(Ay, u),z —y) > |l Az ~ Ayl%,
s

1
that is, H(A, B) is 5——cocoercive with respect to A.
s

(H(u, Bx) — H(u, By),z — y)
= (Bx — By,z —y)
= ((—2sz1 + 2522, 2571 — 2522)
—(=2sy1 + 2sya, —2sy1 — 25Y2), (¥1 — Y1, T2 — Y2))
= (=2s(z1 —y1) + 25(22 — o),
—=2s(x1 —y1) — 28(w2 — y2), (T1 — Y1, 72 — Y2))
—2s(x1 — y1)? + 2s(x1 — y1) (w2 — y2)

—2s(w1 — y1)(1’2 —yo) — 2s(x2 — yo)?
=—2s [(fEl - yl (2 — y2)2]
> —2sjz —yl|*,
which implies that
(H(u, Bx) — H(u, By),x — y) > —2s]x — y|%,
that is, H(A, B) is 2s-relaxed accretive with respect to B,
|H (Az,u) — H(Ay,u)|?
= || Az — Ay|?
= (Azx — Ay, Ax — Ay)
= ((2sx1 — 2579, =251 + 3sx2) — (25y1 — 25Y2, —2sY1 + 3sY2),
((2s21 — 2829, —2821 + 3sx2) — (28y1 — 28Y2, —2SY1 + 35Y2)))
= (25(x1 — y1) — 2s(w2 — y2), —2s(z1 — y1) + 3s(22 — 42),
(25(z1 — 1) — 2s(22 — y2), —2s(21 — Y1) + 3s(z2 — 12)))
= 4s%(v1 — 1) — 48° (21 — y1) (w2 — y2) — 4s* (21 — y1) (22 — 42
+ 45 (22 — y2)? + 457 (21 — y1)? — 657 (21 — y1) (22 — 4o)
— 657 (21 — y1) (w2 — ya) + 982(1’2 — 1)
= 85%(z1 — y1)? — 2082 (z1 — 1) (22 — y2) + 1352 (22 — y2)?
<135% (21— 11)? + 1357 (2 — 12)%,
which implies that
|H (Az, w) — H(Ay,u)|| < V13s||lz -y,
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that is, H(A, B) is v/13s-Lipschitz continuous with respect to A.
|H (u, Bx) — H(u, By)||*
= ||Ba — By||?
= (Bx — By, Bx — By)
((—2sw1 + 2sw9, —2521 — 2512) — (—28Y1 + 28Y2, —25Yy1 — 25Y2),
((—2sz1 + 2829, =251 — 252) — (—25Y1 + 25Y2, —25Yy1 — 25Y2)))
= (=2s(z1 — y1) + 2s(x2 — y2), —2s(21 — y1) — 2s(z2 — 12),
(=2s(z1 — y1) + 2s(x2 — y2), —2s(x1 — y1) — 2s(z2 — ¥2)))
= 4s*(z1 — y1)? — 4 (21 — 1) (22 — y2) — 4s* (21 — y1) (22 — 42)
+4s” (w2 — yo)? + 45 (21 — y1)” + 457 (21 — y1) (22 — )
+ 4% (21 — y1) (w2 — y2) + 4% (22 — 1)’
= 85%(z1 — y1)? + 8% (22 — y2)?,
which implies that
|H (u, Bx) — H (u, By)|| = v/8s|lz -y,
that is, H(A, B) is v/8s-Lipschitz continuous with respect to B.

Definition 2.9. Let f,g: X — X be single-valued mappings and M :
X x X — 2% be a set-valued mapping. Then
(i) M(f,.) is said to be w-strongly accretive regarding f withw > 0,
if
<u—v,Jq(:U—y)> Zme_yH’q \V/.I,y,U)EX,
ue M(f(z),w),veM(f(y),w).

(ii) M(., g) is said to be T-relaxed accretive regarding g with 7 > 0,
if
<U—U,Jq(ﬂf—y)> Z —THSU—qu, V%Z/,WEXy

u € M(w,g(x)),ve M(w,g(y)).

(iii) M(.,.) is said to be wr-symmetric accretive regarding f and g
if M(f,.) is w-strongly accretive regarding f and M(.,g) is 7-
relaxed accretive regarding g with w > 7 and w = 7 if and only
ifx=y.

Definition 2.10 (H(.,.)-Mixed mappings). Let H : X x X — X and
A, B : X — X be single-valued mapings and M : X x X — 2X be a
set-valued mapping. Let H(A, B) be u-cocoercive with respect to A,
~-relaxed accretive with respect to B. Then M is said to be an H(.,.)-
mixed mapping with respect to mappings A and B if



A NEW TWO-STEP ITERATIVE ALGORITHM 139

(i) M is wr-symmetric accretive regarding f and g;
(1) (H(A, B) + pM(f,9))(X) = X, Vp> 0.

Proposition 2.11. Let M : X x X — 2% be an H(.,.)-mized mapping
with respect to mappings A and B. If A is a-expansive and p > v with
r=pad —~ > (w— 1), then the following inequality holds:

(u—v,Jg(z—y)) 20, VY(y,v) € Graph(M(f,g)),
implies (x,u) € Graph(M(f,g)),
where
Graph(M(f,g)) = {(z,u) € X x X :u € M(f(z),g(x))}-

Proof. Assume on the contrary that there exists (xo, uo) & Graph(M(f,g))
such that

(2.1) (uo — v, Jo(wo —y)) 2 0, V(y,v) € Graph(M(f,g)).
Since M is an H(.,.)-mixed mapping, we know that
(H(A,B)+ pM(f,g9)) (X) =X, holds for all p > 0.

So there exists (z1,u1) € Graph(M(f,g)) such that
(2.2) H(Az1, Bx1) + puy = H(Axo, Bxo) + pup € X.
Now,

pug — pu; = H(Azy, Bxy) — H(Axg, Bxg) € X,
which implies

{(puo — pus, Jy(wo — 21))
= — (H(Axo, Bxo) — H(Az1, Bx1), Jy(zo — 1)) -
Since M is wrT—symmetric accretive regarding f and g, we obtain
(2.3)
(w=7)llwo = 21| < p(uo — w1, Jg(zo — 1))
= — (H(Axo, Bxg) — H(Axz1, Bx1), Jy(zo — x1))
= — (H(Axo, Bxo) — H(Axz1, Bxg), Jg(zo — x1))
— (H(Az1, Bxg) — H(Axz1, Bxy), Jg(zo — 21))
Since H(A, B) is p-cocoercive with respect to A, 7-relaxed accretive
with respect to B, A is a-expansive, (@?) implies
(W =7)[lzo — 21| < —pllAzo — Az1[|? + ~[lzo — 1 ]*

—pe?llzo — x| 4 yllwo — 2|7
—(na = )[lxo — 21|
= —rllay— a1 <0, 7= (uat )

< —(r—(w—"7))[[wo — 21|

<
<
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<0.

This implies that g = z;1. Since r = (pa? — ) > (w — 7), we have
ug = u1, a contradiction. This completes the proof. Il

Theorem 2.12. Let M : X x X — 2% be an H(.,.)-mizved mapping
with respect to mappings A and B. If A is a-expansive and p > v with
r=pal —y > plw—r7), then (H(A, B) + pM(f,g))~"! is single-valued.

Proof. For any given € X, let u,v € H((A,B) + pM(f,g)) ! (z). It
follows that

— H(Au, Bu) + & € pM(f. g)u,
— H(Av, Bv) +x € pM(f,g)v.
Since M is wrT—symmetric accretive rergarding f and g, we have

(=) lu=ol < - (~H(Au, Bu) + o = (~H(Av, B) + 2), Jy(u =),

which implies

ol = 7)[u— o] < (~H(Au, Bu) + 2 — (~H(Av, Bv) + ), Jy(u — v))
= — (H(Au, Bu) — H(Av, Bv), Jy(u — v))
= — (H(Au, Bu) — H(Av, Bu), Jy(u — v))
— (H(Av, Bu) — H(Av, Bv), J,(u —v)),

which is like (@) Hence, it follows that ||u — v|| < 0. This implies that
u = v and therefore (H (A, B) + pM(f,g))~! is single-valued. O

Definition 2.13. Let M : X x X — 2% be an H(.,.)-mixed mapping
with respect to mappings A and B. If A is a-expansive and p > v with
r = pad —~y > p(w — 7), then the proximal-point mapping is defined by

RIC) (u) = (H(A,B) + pM(f,9)""(w), Vue X.

Now, we prove that the proximal-point mapping defined above is Lip-
schitz continuous.

Theorem 2.14. Let M : X x X — 2% be an H(.,.)-mized mapping with
respect to mappings A and B. If A is a-expansive and p > vy with r =

pad — v > p(w — 1), then the prozimal-point mapping Rf](\/[() i X=X
1

1§ —————  -Lipschitz continuous, that is,
r+ plw—1)
H(,) oy pH(Y) 1 _
|moil s = RS 0| < oyl Veve X,
or 1
HR/}M( J(w) — RIS H<L\|u—v\| Vu,v € X,
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where
_ 1
r+plw-—71)
Proof. For the given points u, v € X, it follows from Definition that

RUG) (u) = (H(A, B) + pM(f,g) " (u),

RIG) (0) = (H(A, B) + pM(f,9)) " (v).

Let wy = Rgf\}()w)(u) and wy = R »(v)- This implies

P M(.,
; (u— H(A(w1), B(w1))) € M(f(w1),g(w1)),
1

p (v — H(A(w2), B(w2))) € M(f(w2),g(ws2)).

Since M is wT—symmetric accretive regarding f and g, we have

;<<u — H(A(w1), B(w1))) — (v — H(A(wn), B(w))) , Jy(wi — wn))

> (W= 7)[wr —wall?,

;<u—v — H(A(wn), B(wy)) + H(A(ws), B(ws)), Jy(ws — wn)

> (w = 7)[lwr — wall,
which implies
(u—v, Jg(w1 — wy))
> (H(A(wi), B(w1)) — H(A(wz), B(ws)), Jo(wi — w2))
+ p(w = 7)[Jwr — wel|.
Now, we have
lu— || flwr — w7
> (u— v, Jy(w1 — wz))
> (H(A(w), Bw:)) — H(A(ws), B(ws)), Jy(w; — w))
T plw — 7 Jws — ws
= (H(A(w1), B(w1)) — H(A(wz), B(wi)), Jg(w1 — wy))
+ (H(A(wz), B(wi)) — H(A(w2), B(wy)), Jo(w1 — w2))
+ p(w = 7)llwr — well%.
This implies
lu = vlllwr — w2 |1 > pl| Alwr) = Alwa) |7 =y [wr — w2|?

+ plw = 7)[lw — wall?
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((na® =) + plw = 7)) lwr — wal|*

>
> (r+ plw = 7)) [lwr — wa?

which implies
lu— ol lwr = wal|T7 > (r + p(w — 7)) [lwr — wa?
which implies

1

——|Ju — v
r—l—p(w—T)H |

LATIORATNO] E

This completes the proof. O

Now, we formulate our main problem.

Let @ C X be a nonempty open subset of X in which the pa-
rameter w takes the values. Let for each i = 1,2, G; : Q@ x X —
X, F;, fiy9i, Ai, Bi : X — X and H; : X x X — X be single-valued map-
pings. Let M; : X x X — 2% be H;(.,.)-mixed mappings with respect
to mappings A; and B;. We consider the following system of general-
ized mixed variational inclusion problem (in brief, SGMVIP): For given
0;,w; € X, find (x1,x2) € X x X such that

(2.4) 01 € Hi(A1, Br)(z1) — Ha(Asz, B2)(z2)
+ M{Fi(22) + Gi(w1, 22) } + M Mi(f1, 91)(21)
02 € Ha(Az, B2)(z2) — H1(A1, B1)(71)
+ Xo{Fa(w1) + Ga(wa, x1) } + AaMa(f2, g2)(x2).
Special Cases:
I. If in problem (2.4), 61 = 65 = 0, Hy (A1, By) = mﬁ,&) =1

(identity mapping), G; = G2 = 0, then problem (R.4) reduces
to the following problem: Find (z1,z2) € X x X such that

(2.5) 0 € a1 — g + M{F1(z2) + MMi(f1,91)(21)}
0 € 23 — x1 + Ao {Fo(x1) + Ao Ma(f2, 92)(x2) }

This type of problem (@) has been considered and studied
by Ceng et al.[5].

II. If in problem (@), Hi(A1,B1) = Hy(Ag,By) = I (identity
mapping), G1 = Go = 0,Mi(f1,91)(x1) = Ma(f2,92)(22) =
0dc(u), Vu € X, C is a nonempty closed and convex set in X
and dc denotes the indicator function of closed convex set, C,
ie.,

dc(g(u)) =0;  ued,
400 u ¢ C.
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Then problem (@) reduces to the following problem:
Find (z1,z2) € C x C such that
(26) <$1 _$2+>\1FI(‘T2)7U_$1> > 07 Vu € Ca
<£L’2—ZE1+)\2FQ({L‘1),U—IL‘2> >0, Vuecdl.
This type of problem (@) has been considered and studied by Ceng
and Shang [4].
3. EXISTENCE OF SOLUTION

First, we give the following lemma which guarentees the existence of
solution of SGMVIP (@)

Lemma 3.1. Let for each i = 1,2, G;, F;, fi, gi, Ai, Bi,H; and M; be
same as_in problem SGMVIP (@) Then (x1,x2) is a solution of SG-
MVIP (@), where (x1,x2) € X X X if and only if it satisfies:

(3.1) w1 =Ry {Ha(As, Ba)(wa) — M1 (Fi(w2) + G (w1, 22))}
xQZRf;SWQ {H1 (A1, By)(21) — Ao (Fa(21) + Gal(wg, 21))}

where

Hi(., _
R/\11,5\41)(.,~) = (Hl(A17 Bl) + AlMl(flugl)) ! )
Hal(... _
R/\22,SVI2)(-7-) = (Hy(A2, By) + MMy (f2,92)) ",

and A, s > 0 are constants.
Proof. Let
Ty = RffMl {Hz (A2, Ba)(w2) — A1 (Fi(x2) + Gi(w1, 22))}
if and only if
= (Hi(A1, Br) + MM (f1,91))""
{Ha(Az, Ba)(x2) — A1 (F1(32) + Gi(w@1,22))
if and only if
Hy (A1, Br)(21) + M Mi(f1,91)(x1)
= Hy(Asg, B2)(w2) — A1 (Fi(22) + G1 (w1, 22)),
if and only if
01 € Hi(A1, B1)(x1) — Ha(Ag, Ba)(x2)
+ A1 (Fi(z2) + Gi(w1, 22)) + M Mi(f1, 91) (1)
Similarly,

HTQZRZQMQ {H1(A1, Br)(21) — A2 (Fa(21) + Ga(wa, 1))},
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if and only if
O € Ho(Az, B2)(w2) — H1(A1, B1)(71)
+ Ao (Fa(x1) + Ga(wa, x1)) + AaMa( fa, g2)(x2). O

Theorem 3.2. Let X be a real g-uniformly smooth Banach space. Let
for each i = 1,2, j € {1,2}\i G; : Q x X — X, F,, fi 9,4, B; :
X — X and H; : X x X — X be single-valued mappings. Let M; :
X x X — 2% be Hy(.,.)-mized mappings with respect to mappings A;
and B;. Let H;(A;, B;) be s;-Lipschitz continuous with respect to A; and
t;-Lipschitz continuous with respect to B;, F; be L, -Lipschitz continuous
and h;-strongly monotone with respect to H;(A;, B;). Further, suppose
that G; be LGZ.2 -Lipschitz continuous in the second argument and &;-
strongly monotone with respect to H;(A;, Bj) in the second argument.
In addition, assume that

(3.2) 0<TIy, vy <1,
where

Iy = Li(A1 + M Lay,),
1
Al = ((32 + tg)q + Cq)\({L%l — q)\lhl) ? s
1
Uy = Lo [((81 +t1)? + cq/\quG22 - q>\2€2> T+ >\2LFQ} .

Then SGMVIP (@) has a solution.

Proof. We first prove the existence of a solution. Define a mapping
K:X — X by

K(z1)

= Riﬁ}l’(,7,) [Hz(A% Bz){Riig\}Q)(,,.) [Hl(Ala By)(z1)

~ o (Fa(a1) + Gz(wz,xl))} }

_ )q{Fl {Riig\}';(w) [H1 (A1, By)(21) — Ao (Fa(w1) + Ga(wa, xl))]}

+ Gy (@, R T (A, Bu) (1) = do (Fa(n) + Ga(mz,2))]) .
From Lemma B.1, for all 21,y € X, it follows that
(3.3) [ K (z1) — K(y1)|

_ HRil,(M;)(.,q {H2(A2, BQ){RiQ,S\}Q)(W) [HI(AI, By) (1)

— Ay (Fa(x1) + G2(w27$1))} }
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- n{B{REG) [ B (@)

— A2 (Fa(21) +Gz(w27331))”

+ G (w1, Ry [ (4, B )

— A2 (Fa(21) +Gz(w27$1))D}]

R [ (G [ o
X2 (Ba(y1) + Galma, 1)) | |
—/\1{F1{RA 5\4)( )[H1(A1731)(y1)
X2 (Ba(y1) + Galma, 1)) | |
+ Gy (m, Riﬁg\};)(,,,) {H1(A17 B1)(y1)

2 (Falyn) + Ga(@2, 1)) | ) } |
Using Theorem , we have
(3.4) 1K (x1) — K(y1)
< L1HH2(A2,BQ){RH2( ;) [Hl(AhBl)(JUl)

Ao Ma(...)
_)\2<F2(x1)—|—(}2(w?’ 1))”
~ Ho(Ao, BO){ RV [Hi(A1, By ()
<F2(y1) - GQ(wQ,yl))] }
~n{ ARG (A B
(F2($1)+G2(w2,x1))}}
o RHQ("')(,,)[Hl(Al,Bl)( )

oz ]

)
+L1)\1HG1(W ,RHZ( ) ){HI(ALBQ(%)
)

Ao, Ma(.,.
+G2(w2,x1))D

e (wl, RIEG) [En (A, By )

= (Fa(yn) + Galwz ) | )|
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Since Hg(Asg, Bg) is so-Lipschitz continuous with respect to As and to-

Lipschitz continuous with respect to B, I} is L -Lipschitz continuous

and 7p-strongly monotone with respect to Hy(A2, By) and from Lemma
, it follows that

| Haz, B2) { RS H (A1 B () = Mo (Fa(an) + Gl )]}
— Hy(As, By) { B! <M>( 3 [H1 (AL By)(1) = e (Ba(yn) + Galw2, )] |
~ B {REG) I (A B (1) = A2 (Ba() + Ga(s, 1))}
— {RA i) (AL B () = X2 (F2(y1)+G2(W27y1))]}}Hq
< || Faas, B { RS (AL, By @)
= X2 (Fo(21) + Ga(@s,21)) | |
— Hoy(As, Bz){RfQS\})( ) {H1(A17 Bi)(y1)
— X2 (Fa(y1) + Ga(w2,91) ”H
+chqu1{ 2l Hi(Ar By)(a) — ha (Fg(:cl)+G2(w2,x1))]}
! {RA il 1AL, B (1) = A2 (Fa(y1) + Ga(wa, 1) }H
—an(F R T (AL B (@) = e (Fa(a) + Galz,20))] }
= P { RS T (A B () = de (Fa(yn) + Ga(wa, )]
Jo(Ha( Az, B { RS [H(Ar, By)(1)
Sy (FQ(:U1>+G2(@2,951))}}
— Hy (Ao, Bo){ RIS [ H(41, By)(
— X2 (Fa(y1) + Ga(we, 1))”»
< (52 t2)7|| R I (A, Bu) (1) = Do (Fa(an) + G2, 21)
= RS T (A1 B () = e (Falyn) + Gl )] ||

+ cgM L%l

Ry2CH (AL, By) (1) — Aa (Fa(a1) + Ga(wa, 1))
— R (AL B () — 2 (Fa(yr) + Ga(ws, 1)) Hq

_ quf—HHRA (AL By)(a1) = As (Fy(1) + Ga(w@s, 1)



A NEW TWO-STEP ITERATIVE ALGORITHM 147

= R T (AL, B () — Ao (Fa(yr) + Ga(ws, 1)) Hq
< ((32 +t2)0 + ALY — qhﬁl)
HRff(M) ) [Hi(A1, Bi) (@) = Ao (Fy(21) + Ga(wa, 1))
= RS [HU(AL B)(un) — A (Fa(n) + Ga(a, 1)) Hq

This implies

(3.5)

HHz(AZ,B2){ AT (Al,Bl)(xl)—/\Q(Fz(xl)Jer(m,m))]}
_H2(A2,BQ){RA EM>( 3 Hi(A1, B)(y1) = X (F2(y1)+Gz(wz,y1))]}
—A1{F1 {f% G (AL By (@) — Ao (Fg(x1)+Gz(wz,x1))]}
- R {RA2 S (AL B1) (1) = Ao (Fa(n) + GQ(WQ’yl))]} }H
< ((32 +t2)7 + ALY — q>\1ﬁ1>;

HRHQ( Dy (A1, Br) (1) = Ao (Fa(w1) + Ga(w,31))]
= R T (AL B () — X2 (Fa(yr) + Ga(ws,01))] H

Again using Theorem , we have

(3.6)
HRAQ Ma(.,) [H1(A1, B1)(21) — A2 (Fa(21) + Ga(wa, 71))]

= R TH(AL, B () = 2 (Faly) + Ga(wzo )] |
< LzH [H1(A1, Br)(21) — A2 (Fa(21) 4 Ga(@2, 1))
— [Hi(A, By) () = D (Paln) + Gl )] |
< Lo|| (A1, Bu) (1) — Hy (A1 B)(w1)

= % (Gals,w1) = Galwa,yn)) | + Lade | Fo(an) = Fawn)]] -

Since H1(Aj1, B1) is s1-Lipschitz continuous with respect to A; and ¢;-
Lipschitz continuous with respect to Bi, G2 is Lg,,-Lipschitz contin-
uous in the second argument, &s-strongly monotone with respect to
Hi(A1, By) in the second argument and using Lemma , it follows
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that

| H1 (A1, Br)(21) — Hi(A1, B1)(y1) — A2 (Ga(wa, 1) — Ga(wa, y1)) ||
< ||Hi(Ay, By)(z1) — Hi(Aq, By)(y1)|
+ cg Ay |G (w2, 21) — Ga(w2, 1) ||

- q)\2<G2(w2,3?1) — Ga(w2,41),
Jo (Hi(Av, By) (1) = Hi(As, B)(y1) )
< (514807 + e MLE,, — o) a1 = ill”

This implies
(3.7)
[H1(A1, Br)(z1) — Hi(A1, B1)(y1) — A2 (Ga(w2, 21) — Ga(w2, y1)) ||
1
< ((s1+ 07 + e MLE, — ha&)" o1 =l

Also by Lp,-Lipschitz continuity of F», we have

(3.8) [Fa(z1) = Fo(y1)[| < L, [ — -

From (@) (@) and (@), it follows that

1(

39 HR?S\/[ [ Al,Bl)(JJl) — A (Fg(xl)—l-GQ(WQ,CCl))]
~ BG4 B () = de (Balyn) + Gl )]
< Ly [((51 +t1)7 + cgA LG, Q>\2§2); + >\2LF2:| 21— yal.

From (@) and (@), it follows that
(3.10)

HHz(Az,Bz){ N M( ) [H1(A1, By)(21) — A2 (F2($1)+G2(w2a901))]}
— Hy(Az, Ba) {RA 5\4)( o (A1, Br)(y1) — A2 (Fa(y1) +G2(W2,y1))]}
~ B REG) T (A B (1) = e (Ba() + Ga(a, 1))}

)
- F{REG) (AL B) @) = e (Falyn) + Ga(wa,y))] |

Q=

< ((32 £2)7 + c NI L — q)\1h1>

+
1
X L2 |:((51 + tl)q + Cq)\quG22 — q)\2£2> a + )\2LF2:| ||l‘1 — y1||
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< AWy 2y =l

Again using L, ,-Lipschitz continuity of G in the second argument and
(@), we have

(3.11)
|61 (= B2 T (A1 B (1) = e (Faer) + (e, 1))
~ G (o B2 T (AL By () = A (Baly) + Gl )] ) |

Ry [HL(AL By (1) = Ag (Fa(a) + G (@2, 21))

< LG12 A2,Ma(.,.)

N Ri%g\./’lg(.,-) [H1 (A1, B1)(y1) — A2 (F2(y1) + Ga(@2, 41))] H

< Loy, Lo | (5 + 0" + 6 EE, — aate) " + e | o = |

Combining (@)—(), it follows that
”K(Cﬂl) - K(?/l)”
< Li(Ar+ M Ley, )Py [z — w|
<I'V¥yp [Jz1 —y]-

where I'1 = Li(A; + )\1L(;12). Since 0 < I';, ¥y < 1, from (@), it
follows that K is a contractive mapping. Therefore, there exists 1 € X
such that K(z1) = z;1. Let

Ty = Rf;MQ {H1(A1, B1)(z1) — A2 (Fa(z1) + Ga(w2, 21)) } -
Therefore, from the definition of K, we have
1= Ry {H(As, Bo)(w2) — M (Fi(w2) + Gi(@1,32))}
z9 = Rf\f% {H1 (A1, By)(z1) — Ao (Fa(21) + Ga(wwa, 21))} -
Thus it follows from Lemma @ that (z1,z2) is a solution of (@) O
4. ALGORITHM AND CONVERGENCE ANALYSIS

Now, we discuss the following two-step iterative algorithm which con-
tains a number of iterative algorithms as special cases for finding the
approximate solution of SGMVIP (@)

Iterative Algorithm 4.1. For arbitrarily chosen initial point 29 € X,
compute the sequences {z}, {z5} such that

n n\ n pH1(.,- n
P = (- B = a4 BRI L H (A, B (o)

— M (Fi(25) + Gi(wn,28)) |+ 8721,



150 S. SHAFI
w = (1= 0" ="l + o R L (A Bt
2 (Ba(a}) + Galwa,a})) | + 0735,

where {f"},{0"},{o™}, {v"} C [0,1],{z}}, {25} are bounded sequences
inX,0<A"+6"<1,0< " +v* <1, foralln>0.

If Iy = Fy, = 0, then the Iterative Algorithm @ reduces to the
following algorithm.

Iterative Algorithm 4.2. For arbitrarily chosen initial point 29 € X,
compute the sequences {z7}, {z4} such that

2P = (1 B" - o™)ah + MRy M)( ){Hz(Az,Bz)(l"S)
— MGi(wn,a5) | + 4L,

2y =(1—0o" —v")a] + UnR){IQZ,E\;[.Q)(.,.){Hl (A1, B1)(z7)
— /\QGg(wQ,m?)} + "2y,

where {5"},{6"}, {o"}, {v"} C [0,1],{27},{#5} are bounded sequences
inX,0<8"+6"<1,0<o"+v" <1, foralln>0.

If 6 = 0,0 = 0, then the Iterative Algorithm @ reduces to the
following algorithm.

Iterative Algorithm 4.3. For arbitrarily chosen initial point z{ € X,
compute the sequences {z}, {z5} such that

2= (L= gt + R { e, Bo) (@)
— A1 (Fi(zg) + Gi(w1, 23)) }

2§ = (1= o™y + 0" Ryl {H(Ar, By)(at)
— A2 (Fo(2f) + Ga(wa, 27)) }

where {5"},{c™} C [0,1], Vn >0.

Now, we give the convergence analysis of the sequences generated by
the Iterative Algorithm

Theorem 4.4. Let X be a real g-uniformly smooth Banach space. Let
foreachi=1,2, j€ {1,2}\2 G OxX =X F;, fi,9i,4;,B; : X > X
and H; - X x X — X be single-valued mappings. Let M; : X x X — 2%
be H;(.,.)-mized mappings with respect to mappings A; and B;. Let
H;(A;, B;) be s;-Lipschitz continuous with respect to A; and t;-Lipschitz



A NEW TWO-STEP ITERATIVE ALGORITHM 151

continuous with respect to B;, F; be L, -Lipschitz continuous and h;-
strongly monotone with respect to H;(Aj;, Bj). Further, suppose that
G; be Lg,, -Lipschitz continuous in the second argument and &;-strongly
monotone with respect to H;j(A;, Bj) in the second argument. Suppose
the sequences {7}, {x5} generated by above Iterative Algorithm and

satisfies
o oo
ZB”ZOO, 25"<oo, o" — 1,
n=0 n=0

and 0 < ¥y, WUsy <1

where
1

Uy = Lo [((31 +t1)7 + CquLqGQQ - q)\2§2> gt )\QLFQ} )

1

Uy =L, [((82 +12)7 + ch{LquQ - qu&) + >\1LF1} .

Then the sequences {z7},{x5} generated by above Iterative Algorithm
converge strongly to x1,xe where x1,x9 are solutions of SGMVIP

(2.4)-

Proof. Since (z1,z2) € X x X is a solution of SGMVIP (@), from
Lemma B.1|, we have

T = RflMl {H2(A2, Ba)(z2) — A1 (Fi(z2) + G1(w1,22))},
To = Rf;Mz {H\ (A1, B) (1) — A2 (Fa(z1) 4 Ga(wa, 21))} .
Let P = sup,>q {sup,> |21 =1l sup,, — a2, [|#1 I}
Using Iterative Algorithm @ Lemma and Theorem m we have
(4.1)

lz7+ — a4

= |{a == amat + g RS {HaA2, Bo) ()
— X (Fi(23) + G (@, 23)) b+ 8" }
—{= 8 =+ R {Ha(A2, Bo) ()
X (Fi(w2) + Gi(@1,22) | + 8" }
< [a-p =@t —a) + p{ RIS {Ha(4s, B (a3)
N (F(e8) + Galon, o)) | — B { FalAz, B (a2)

— A1 (Fi(@g) + G, 22)) } |+ 8" (4 — )|
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< (1= 8" = )la} — @] + 8" Ly || Ha(Ao, B2)(a) — Ha(As, Ba) (@)

~ M1 (Gi(w1,3) = Ga(wn,@2)) || + B L | Fiah) - Fa(ao)|
+ "2 — 1]

Since (7 is Lg,,-Lipschitz continuous in the second argument and &;-
strongly monotone in the second argument with respect to Ha(Asz, B2),
Hjy(As, B9) is so-Lipschitz continuous with respect to Ag and to-Lipschitz
continuous with respect to Bs, using Lemma@, it follows that

(4.2)
[Ha(Az, B2)(z5) — Ha(Ag, B2)(22) — M (G1(w1,25) — Gi(w1, 22)) ||
< ||H2(Asg, B2)(w3) — Ha2(Az, Ba)(w2) ||

+ e\ |G (1,25) = Gi(r, 22) | = A (Gr(w1,25) — G (1, 72),
Jq (H2(Az, Bo)(x3) — Ha(Az, Bs)(x2)) >
< ((s2+12)7+ e MLE, —ahi&) llah — o),

then
| H2(A2, Ba)(x3) — H2(Az, Ba)(x2) — A1 (G1(w1,25) — Gi(w1, 72)) ||

1

< ((s2+ )7+ eMLE, —ani&)" Jlz — ol

Also, since F} is Lp,-Lipschitz continuous, we have

(4.3) [F1(25) = Fi(z2)|| < Liy [log — 22|
Combining (@)—(@), we have
(4.4)

27+t —

<1 =p" ="zt — 2]

.
+8"Ly { ((52 +t2)T + e ML, — qugl) 4 >\1LF1} 22 — |
+ 6P,

then
27+ — ]| < (1= B™)[|2} — 21| + B"Wa|ah — ol + 6" P,

1
Vo = I, {((82 +t2)? + Cq)\(quGIQ - q)\lfl) !+ )\1LF1} .



A NEW TWO-STEP ITERATIVE ALGORITHM 153

Next, consider

(4.5)

|2y — 22|

= [{a=om vt + o w25 {HAnLB)ED
— A2 (Fo(2}) + Ga(wa, x7)) } + l/”zg}
- {(1 A Z O'nRiiS\}g(w){Hl(Al, Bi)(x1)
— Xo (Fa(z1) + Go(wa, 1)) } n y"@}”

S O (G
+om LRI (A, B)(af) — ha (Fa(a?) + Ga(owa, a7))}
— RS {H (A, By) (1) — A (Fa(a1) + Ga(ws, 21))} }
+ (25 — )

<1 =o" =v")[]a] — zof + UnL2HH1(A1,Bl)(337f) — Hy (A1, By)(x1)

=X (Ga(a, o) = Ga(em,a))|
+ 0" Lo [|[Fa(zY) — Fa(z)|| + v |25 — 22|

Since G is Lg,,-Lipschitz continuous in the second argument and &o-
strongly monotone in the second argument with respect to Hy (A1, B1),
Hy (A4, By) is s1-Lipschitz continuous with respect to A; and ¢1-Lipschitz
continuous with respect to B, using Lemma @, and following the same
procedure as in (@j), we have

(4.6)
|H1 (A1, B1)(27) — Hi(A1, B1)(21) — A2 (G2(w2, 27) — Ga(w2, 1)) |

1

< (51 +80)7 + eMLE, — ahaga)” 2l = ).

Also, since F3 is Lp,-Lipschitz continuous, we have

(4.7) [F2(2Y) — Fa(z)|| < L, |27 — 2]
Combining (@)—(@), we have
5 — 22|

<A =o" =[xy — a2
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1
+ 0" Lo {((81 +t1)?+ Cq/\ng;22 - q>\2€2) T+ )\QLFQ} |z} — x| + " P,
which implies
(4.8) |23 — 22| < (1 =0 —=v")||2] — 22| + 0" Vr |2} — z1|| + V" P,

where
1
Uy =Ly {((51 +1t1)? + Cq/\quGQ2 - q)\2§2> !+ )\QLFQ} .

This implies
(4.9) [y — x| < (1 — o™ = v")||l2] — 21| + 0"y fla] — a4
+(1=0"=v")||xy — 22| + " P
<A =0" =v")|z) — zf| + "Wy [z} — 2]
+(1—-0"=v")P+V"P
<A =v")[laf =2l + (1 —0™)P
<z} —x1]| + (1 — ™) P.

Using (@) in (@), we have
(4.10)
27! —an | < (1= B2} — x| + 8" o(|2} — 21| + (1 = 0™)P) + 8" P
< (1=p"(1= W)t — 2] + " (1 — ™) P + 6" P.
Let
a® = [lzf =z, d"=p"(1 - V),
= M1 — o™P, = §"P.
Therefore, by Lemma @, we have a" = ||z} — z1]| — 0 as n — oo. This

implies from (4.9) that |25 — za|| — 0 as n — oc.
This completes the proof. O
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