A New Two-Step Iterative Algorithm and $H(.,$.$) -Mixed Mappings for Solving a System of$ Variational Inclusions

Sumeera Shafi

Sahand Communications in
Mathematical Analysis
Print ISSN: 2322-5807
Online ISSN: 2423-3900
Volume: 20
Number: 3
Pages: 133-156
Sahand Commun. Math. Anal.
DOI: 10.22130/scma.2022.547905.1056

SCMA, P. O. Box 55181-83111, Maragheh, Iran http://scma.maragheh.ac.ir

A New Two-Step Iterative Algorithm and $H(.,$.$) -Mixed$ Mappings for Solving a System of Variational Inclusions

Sumeera Shafi

Abstract

A system of generalized mixed variational inclusion problem (SGMVIP) is considered involving $H(.,$.$) -mixed mappings$ in q-uniformly smooth Banach spaces. By means of proximal-point mapping method, the existence of solution of this system of variational inclusions is given. A new two-step iterative algorithm is proposed for solving SGMVIP. Strong convergence of the proposed algorithm is given.

1. Introduction

Variational inclusion problems are among the most interesting and intensively studied classes of mathematical problems and have wide applications in the fields of optimization and control, economics and transportation equilibrium, engineering science. For the past years, many existence results and iterative algorithms for various variational inequality and variational inclusion problems have been studied. For details, please refer [1. 3-6, 8, 16-18, 20, 21] and the references therein. Zou and Huang [22, 23] introduced and studied $H(.,$.$) -accretive mappings,$ Kazmi et al. [9-11] introduced and studied generalized $H(.,$.$) -accretive$ mappings, $H(.,)-.\eta$-proximal-point mappings. In 2011, Li and Huang [14] studied the graph convergence for the $H(.,$.$) -accretive mapping and$ showed the equivalence between graph convergence and proximal-point mapping convergence for the $H(.,$.$) -accretive mapping sequence in a$ Banach space.

Motivated and inspired by the above works and by the ongoing research in this direction[2, 7, 12, 13], we introduce and study a system of

[^0]generalized mixed variational inclusion problem involving H (.,.)-mixed mappings, a natural generalization of accretive (monotone) mappings in q-uniformly smooth Banach spaces. Using proximal-point mapping method, we suggest a new two-step iterative algorithm for solving the system. Furthermore, we prove that the sequences generated by the algorithm converge strongly to a solution of the system.

2. Proximal-Point Mapping and Formulation of Problem

We need the following definitions and results from the literature.
Let X be a real Banach space equipped with norm $\|$.$\| and X^{\star}$ be the topological dual space of X. Let $\langle.,$.$\rangle be the dual pair between X$ and X^{\star} and 2^{X} be the power set of X.
Definition 2.1 ([19]). For $q>1$, a mapping $J_{q}: X \rightarrow 2^{X^{\star}}$ is said to be generalized duality mapping, if it is defined by

$$
J_{q}(x)=\left\{f \in X^{\star}:\langle x, f\rangle=\|x\|^{q},\|x\|^{q-1}=\|f\|\right\}, \quad \forall x \in X .
$$

In particular, J_{2} is the usual normalized duality mapping on X, given as

$$
J_{q}(x)=\|x\|^{q-2} J_{2}(x), \quad \forall x(\neq 0) \in X
$$

Note that if $X \equiv H$, a real Hilbert space, then J_{2} becomes the identity mapping on X.
Definition 2.2 ([19]). A Banach space X is said to be smooth if, for every $x \in X$ with $\|x\|=1$, there exists a unique $f \in X^{\star}$ such that $\|f\|=f(x)=1$.

The modulus of smoothness of X is the function $\rho_{X}:[0, \infty) \rightarrow[0, \infty)$, defined by

$$
\rho_{X}(\sigma)=\sup \left\{\frac{\|x+y\|+\|x-y\|}{2}-1: x, y \in X,\|x\|=1,\|y\|=\sigma\right\} .
$$

Definition 2.3 (19$])$. A Banach space X is said to be
(i) uniformly smooth if $\lim _{\sigma \rightarrow 0} \frac{\rho_{X}(\sigma)}{\sigma}=0$,
(ii) q-uniformly smooth, for $q>1$, if there exists a constant $c>0$ such that $\rho_{X}(\sigma) \leq c \sigma^{q}, \sigma \in[0, \infty)$.
Note that if X is uniformly smooth, J_{q} becomes single-valued.
Lemma 2.4 ($[19])$. Let $q>1$ be a real number and let X be a smooth Banach space. Then the following statements are equivalent:
(i) X is q-uniformly smooth.
(ii) There is a constant $c_{q}>0$ such that for every $x, y \in X$, the following inequality holds

$$
\|x+y\|^{q} \leq\|x\|^{q}+q\left\langle y, J_{q}(x)\right\rangle+c_{q}\|y\|^{q} .
$$

Lemma 2.5 (15$\rfloor)$. Let $\left\{a^{n}\right\},\left\{b^{n}\right\}$ and $\left\{c^{n}\right\}$ be sequences of non-negative real numbers that satisfy:

$$
a^{n+1} \leq\left(1-d^{n}\right) a^{n}+b^{n}+c^{n}, \quad \forall n \geq 0
$$

where $d^{n} \in(0,1), \sum_{n=0}^{\infty} d^{n}=+\infty, \lim _{n \rightarrow \infty} b^{n}=0$ and $\sum_{n=0}^{\infty} c^{n}<\infty$. Then $\sum_{n=0}^{\infty} a^{n}=0$.

Lemma 2.6 ([7]). A mapping $f: X \rightarrow X$ is said to be
(i) δ-strongly accretive with $\delta>0$, if

$$
\left\langle f(x)-f(y), J_{q}(x-y)\right\rangle \geq \delta\|x-y\|^{q}, \quad \forall x, y \in X
$$

(ii) μ-cocoercive with $\mu>0$, if

$$
\left\langle f(x)-f(y), J_{q}(x-y)\right\rangle \geq \mu\|f(x)-f(y)\|^{q}, \quad \forall x, y \in X
$$

(iii) γ-relaxed cocoercive with $\gamma>0$, if

$$
\left\langle f(x)-f(y), J_{q}(x-y)\right\rangle \geq-\gamma\|f(x)-f(y)\|^{q}, \quad \forall x, y \in X
$$

(iv) β-Lipschitz continuous with $\beta>0$, if

$$
\|f(x)-f(y)\| \leq \beta\|x-y\|, \quad \forall x, y \in X
$$

(v) α-expansive with $\alpha>0$, if

$$
\|f(x)-f(y)\| \geq \alpha\|x-y\|, \quad \forall x, y \in X
$$

if $\alpha=1$, then it is expansive.
Definition 2.7. Let $H: X \times X \rightarrow X$ and $A, B: X \rightarrow X$ be singlevalued mapings. Then,
(i) $H(A,$.$) is said to be \mu$-cocoercive with respect to A if there exists a constant $\mu>0$ such that
$\left\langle H(A x, u)-H(A y, u), J_{q}(x-y)\right\rangle \geq \mu\|A x-A y\|^{q}, \quad \forall x, y, u \in X$.
(ii) $H(., B)$ is said to be γ-relaxed accretive with respect to B if there exists a constant $\gamma>0$ such that
$\left\langle H(u, B x)-H(u, B y), J_{q}(x-y)\right\rangle \geq-\gamma\|x-y\|^{q}, \quad \forall x, y, u \in X$.
(iii) $H(A,$.$) is said to be r_{1}$-Lipschitz continuous with respect to A if there exists a constant $r_{1}>0$ such that

$$
\|H(A x, .)-H(A y, .)\| \leq r_{1}\|x-y\|, \quad \forall x, y \in X
$$

(iv) $H(., B)$ is said to be r_{2}-Lipschitz continuous with respect to B if there exists a constant $r_{2}>0$ such that

$$
\|H(., B x)-H(., B y)\| \leq r_{2}\|x-y\|, \quad \forall x, y \in X
$$

Example 2.8. Consider a 2-uniformly smooth Banach space $X=\mathbb{R}^{2}$ with the usual inner product. Let $A, B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
A x=\binom{2 s x_{1}-2 s x_{2}}{-2 s x_{1}+3 s x_{2}}, \quad B y=\binom{-2 s y_{1}+2 s y_{2}}{-2 s y_{1}-2 s y_{2}}
$$

for all scalers $s \in \mathbb{R}$ and for all $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$.
Suppose that $H: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by $H(A x, B y)=A x+$ $B y$. Then $H(A, B)$ is $\frac{1}{5 s}$-cocoercive with respect to A and $2 s$-relaxed accretive with respect to B, and $\sqrt{13} s$-Lipschitz continuous with respect to A and $\sqrt{8} s$-Lipschitz continuous with respect to B.

Indeed, for any $u \in X$,

$$
\begin{aligned}
\langle H(& A x, u)-H(A y, u), x-y\rangle \\
= & \langle A x-A y, x-y\rangle \\
= & \left\langle\left(2 s x_{1}-2 s x_{2},-2 s x_{1}+3 s x_{2}\right)\right. \\
& \left.-\left(2 s y_{1}-2 s y_{2},-2 s y_{1}+3 s y_{2}\right),\left(x_{1}-y_{1}, x_{2}-y_{2}\right)\right\rangle \\
= & \left\langle 2 s\left(x_{1}-y_{1}\right)-2 s\left(x_{2}-y_{2}\right),-2 s\left(x_{1}-y_{1}\right)\right. \\
& \left.+3 s\left(x_{2}-y_{2}\right),\left(x_{1}-y_{1}, x_{2}-y_{2}\right)\right\rangle \\
= & 2 s\left(x_{1}-y_{1}\right)^{2}-4 s\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)+3 s\left(x_{2}-y_{2}\right)^{2},
\end{aligned}
$$

and

$$
\begin{aligned}
\| A x- & A y \|^{2} \\
= & \langle A x-A y, A x-A y\rangle \\
= & \left\langle\left(2 s x_{1}-2 s x_{2},-2 s x_{1}+3 s x_{2}\right)-\left(2 s y_{1}-2 s y_{2},-2 s y_{1}+3 s y_{2}\right),\right. \\
& \left.\left(\left(2 s x_{1}-2 s x_{2},-2 s x_{1}+3 s x_{2}\right)-\left(2 s y_{1}-2 s y_{2},-2 s y_{1}+3 s y_{2}\right)\right)\right\rangle \\
= & \left\langle 2 s\left(x_{1}-y_{1}\right)-2 s\left(x_{2}-y_{2}\right),-2 s\left(x_{1}-y_{1}\right)+3 s\left(x_{2}-y_{2}\right),\right. \\
& \left.\left(2 s\left(x_{1}-y_{1}\right)-2 s\left(x_{2}-y_{2}\right),-2 s\left(x_{1}-y_{1}\right)+3 s\left(x_{2}-y_{2}\right)\right)\right\rangle \\
= & 4 s^{2}\left(x_{1}-y_{1}\right)^{2}-4 s^{2}\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)-4 s^{2}\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right) \\
& +4 s^{2}\left(x_{2}-y_{2}\right)^{2}+4 s^{2}\left(x_{1}-y_{1}\right)^{2}-6 s^{2}\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right) \\
& -6 s^{2}\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)+9 s^{2}\left(x_{2}-y_{2}\right)^{2} \\
= & 8 s^{2}\left(x_{1}-y_{1}\right)^{2}-20 s^{2}\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)+13 s^{2}\left(x_{2}-y_{2}\right)^{2} \\
\leq & 10 s^{2}\left(x_{1}-y_{1}\right)^{2}-20 s^{2}\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)+15 s^{2}\left(x_{2}-y_{2}\right)^{2} \\
= & 5 s\left[2 s\left(x_{1}-y_{1}\right)^{2}-4 s\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)+3 s\left(x_{2}-y_{2}\right)^{2}\right] \\
= & 5 s[H(A x, u)-H(A y, u), x-y\rangle],
\end{aligned}
$$

which implies that

$$
\langle H(A x, u)-H(A y, u), x-y\rangle \geq \frac{1}{5 s}\|A x-A y\|^{2},
$$

that is, $H(A, B)$ is $\frac{1}{5 s}$-cocoercive with respect to A.

$$
\begin{aligned}
&\langle H(u, B x)-H(u, B y), x-y\rangle \\
&=\langle B x-B y, x-y\rangle \\
&=\left\langle\left(-2 s x_{1}+2 s x_{2},-2 s x_{1}-2 s x_{2}\right)\right. \\
&\left.-\left(-2 s y_{1}+2 s y_{2},-2 s y_{1}-2 s y_{2}\right),\left(x_{1}-y_{1}, x_{2}-y_{2}\right)\right\rangle \\
&=\left\langle-2 s\left(x_{1}-y_{1}\right)+2 s\left(x_{2}-y_{2}\right),\right. \\
&\left.-2 s\left(x_{1}-y_{1}\right)-2 s\left(x_{2}-y_{2}\right),\left(x_{1}-y_{1}, x_{2}-y_{2}\right)\right\rangle \\
&=-2 s\left(x_{1}-y_{1}\right)^{2}+2 s\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right) \\
&-2 s\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)-2 s\left(x_{2}-y_{2}\right)^{2} \\
&=-2 s\left[\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}\right] \\
& \geq-2 s\|x-y\|^{2},
\end{aligned}
$$

which implies that

$$
\langle H(u, B x)-H(u, B y), x-y\rangle \geq-2 s\|x-y\|^{2},
$$

that is, $H(A, B)$ is $2 s$-relaxed accretive with respect to B,

$$
\begin{aligned}
&\|H(A x, u)-H(A y, u)\|^{2} \\
&=\|A x-A y\|^{2} \\
&=\langle A x-A y, A x-A y\rangle \\
&=\left\langle\left(2 s x_{1}-2 s x_{2},-2 s x_{1}+3 s x_{2}\right)-\left(2 s y_{1}-2 s y_{2},-2 s y_{1}+3 s y_{2}\right),\right. \\
&\left.\left(\left(2 s x_{1}-2 s x_{2},-2 s x_{1}+3 s x_{2}\right)-\left(2 s y_{1}-2 s y_{2},-2 s y_{1}+3 s y_{2}\right)\right)\right\rangle \\
&=\left\langle 2 s\left(x_{1}-y_{1}\right)-2 s\left(x_{2}-y_{2}\right),-2 s\left(x_{1}-y_{1}\right)+3 s\left(x_{2}-y_{2}\right),\right. \\
&\left.\left(2 s\left(x_{1}-y_{1}\right)-2 s\left(x_{2}-y_{2}\right),-2 s\left(x_{1}-y_{1}\right)+3 s\left(x_{2}-y_{2}\right)\right)\right\rangle \\
&= 4 s^{2}\left(x_{1}-y_{1}\right)^{2}-4 s^{2}\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)-4 s^{2}\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right) \\
&+4 s^{2}\left(x_{2}-y_{2}\right)^{2}+4 s^{2}\left(x_{1}-y_{1}\right)^{2}-6 s^{2}\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right) \\
&-6 s^{2}\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)+9 s^{2}\left(x_{2}-y_{2}\right)^{2} \\
&= 8 s^{2}\left(x_{1}-y_{1}\right)^{2}-20 s^{2}\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)+13 s^{2}\left(x_{2}-y_{2}\right)^{2} \\
& \leq 13 s^{2}\left(x_{1}-y_{1}\right)^{2}+13 s^{2}\left(x_{2}-y_{2}\right)^{2},
\end{aligned}
$$

which implies that

$$
\|H(A x, u)-H(A y, u)\| \leq \sqrt{13} s\|x-y\|
$$

that is, $H(A, B)$ is $\sqrt{13} s$-Lipschitz continuous with respect to A.

$$
\begin{aligned}
\| H & (u, B x)-H(u, B y) \|^{2} \\
= & \|B x-B y\|^{2} \\
= & \langle B x-B y, B x-B y\rangle \\
= & \left\langle\left(-2 s x_{1}+2 s x_{2},-2 s x_{1}-2 s x_{2}\right)-\left(-2 s y_{1}+2 s y_{2},-2 s y_{1}-2 s y_{2}\right),\right. \\
& \left.\left(\left(-2 s x_{1}+2 s x_{2},-2 s x_{1}-2 s x_{2}\right)-\left(-2 s y_{1}+2 s y_{2},-2 s y_{1}-2 s y_{2}\right)\right)\right\rangle \\
= & \left\langle-2 s\left(x_{1}-y_{1}\right)+2 s\left(x_{2}-y_{2}\right),-2 s\left(x_{1}-y_{1}\right)-2 s\left(x_{2}-y_{2}\right),\right. \\
& \left.\left(-2 s\left(x_{1}-y_{1}\right)+2 s\left(x_{2}-y_{2}\right),-2 s\left(x_{1}-y_{1}\right)-2 s\left(x_{2}-y_{2}\right)\right)\right\rangle \\
= & 4 s^{2}\left(x_{1}-y_{1}\right)^{2}-4 s^{2}\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)-4 s^{2}\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right) \\
& +4 s^{2}\left(x_{2}-y_{2}\right)^{2}+4 s^{2}\left(x_{1}-y_{1}\right)^{2}+4 s^{2}\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right) \\
& +4 s^{2}\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)+4 s^{2}\left(x_{2}-y_{2}\right)^{2} \\
= & 8 s^{2}\left(x_{1}-y_{1}\right)^{2}+8 s^{2}\left(x_{2}-y_{2}\right)^{2},
\end{aligned}
$$

which implies that

$$
\|H(u, B x)-H(u, B y)\|=\sqrt{8} s\|x-y\| \text {, }
$$

that is, $H(A, B)$ is $\sqrt{8} s$-Lipschitz continuous with respect to B.
Definition 2.9. Let $f, g: X \rightarrow X$ be single-valued mappings and M : $X \times X \rightarrow 2^{X}$ be a set-valued mapping. Then
(i) $M(f,$.$) is said to be \omega$-strongly accretive regarding f with $\omega>0$, if

$$
\begin{gathered}
\left\langle u-v, J_{q}(x-y)\right\rangle \geq \omega\|x-y\|,{ }^{q} \quad \forall x, y, w \in X, \\
u \in M(f(x), w), v \in M(f(y), w) .
\end{gathered}
$$

(ii) $M(., g)$ is said to be τ-relaxed accretive regarding g with $\tau>0$, if

$$
\begin{gathered}
\left\langle u-v, J_{q}(x-y)\right\rangle \geq-\tau\|x-y\|^{q}, \quad \forall x, y, w \in X, \\
u \in M(w, g(x)), v \in M(w, g(y)) .
\end{gathered}
$$

(iii) $M(.,$.$) is said to be \omega \tau$-symmetric accretive regarding f and g if $M(f,$.$) is \omega$-strongly accretive regarding f and $M(., g)$ is τ relaxed accretive regarding g with $\omega \geq \tau$ and $\omega=\tau$ if and only if $x=y$.

Definition 2.10 ($H(.,$.$) -Mixed mappings). Let H: X \times X \rightarrow X$ and $A, B: X \rightarrow X$ be single-valued mapings and $M: X \times X \rightarrow 2^{X}$ be a set-valued mapping. Let $H(A, B)$ be μ-cocoercive with respect to A, γ-relaxed accretive with respect to B. Then M is said to be an $H(.,$.$) -$ mixed mapping with respect to mappings A and B if
(i) M is $\omega \tau$-symmetric accretive regarding f and g;
(ii) $(H(A, B)+\rho M(f, g))(X)=X, \quad \forall \rho>0$.

Proposition 2.11. Let $M: X \times X \rightarrow 2^{X}$ be an $H(.,$.$) -mixed mapping$ with respect to mappings A and B. If A is α-expansive and $\mu>\gamma$ with $r=\mu \alpha^{q}-\gamma>(\omega-\tau)$, then the following inequality holds:

$$
\begin{gathered}
\left\langle u-v, J_{q}(x-y)\right\rangle \geq 0, \quad \forall(y, v) \in \operatorname{Graph}(M(f, g)), \\
\text { implies }(x, u) \in \operatorname{Graph}(M(f, g)),
\end{gathered}
$$

where

$$
\operatorname{Graph}(M(f, g))=\{(x, u) \in X \times X: u \in M(f(x), g(x))\} .
$$

Proof. Assume on the contrary that there exists $\left(x_{0}, u_{0}\right) \notin \operatorname{Graph}(M(f, g))$ such that

$$
\begin{equation*}
\left\langle u_{0}-v, J_{q}\left(x_{0}-y\right)\right\rangle \geq 0, \quad \forall(y, v) \in \operatorname{Graph}(M(f, g)) . \tag{2.1}
\end{equation*}
$$

Since M is an $H(.,$.$) -mixed mapping, we know that$

$$
(H(A, B)+\rho M(f, g))(X)=X, \text { holds for all } \rho>0 .
$$

So there exists $\left(x_{1}, u_{1}\right) \in \operatorname{Graph}(M(f, g))$ such that

$$
\begin{equation*}
H\left(A x_{1}, B x_{1}\right)+\rho u_{1}=H\left(A x_{0}, B x_{0}\right)+\rho u_{0} \in X . \tag{2.2}
\end{equation*}
$$

Now,

$$
\rho u_{0}-\rho u_{1}=H\left(A x_{1}, B x_{1}\right)-H\left(A x_{0}, B x_{0}\right) \in X,
$$

which implies

$$
\begin{aligned}
\left\langle\rho u_{0}\right. & \left.-\rho u_{1}, J_{q}\left(x_{0}-x_{1}\right)\right\rangle \\
& =-\left\langle H\left(A x_{0}, B x_{0}\right)-H\left(A x_{1}, B x_{1}\right), J_{q}\left(x_{0}-x_{1}\right)\right\rangle .
\end{aligned}
$$

Since M is $\omega \tau$-symmetric accretive regarding f and g, we obtain

$$
\begin{align*}
(\omega-\tau)\left\|x_{0}-x_{1}\right\|^{q} \leq & \rho\left\langle u_{0}-u_{1}, J_{q}\left(x_{0}-x_{1}\right)\right\rangle \tag{2.3}\\
= & -\left\langle H\left(A x_{0}, B x_{0}\right)-H\left(A x_{1}, B x_{1}\right), J_{q}\left(x_{0}-x_{1}\right)\right\rangle \\
= & -\left\langle H\left(A x_{0}, B x_{0}\right)-H\left(A x_{1}, B x_{0}\right), J_{q}\left(x_{0}-x_{1}\right)\right\rangle \\
& -\left\langle H\left(A x_{1}, B x_{0}\right)-H\left(A x_{1}, B x_{1}\right), J_{q}\left(x_{0}-x_{1}\right)\right\rangle .
\end{align*}
$$

Since $H(A, B)$ is μ-cocoercive with respect to A, γ-relaxed accretive with respect to B, A is α-expansive, (2.3) implies

$$
\begin{aligned}
(\omega-\tau)\left\|x_{0}-x_{1}\right\|^{q} & \leq-\mu\left\|A x_{0}-A x_{1}\right\|^{q}+\gamma\left\|x_{0}-x_{1}\right\|^{q} \\
& \leq-\mu \alpha^{q}\left\|x_{0}-x_{1}\right\|^{q}+\gamma\left\|x_{0}-x_{1}\right\|^{q} \\
& \leq-\left(\mu \alpha^{q}-\gamma\right)\left\|x_{0}-x_{1}\right\|^{q} \\
& =-r\left\|x_{0}-x_{1}\right\|^{q} \leq 0, \quad r=\left(\mu \alpha^{q}-\gamma\right) \\
& \leq-(r-(\omega-\tau))\left\|x_{0}-x_{1}\right\|^{q}
\end{aligned}
$$

≤ 0.
This implies that $x_{0}=x_{1}$. Since $r=\left(\mu \alpha^{q}-\gamma\right)>(\omega-\tau)$, we have $u_{0}=u_{1}$, a contradiction. This completes the proof.

Theorem 2.12. Let $M: X \times X \rightarrow 2^{X}$ be an $H(.,$.$) -mixed mapping$ with respect to mappings A and B. If A is α-expansive and $\mu>\gamma$ with $r=\mu \alpha^{q}-\gamma>\rho(\omega-\tau)$, then $(H(A, B)+\rho M(f, g))^{-1}$ is single-valued.

Proof. For any given $x \in X$, let $u, v \in H((A, B)+\rho M(f, g))^{-1}(x)$. It follows that

$$
\begin{aligned}
& -H(A u, B u)+x \in \rho M(f, g) u \\
& -H(A v, B v)+x \in \rho M(f, g) v
\end{aligned}
$$

Since M is $\omega \tau$-symmetric accretive rergarding f and g, we have
$(\omega-\tau)\|u-v\|^{q} \leq \frac{1}{\rho}\left\langle-H(A u, B u)+x-(-H(A v, B v)+x), J_{q}(u-v)\right\rangle$,
which implies

$$
\begin{aligned}
\rho(\omega-\tau)\|u-v\|^{q} \leq & \left\langle-H(A u, B u)+x-(-H(A v, B v)+x), J_{q}(u-v)\right\rangle \\
= & -\left\langle H(A u, B u)-H(A v, B v), J_{q}(u-v)\right\rangle \\
= & -\left\langle H(A u, B u)-H(A v, B u), J_{q}(u-v)\right\rangle \\
& -\left\langle H(A v, B u)-H(A v, B v), J_{q}(u-v)\right\rangle,
\end{aligned}
$$

which is like (2.3). Hence, it follows that $\|u-v\| \leq 0$. This implies that $u=v$ and therefore $(H(A, B)+\rho M(f, g))^{-1}$ is single-valued.

Definition 2.13. Let $M: X \times X \rightarrow 2^{X}$ be an $H(.,$.$) -mixed mapping$ with respect to mappings A and B. If A is α-expansive and $\mu>\gamma$ with $r=\mu \alpha^{q}-\gamma>\rho(\omega-\tau)$, then the proximal-point mapping is defined by

$$
R_{\rho, M(., .)}^{H(\ldots .)}(u)=(H(A, B)+\rho M(f, g))^{-1}(u), \quad \forall u \in X .
$$

Now, we prove that the proximal-point mapping defined above is Lipschitz continuous.

Theorem 2.14. Let $M: X \times X \rightarrow 2^{X}$ be an H (.,.)-mixed mapping with respect to mappings A and B. If A is α-expansive and $\mu>\gamma$ with $r=$ $\mu \alpha^{q}-\gamma>\rho(\omega-\tau)$, then the proximal-point mapping $R_{\rho, M(\ldots,)}^{H(\ldots)}: X \rightarrow X$ is $\frac{1}{r+\rho(\omega-\tau)}$-Lipschitz continuous, that is,

$$
\left\|R_{\rho, M(\ldots,)}^{H(, \ldots)}(u)-R_{\rho, M(\ldots,)}^{H((, .)}(v)\right\| \leq \frac{1}{r+\rho(\omega-\tau)}\|u-v\|, \quad \forall u, v \in X,
$$

or

$$
\left\|R_{\rho, M(\ldots,)}^{H(, \ldots)}(u)-R_{\rho, M(\ldots,)}^{H(, . .)}(v)\right\| \leq L\|u-v\|, \quad \forall u, v \in X
$$

where

$$
L=\frac{1}{r+\rho(\omega-\tau)} .
$$

Proof. For the given points $u, v \in X$, it follows from Definition 2.13 that

$$
\begin{aligned}
& R_{\rho, M(\ldots .)}^{H(\ldots)}(u)=(H(A, B)+\rho M(f, g))^{-1}(u), \\
& R_{\rho, M(\ldots .)}^{H(\ldots .)}(v)=(H(A, B)+\rho M(f, g))^{-1}(v) .
\end{aligned}
$$

Let $w_{1}=R_{\rho, M(\ldots,)}^{H(\ldots,)}(u)$ and $w_{2}=R_{\rho, M(\ldots,)}^{H(\ldots)}(v)$. This implies

$$
\begin{aligned}
& \frac{1}{\rho}\left(u-H\left(A\left(w_{1}\right), B\left(w_{1}\right)\right)\right) \in M\left(f\left(w_{1}\right), g\left(w_{1}\right)\right) \\
& \frac{1}{\rho}\left(v-H\left(A\left(w_{2}\right), B\left(w_{2}\right)\right)\right) \in M\left(f\left(w_{2}\right), g\left(w_{2}\right)\right) .
\end{aligned}
$$

Since M is $\omega \tau$-symmetric accretive regarding f and g, we have

$$
\begin{aligned}
& \frac{1}{\rho}\left\langle\left(u-H\left(A\left(w_{1}\right), B\left(w_{1}\right)\right)\right)-\left(v-H\left(A\left(w_{2}\right), B\left(w_{2}\right)\right)\right), J_{q}\left(w_{1}-w_{2}\right)\right\rangle \\
& \quad \geq(\omega-\tau)\left\|w_{1}-w_{2}\right\|^{q}, \\
& \frac{1}{\rho}\left\langle u-v-H\left(A\left(w_{1}\right), B\left(w_{1}\right)\right)+H\left(A\left(w_{2}\right), B\left(w_{2}\right)\right), J_{q}\left(w_{1}-w_{2}\right)\right\rangle \\
& \quad \geq(\omega-\tau)\left\|w_{1}-w_{2}\right\|^{q},
\end{aligned}
$$

which implies

$$
\begin{aligned}
\langle u- & \left.v, J_{q}\left(w_{1}-w_{2}\right)\right\rangle \\
\geq & \left\langle H\left(A\left(w_{1}\right), B\left(w_{1}\right)\right)-H\left(A\left(w_{2}\right), B\left(w_{2}\right)\right), J_{q}\left(w_{1}-w_{2}\right)\right\rangle \\
& +\rho(\omega-\tau)\left\|w_{1}-w_{2}\right\|^{q} .
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
\| u- & v\left\|\left\|w_{1}-w_{2}\right\|^{q-1}\right. \\
\geq \geq & \left\langle u-v, J_{q}\left(w_{1}-w_{2}\right)\right\rangle \\
\geq & \left\langle H\left(A\left(w_{1}\right), B\left(w_{1}\right)\right)-H\left(A\left(w_{2}\right), B\left(w_{2}\right)\right), J_{q}\left(w_{1}-w_{2}\right)\right\rangle \\
& +\rho(\omega-\tau)\left\|w_{1}-w_{2}\right\|^{q} \\
= & \left\langle H\left(A\left(w_{1}\right), B\left(w_{1}\right)\right)-H\left(A\left(w_{2}\right), B\left(w_{1}\right)\right), J_{q}\left(w_{1}-w_{2}\right)\right\rangle \\
& +\left\langle H\left(A\left(w_{2}\right), B\left(w_{1}\right)\right)-H\left(A\left(w_{2}\right), B\left(w_{2}\right)\right), J_{q}\left(w_{1}-w_{2}\right)\right\rangle \\
& +\rho(\omega-\tau)\left\|w_{1}-w_{2}\right\|^{q} .
\end{aligned}
$$

This implies

$$
\begin{aligned}
\|u-v\|\left\|w_{1}-w_{2}\right\|^{q-1} \geq & \mu\left\|A\left(w_{1}\right)-A\left(w_{2}\right)\right\|^{q}-\gamma\left\|w_{1}-w_{2}\right\|^{q} \\
& +\rho(\omega-\tau)\left\|w_{1}-w_{2}\right\|^{q}
\end{aligned}
$$

$$
\begin{aligned}
& \geq\left(\left(\mu \alpha^{q}-\gamma\right)+\rho(\omega-\tau)\right)\left\|w_{1}-w_{2}\right\|^{q} \\
& \geq(r+\rho(\omega-\tau))\left\|w_{1}-w_{2}\right\|^{q}
\end{aligned}
$$

which implies

$$
\|u-v\|\left\|w_{1}-w_{2}\right\|^{q-1} \geq(r+\rho(\omega-\tau))\left\|w_{1}-w_{2}\right\|^{q}
$$

which implies

$$
\left\|R_{\rho, M(., .)}^{H(\ldots .)}(u)-R_{\rho, M(., .)}^{H(\ldots .)}(v)\right\| \leq \frac{1}{r+\rho(\omega-\tau)}\|u-v\|
$$

This completes the proof.
Now, we formulate our main problem.
Let $\Omega \subset X$ be a nonempty open subset of X in which the parameter ϖ takes the values. Let for each $i=1,2, G_{i}: \Omega \times X \rightarrow$ $X, F_{i}, f_{i}, g_{i}, A_{i}, B_{i}: X \rightarrow X$ and $H_{i}: X \times X \rightarrow X$ be single-valued mappings. Let $M_{i}: X \times X \rightarrow 2^{X}$ be $H_{i}(.,$.$) -mixed mappings with respect$ to mappings A_{i} and B_{i}. We consider the following system of generalized mixed variational inclusion problem (in brief, SGMVIP): For given $\theta_{i}, \varpi_{i} \in X$, find $\left(x_{1}, x_{2}\right) \in X \times X$ such that

$$
\begin{align*}
\theta_{1} \in & H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}\right) \tag{2.4}\\
& +\lambda_{1}\left\{F_{1}\left(x_{2}\right)+G_{1}\left(\varpi_{1}, x_{2}\right)\right\}+\lambda_{1} M_{1}\left(f_{1}, g_{1}\right)\left(x_{1}\right) \\
\theta_{2} \in & H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}\right)-H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right) \\
& +\lambda_{2}\left\{F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right\}+\lambda_{2} M_{2}\left(f_{2}, g_{2}\right)\left(x_{2}\right)
\end{align*}
$$

Special Cases:

I. If in problem (2.4), $\theta_{1}=\theta_{2}=0, H_{1}\left(A_{1}, B_{1}\right)=H_{2}\left(A_{2}, B_{2}\right)=I$ (identity mapping), $G_{1}=G_{2} \equiv 0$, then problem (2.4) reduces to the following problem: Find $\left(x_{1}, x_{2}\right) \in X \times X$ such that

$$
\begin{align*}
& 0 \in x_{1}-x_{2}+\lambda_{1}\left\{F_{1}\left(x_{2}\right)+\lambda_{1} M_{1}\left(f_{1}, g_{1}\right)\left(x_{1}\right)\right\} \tag{2.5}\\
& 0 \in x_{2}-x_{1}+\lambda_{2}\left\{F_{2}\left(x_{1}\right)+\lambda_{2} M_{2}\left(f_{2}, g_{2}\right)\left(x_{2}\right)\right\}
\end{align*}
$$

This type of problem (2.5) has been considered and studied by Ceng et al.[5].
II. If in problem (2.4), $H_{1}\left(A_{1}, B_{1}\right)=H_{2}\left(A_{2}, B_{2}\right)=I$ (identity mapping), $G_{1}=G_{2} \equiv 0, M_{1}\left(f_{1}, g_{1}\right)\left(x_{1}\right)=M_{2}\left(f_{2}, g_{2}\right)\left(x_{2}\right)=$ $\partial \delta_{C}(u), \quad \forall u \in X, C$ is a nonempty closed and convex set in X and δ_{C} denotes the indicator function of closed convex set, C, i.e.,

$$
\begin{aligned}
\delta_{C}(g(u))=0 ; & & u \in C \\
+\infty & & u \notin C
\end{aligned}
$$

Then problem (2.4) reduces to the following problem:
Find $\left(x_{1}, x_{2}\right) \in C \times C$ such that

$$
\begin{aligned}
& \left\langle x_{1}-x_{2}+\lambda_{1} F_{1}\left(x_{2}\right), u-x_{1}\right\rangle \geq 0, \quad \forall u \in C, \\
& \left\langle x_{2}-x_{1}+\lambda_{2} F_{2}\left(x_{1}\right), u-x_{2}\right\rangle \geq 0, \quad \forall u \in C .
\end{aligned}
$$

This type of problem (2.6) has been considered and studied by Ceng and Shang [4].

3. Existence of Solution

First, we give the following lemma which guarentees the existence of solution of SGMVIP (2.4).
Lemma 3.1. Let for each $i=1,2, G_{i}, F_{i}, f_{i}, g_{i}, A_{i}, B_{i}, H_{i}$ and M_{i} be same as in problem SGMVIP (2.4). Then $\left(x_{1}, x_{2}\right)$ is a solution of $S G$ MVIP (2.4), where $\left(x_{1}, x_{2}\right) \in X \times X$ if and only if it satisfies:

$$
\begin{align*}
& x_{1}=R_{\lambda_{1}, M_{1}(\ldots)}^{H_{1}(\ldots)}\left\{H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}\right)-\lambda_{1}\left(F_{1}\left(x_{2}\right)+G_{1}\left(\varpi_{1}, x_{2}\right)\right)\right\}, \tag{3.1}\\
& x_{2}=R_{\lambda_{2}, M_{2}(\ldots)}^{H_{2}(\ldots)}\left\{H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right\},
\end{align*}
$$

where

$$
\begin{aligned}
& R_{\lambda_{1}, M_{1}(\ldots)}^{H_{1}(\ldots)}=\left(H_{1}\left(A_{1}, B_{1}\right)+\lambda_{1} M_{1}\left(f_{1}, g_{1}\right)\right)^{-1}, \\
& R_{\lambda_{2}, M_{2}(\ldots)}^{H_{2}(\ldots)}=\left(H_{2}\left(A_{2}, B_{2}\right)+\lambda_{2} M_{2}\left(f_{2}, g_{2}\right)\right)^{-1},
\end{aligned}
$$

and $\lambda_{1}, \lambda_{2}>0$ are constants.
Proof. Let

$$
x_{1}=R_{\lambda_{1}, M_{1}(.,)}^{H_{1}(.,)}\left\{H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}\right)-\lambda_{1}\left(F_{1}\left(x_{2}\right)+G_{1}\left(\varpi_{1}, x_{2}\right)\right)\right\},
$$

if and only if

$$
\begin{aligned}
x_{1}= & \left(H_{1}\left(A_{1}, B_{1}\right)+\lambda_{1} M_{1}\left(f_{1}, g_{1}\right)\right)^{-1} \\
& \left\{H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}\right)-\lambda_{1}\left(F_{1}\left(x_{2}\right)+G_{1}\left(\varpi_{1}, x_{2}\right)\right)\right\},
\end{aligned}
$$

if and only if

$$
\begin{aligned}
& H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)+\lambda_{1} M_{1}\left(f_{1}, g_{1}\right)\left(x_{1}\right) \\
& \quad=H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}\right)-\lambda_{1}\left(F_{1}\left(x_{2}\right)+G_{1}\left(\varpi_{1}, x_{2}\right)\right)
\end{aligned}
$$

if and only if

$$
\begin{aligned}
\theta_{1} \in & H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}\right) \\
& +\lambda_{1}\left(F_{1}\left(x_{2}\right)+G_{1}\left(\varpi_{1}, x_{2}\right)\right)+\lambda_{1} M_{1}\left(f_{1}, g_{1}\right)\left(x_{1}\right) .
\end{aligned}
$$

Similarly,

$$
x_{2}=R_{\lambda_{2}, M_{2}(.,)}^{H_{2}(. .)}\left\{H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right\},
$$

if and only if

$$
\begin{aligned}
\theta_{2} \in & H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}\right)-H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right) \\
& +\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)+\lambda_{2} M_{2}\left(f_{2}, g_{2}\right)\left(x_{2}\right)
\end{aligned}
$$

Theorem 3.2. Let X be a real q-uniformly smooth Banach space. Let for each $i=1,2, j \in\{1,2\} \backslash i G_{i}: \Omega \times X \rightarrow X, F_{i}, f_{i}, g_{i}, A_{i}, B_{i}:$ $X \rightarrow X$ and $H_{i}: X \times X \rightarrow X$ be single-valued mappings. Let $M_{i}:$ $X \times X \rightarrow 2^{X}$ be $H_{i}(.,$.$) -mixed mappings with respect to mappings A_{i}$ and B_{i}. Let $H_{i}\left(A_{i}, B_{i}\right)$ be s_{i}-Lipschitz continuous with respect to A_{i} and t_{i}-Lipschitz continuous with respect to B_{i}, F_{i} be $L_{F_{i}}$-Lipschitz continuous and \hbar_{i}-strongly monotone with respect to $H_{j}\left(A_{j}, B_{j}\right)$. Further, suppose that G_{i} be $L_{G_{i_{2}}}$-Lipschitz continuous in the second argument and ξ_{i} strongly monotone with respect to $H_{j}\left(A_{j}, B_{j}\right)$ in the second argument. In addition, assume that

$$
\begin{equation*}
0<\Gamma_{1}, \quad \Psi_{1}<1 \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Gamma_{1}=L_{1}\left(\Delta_{1}+\lambda_{1} L_{G_{1_{2}}}\right) \\
& \Delta_{1}=\left(\left(s_{2}+t_{2}\right)^{q}+c_{q} \lambda_{1}^{q} L_{F_{1}}^{q}-q \lambda_{1} \hbar_{1}\right)^{\frac{1}{q}} \\
& \Psi_{1}=L_{2}\left[\left(\left(s_{1}+t_{1}\right)^{q}+c_{q} \lambda_{2}^{q} L_{G_{2_{2}}}^{q}-q \lambda_{2} \xi_{2}\right)^{\frac{1}{q}}+\lambda_{2} L_{F_{2}}\right]
\end{aligned}
$$

Then SGMVIP (2.4) has a solution.
Proof. We first prove the existence of a solution. Define a mapping $K: X \rightarrow X$ by

$$
\begin{aligned}
& K\left(x_{1}\right) \\
&= R_{\lambda_{1}, M_{1}(., .)}^{H_{1}(.,)}\left[H _ { 2 } (A _ { 2 } , B _ { 2 }) \left\{R _ { \lambda _ { 2 } , M _ { 2 } (. , .) } ^ { H _ { 2 } (. ,) } \left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)\right.\right.\right. \\
&\left.\left.-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right\} \\
&-\lambda_{1}\left\{F_{1}\left\{R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right\}\right. \\
&\left.\left.+G_{1}\left(\varpi_{1}, R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(\ldots .)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right)\right\}\right]
\end{aligned}
$$

From Lemma 3.1, for all $x_{1}, y_{1} \in X$, it follows that

$$
\begin{align*}
& \left\|K\left(x_{1}\right)-K\left(y_{1}\right)\right\| \tag{3.3}\\
& =\| R_{\lambda_{1}, M_{1}(, .,)}^{H_{1}(\ldots)}\left[H _ { 2 } (A _ { 2 } , B _ { 2 }) \left\{R _ { \lambda _ { 2 } , M _ { 2 } (, . ,) } ^ { H _ { 2 } (. .) } \left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)\right.\right.\right. \\
& \\
& \left.\left.\quad-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right\}
\end{align*}
$$

$$
\begin{aligned}
& -\lambda_{1}\left\{F _ { 1 } \left\{R _ { \lambda _ { 2 } , M _ { 2 } (\ldots ,) } ^ { H _ { 2 } (\ldots) } \left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)\right.\right.\right. \\
& \left.\left.-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right\} \\
& +G_{1}\left(\varpi_{1}, R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(\ldots,)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)\right.\right. \\
& \left.\left.\left.\left.-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right)\right\}\right] \\
& -R_{\lambda_{1}, M_{1}(\ldots,)}^{H_{1}(\ldots)}\left[H _ { 2 } (A _ { 2 } , B _ { 2 }) \left\{R _ { \lambda _ { 2 } , M _ { 2 } (\ldots ,) } ^ { H _ { 2 } (\ldots) } \left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)\right.\right.\right. \\
& \left.\left.-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right]\right\} \\
& -\lambda_{1}\left\{F _ { 1 } \left\{R _ { \lambda _ { 2 } , M _ { 2 } (\ldots ,) } ^ { H _ { 2 } (\ldots) } \left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)\right.\right.\right. \\
& \left.\left.-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right]\right\} \\
& +G_{1}\left(\varpi_{1}, R_{\lambda_{2}, M_{2}(\ldots,)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)\right.\right. \\
& \left.\left.\left.\left.-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right]\right)\right\}\right] \| .
\end{aligned}
$$

Using Theorem 2.14, we have

$$
\begin{align*}
\| K & \left(x_{1}\right)-K\left(y_{1}\right) \| \tag{3.4}\\
\leq & L_{1} \| H_{2}\left(A_{2}, B_{2}\right)\left\{R _ { \lambda _ { 2 } , M _ { 2 } (, . ,) } ^ { H _ { 2 } (\ldots) } \left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)\right.\right. \\
& \left.\left.-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right\} \\
& -H_{2}\left(A_{2}, B_{2}\right)\left\{R _ { \lambda _ { 2 } , M _ { 2 } (. , .) } ^ { H _ { 2 } (\ldots) } \left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)\right.\right. \\
& \left.\left.-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right]\right\} \\
& -\lambda_{1}\left\{F _ { 1 } \left\{R _ { \lambda _ { 2 } , M _ { 2 } (\ldots ,) } ^ { H _ { 2 } (\ldots) } \left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)\right.\right.\right. \\
& \left.\left.-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right\} \\
& -F_{1}\left\{R _ { \lambda _ { 2 } , M _ { 2 } (\ldots ,) } ^ { H _ { 2 } (\ldots) } \left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)\right.\right. \\
& \left.\left.\left.-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right]\right\}\right\} \| \\
& +L_{1} \lambda_{1} \| G_{1}\left(\varpi_{1}, R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(\ldots .)}\right] H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right) \\
& \left.\left.-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right) \\
& -G_{1}\left(\varpi_{1}, R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)\right.\right. \\
& \left.\left.-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right]\right) \| .
\end{align*}
$$

Since $H_{2}\left(A_{2}, B_{2}\right)$ is s_{2}-Lipschitz continuous with respect to A_{2} and $t_{2^{-}}$ Lipschitz continuous with respect to B_{2}, F_{1} is $L_{F_{1}}$-Lipschitz continuous and \hbar_{1}-strongly monotone with respect to $H_{2}\left(A_{2}, B_{2}\right)$ and from Lemma 2.4, it follows that

$$
\begin{aligned}
& \| H_{2}\left(A_{2}, B_{2}\right)\left\{R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right\} \\
& -H_{2}\left(A_{2}, B_{2}\right)\left\{R_{\lambda_{2}, M_{2}(\ldots,)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right]\right\} \\
& -\lambda_{1}\left\{F_{1}\left\{R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(.,)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right\}\right. \\
& \left.-F_{1}\left\{R_{\lambda_{2}, M_{2}(\ldots)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right]\right\}\right\} \|^{q} \\
& \leq \| H_{2}\left(A_{2}, B_{2}\right)\left\{R _ { \lambda _ { 2 } , M _ { 2 } (\ldots) } ^ { H _ { 2 } (\ldots) } \left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)\right.\right. \\
& \left.\left.-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right\} \\
& -H_{2}\left(A_{2}, B_{2}\right)\left\{R _ { \lambda _ { 2 } , M _ { 2 } (. , .) } ^ { H _ { 2 } (. ,) } \left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)\right.\right. \\
& \left.\left.-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right]\right\} \|^{q} \\
& +c_{q} \lambda_{1}^{q} \| F_{1}\left\{R_{\lambda_{2}, M_{2}(, .)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right\} \\
& -F_{1}\left\{R_{\lambda_{2}, M_{2}(\ldots)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right]\right\} \|^{q} \\
& -q \lambda_{1}\left\langle F_{1}\left\{R_{\lambda_{2}, M_{2}(, .,)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right\}\right. \\
& -F_{1}\left\{R_{\lambda_{2}, M_{2}(\ldots .)}^{H_{2}(\ldots .)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right]\right\}, \\
& J_{q}\left(H _ { 2 } (A _ { 2 } , B _ { 2 }) \left\{R _ { \lambda _ { 2 } , M _ { 2 } (\ldots ,) } ^ { H _ { 2 } (\ldots) } \left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)\right.\right.\right. \\
& \left.\left.-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right\} \\
& -H_{2}\left(A_{2}, B_{2}\right)\left\{R _ { \lambda _ { 2 } , M _ { 2 } (. , .) } ^ { H _ { 2 } (. .) } \left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)\right.\right. \\
& \left.\left.\left.\left.-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right]\right\}\right)\right\rangle \\
& \leq\left(s_{2}+t_{2}\right)^{q} \| R_{\lambda_{2}, M_{2}(\ldots,)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right] \\
& -R_{\lambda_{2}, M_{2}(, .)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right] \|^{q} \\
& +c_{q} \lambda_{1}^{q} L_{F_{1}}^{q} \| R_{\lambda_{2}, M_{2}(.,)}^{H_{2}(.,)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right] \\
& -R_{\lambda_{2}, M_{2}(\ldots)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right] \|^{q} \\
& -q \lambda_{1} \hbar_{1} \| R_{\lambda_{2}, M_{2}(.,)}^{H_{2}(.,)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& -R_{\lambda_{2}, M_{2}(\ldots)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right] \|^{q} \\
\leq & \left(\left(s_{2}+t_{2}\right)^{q}+c_{q} \lambda_{1}^{q} L_{F_{1}}^{q}-q \lambda_{1} \hbar_{1}\right) \\
& \times \| R_{\lambda_{2}, M_{2}(\ldots)}^{H_{2}(. .)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right] \\
& -R_{\lambda_{2}, M_{2}(\ldots)}^{H_{2}(\ldots .)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right] \|^{q} .
\end{aligned}
$$

This implies

$$
\begin{align*}
& \| H_{2}\left(A_{2}, B_{2}\right)\left\{R_{\lambda_{2}, M_{2}(\ldots,)}^{H_{2}(., .)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right\} \tag{3.5}\\
& -H_{2}\left(A_{2}, B_{2}\right)\left\{R_{\lambda_{2}, M_{2}(\ldots .)}^{H_{2}(.,)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right]\right\} \\
& -\lambda_{1}\left\{F_{1}\left\{R_{\lambda_{2}, M_{2}(\ldots, .)}^{H_{2}(, .)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right\}\right. \\
& \left.-F_{1}\left\{R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(\ldots .)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right]\right\}\right\} \| \\
& \leq\left(\left(s_{2}+t_{2}\right)^{q}+c_{q} \lambda_{1}^{q} L_{F_{1}}^{q}-q \lambda_{1} \hbar_{1}\right)^{\frac{1}{q}} \\
& \quad \times \| R_{\lambda_{2}, M_{2}(\ldots .)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right] \\
& \quad-R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(\ldots .)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right] \|
\end{align*}
$$

Again using Theorem 2.14, we have

$$
\begin{align*}
& \| R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(.,)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right] \tag{3.6}\\
& \quad-R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right] \| \\
& \leq L_{2} \|\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right] \\
& \quad-\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right] \| \\
& \leq L_{2} \| H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right) \\
& \quad-\lambda_{2}\left(G_{2}\left(\varpi_{2}, x_{1}\right)-G_{2}\left(\varpi_{2}, y_{1}\right)\right)\left\|+L_{2} \lambda_{2}\right\| F_{2}\left(x_{1}\right)-F_{2}\left(y_{1}\right) \|
\end{align*}
$$

Since $H_{1}\left(A_{1}, B_{1}\right)$ is s_{1}-Lipschitz continuous with respect to A_{1} and t_{1} Lipschitz continuous with respect to B_{1}, G_{2} is $L_{G_{2_{2}}}$-Lipschitz continuous in the second argument, ξ_{2}-strongly monotone with respect to $H_{1}\left(A_{1}, B_{1}\right)$ in the second argument and using Lemma 2.4, it follows
that

$$
\begin{aligned}
& \| H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(G_{2}\left(\varpi_{2}, x_{1}\right)-G_{2}\left(\varpi_{2}, y_{1}\right)\right) \|^{q} \\
& \leq\left\|H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)\right\|^{q} \\
& \quad+c_{q} \lambda_{2}^{q}\left\|G_{2}\left(\varpi_{2}, x_{1}\right)-G_{2}\left(\varpi_{2}, y_{1}\right)\right\|^{q} \\
& \quad-q \lambda_{2}\left\langle G_{2}\left(\varpi_{2}, x_{1}\right)-G_{2}\left(\varpi_{2}, y_{1}\right)\right. \\
&\left.\quad J_{q}\left(H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)\right)\right\rangle \\
& \leq\left(\left(s_{1}+t_{1}\right)^{q}+c_{q} \lambda_{2}^{q} L_{G_{22}}^{q}-q \lambda_{2} \xi_{2}\right)\left\|x_{1}-y_{1}\right\|^{q}
\end{aligned}
$$

This implies

$$
\begin{align*}
& \left\|H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(G_{2}\left(\varpi_{2}, x_{1}\right)-G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right\| \tag{3.7}\\
& \quad \leq\left(\left(s_{1}+t_{1}\right)^{q}+c_{q} \lambda_{2}^{q} L_{G_{2_{2}}}^{q}-q \lambda_{2} \xi_{2}\right)^{\frac{1}{q}}\left\|x_{1}-y_{1}\right\|
\end{align*}
$$

Also by $L_{F_{2}}$-Lipschitz continuity of F_{2}, we have

$$
\begin{equation*}
\left\|F_{2}\left(x_{1}\right)-F_{2}\left(y_{1}\right)\right\| \leq L_{F_{2}}\left\|x_{1}-y_{1}\right\| \tag{3.8}
\end{equation*}
$$

From $(3.6),(3.7)$ and (3.8), it follows that

$$
\begin{align*}
& \| R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(., .)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right] \tag{3.9}\\
& \quad-R_{\lambda_{2}, M_{2}(\ldots,)}^{H_{2}(.,)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right] \| \\
& \quad \leq L_{2}\left[\left(\left(s_{1}+t_{1}\right)^{q}+c_{q} \lambda_{2}^{q} L_{G_{2_{2}}}^{q}-q \lambda_{2} \xi_{2}\right)^{\frac{1}{q}}+\lambda_{2} L_{F_{2}}\right]\left\|x_{1}-y_{1}\right\| .
\end{align*}
$$

From (3.5) and (3.9), it follows that

$$
\begin{align*}
& \| H_{2}\left(A_{2}, B_{2}\right)\left\{R_{\lambda_{2}, M_{2}(\ldots .)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right\} \tag{3.10}\\
& \quad-H_{2}\left(A_{2}, B_{2}\right)\left\{R_{\lambda_{2}, M_{2}(\ldots .)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right]\right\} \\
& \quad-\lambda_{1}\left\{F_{1}\left\{R_{\lambda_{2}, M_{2}(\ldots, .)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right\}\right. \\
& \left.\quad-F_{1}\left\{R_{\lambda_{2}, M_{2}(\ldots,)}^{H_{2}(\ldots .)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right]\right\}\right\} \| \\
& \leq\left(\left(s_{2}+t_{2}\right)^{q}+c_{q} \lambda_{1}^{q} L_{F_{1}}^{q}-q \lambda_{1} \hbar_{1}\right)^{\frac{1}{q}} \\
& \quad \times L_{2}\left[\left(\left(s_{1}+t_{1}\right)^{q}+c_{q} \lambda_{2}^{q} L_{G_{2}}^{q}-q \lambda_{2} \xi_{2}\right)^{\frac{1}{q}}+\lambda_{2} L_{F_{2}}\right]\left\|x_{1}-y_{1}\right\|
\end{align*}
$$

$\leq \Delta_{1} \Psi_{1}\left\|x_{1}-y_{1}\right\|$.
Again using $L_{G_{12}}$-Lipschitz continuity of G_{1} in the second argument and (3.9), we have

$$
\begin{align*}
& \| G_{1}\left(\varpi_{1}, R_{\lambda_{2}, M_{2}(\ldots)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right]\right) \tag{3.11}\\
& \quad-G_{1}\left(\varpi_{1}, R_{\lambda_{2}\left(, M_{2}(., .)\right.}^{H_{2}}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right]\right) \| \\
& \leq L_{G_{1_{2}}} \| R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(,)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right] \\
& \quad-R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(\ldots)}\left[H_{1}\left(A_{1}, B_{1}\right)\left(y_{1}\right)-\lambda_{2}\left(F_{2}\left(y_{1}\right)+G_{2}\left(\varpi_{2}, y_{1}\right)\right)\right] \| \\
& \leq L_{G_{1_{2}}} L_{2}\left[\left(\left(s_{1}+t_{1}\right)^{q}+c_{q} \lambda_{2}^{q} L_{G_{2_{2}}}^{q}-q \lambda_{2} \xi_{2}\right)^{\frac{1}{q}}+\lambda_{2} L_{F_{2}}\right]\left\|x_{1}-y_{1}\right\| .
\end{align*}
$$

Combining (3.4)-(3.11), it follows that

$$
\begin{aligned}
& \left\|K\left(x_{1}\right)-K\left(y_{1}\right)\right\| \\
& \quad \leq L_{1}\left(\Delta_{1}+\lambda_{1} L_{G_{1_{2}}}\right) \Psi_{1}\left\|x_{1}-y_{1}\right\| \\
& \quad \leq \Gamma_{1} \Psi_{1}\left\|x_{1}-y_{1}\right\| .
\end{aligned}
$$

where $\Gamma_{1}=L_{1}\left(\Delta_{1}+\lambda_{1} L_{G_{1_{2}}}\right)$. Since $0<\Gamma_{1}, \Psi_{1}<1$, from (3.2), it follows that K is a contractive mapping. Therefore, there exists $x_{1} \in X$ such that $K\left(x_{1}\right)=x_{1}$. Let

$$
x_{2}=R_{\lambda_{2}, M_{2}(\ldots,)}^{H_{2}(\ldots)}\left\{H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right\} .
$$

Therefore, from the definition of K, we have

$$
\begin{aligned}
& x_{1}=R_{\lambda_{1}, M_{1}(., .)}^{H_{1}(.,)}\left\{H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}\right)-\lambda_{1}\left(F_{1}\left(x_{2}\right)+G_{1}\left(\varpi_{1}, x_{2}\right)\right)\right\}, \\
& x_{2}=R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(\ldots)}\left\{H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right\} .
\end{aligned}
$$

Thus it follows from Lemma 3.1 that $\left(x_{1}, x_{2}\right)$ is a solution of (2.4).

4. Algorithm and Convergence Analysis

Now, we discuss the following two-step iterative algorithm which contains a number of iterative algorithms as special cases for finding the approximate solution of SGMVIP (2.4).
Iterative Algorithm 4.1. For arbitrarily chosen initial point $x_{1}^{0} \in X$, compute the sequences $\left\{x_{1}^{n}\right\},\left\{x_{2}^{n}\right\}$ such that

$$
\begin{aligned}
x_{1}^{n+1} & =\left(1-\beta^{n}-\delta^{n}\right) x_{1}^{n}+\beta^{n} R_{\lambda_{1}, M_{1}(. . .)}^{H_{1}(.,)}\left\{H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}^{n}\right)\right. \\
& \left.-\lambda_{1}\left(F_{1}\left(x_{2}^{n}\right)+G_{1}\left(\varpi_{1}, x_{2}^{n}\right)\right)\right\}+\delta^{n} z_{1}^{n},
\end{aligned}
$$

$$
\begin{aligned}
x_{2}^{n}= & \left(1-\sigma^{n}-\nu^{n}\right) x_{1}^{n}+\sigma^{n} R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(., .)}\left\{H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}^{n}\right)\right. \\
& \left.-\lambda_{2}\left(F_{2}\left(x_{1}^{n}\right)+G_{2}\left(\varpi_{2}, x_{1}^{n}\right)\right)\right\}+\nu^{n} z_{2}^{n},
\end{aligned}
$$

where $\left\{\beta^{n}\right\},\left\{\delta^{n}\right\},\left\{\sigma^{n}\right\},\left\{\nu^{n}\right\} \subset[0,1],\left\{z_{1}^{n}\right\},\left\{z_{2}^{n}\right\}$ are bounded sequences in $X, 0 \leq \beta^{n}+\delta^{n} \leq 1,0 \leq \sigma^{n}+\nu^{n} \leq 1$, for all $n \geq 0$.

If $F_{1}=F_{2}=0$, then the Iterative Algorithm 4.1 reduces to the following algorithm.

Iterative Algorithm 4.2. For arbitrarily chosen initial point $x_{1}^{0} \in X$, compute the sequences $\left\{x_{1}^{n}\right\},\left\{x_{2}^{n}\right\}$ such that

$$
\begin{aligned}
x_{1}^{n+1} & =\left(1-\beta^{n}-\delta^{n}\right) x_{1}^{n}+\beta^{n} R_{\lambda_{1}, M_{1}(., .)}^{H_{1}(. .)}\left\{H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}^{n}\right)\right. \\
& \left.-\lambda_{1} G_{1}\left(\varpi_{1}, x_{2}^{n}\right)\right\}+\delta^{n} z_{1}^{n}, \\
x_{2}^{n}= & \left(1-\sigma^{n}-\nu^{n}\right) x_{1}^{n}+\sigma^{n} R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(., .)}\left\{H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}^{n}\right)\right. \\
& \left.-\lambda_{2} G_{2}\left(\varpi_{2}, x_{1}^{n}\right)\right\}+\nu^{n} z_{2}^{n},
\end{aligned}
$$

where $\left\{\beta^{n}\right\},\left\{\delta^{n}\right\},\left\{\sigma^{n}\right\},\left\{\nu^{n}\right\} \subset[0,1],\left\{z_{1}^{n}\right\},\left\{z_{2}^{n}\right\}$ are bounded sequences in $X, 0 \leq \beta^{n}+\delta^{n} \leq 1,0 \leq \sigma^{n}+\nu^{n} \leq 1$, for all $n \geq 0$.

If $\delta^{n}=0, \nu^{n}=0$, then the Iterative Algorithm 4.1 reduces to the following algorithm.

Iterative Algorithm 4.3. For arbitrarily chosen initial point $x_{1}^{0} \in X$, compute the sequences $\left\{x_{1}^{n}\right\},\left\{x_{2}^{n}\right\}$ such that

$$
\begin{aligned}
x_{1}^{n+1} & =\left(1-\beta^{n}\right) x_{1}^{n}+\beta^{n} R_{\lambda_{1}, M_{1}(., .)}^{H_{1}(.,)}\left\{H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}^{n}\right)\right. \\
& \left.-\lambda_{1}\left(F_{1}\left(x_{2}^{n}\right)+G_{1}\left(\varpi_{1}, x_{2}^{n}\right)\right)\right\} \\
x_{2}^{n}= & \left(1-\sigma^{n}\right) x_{1}^{n}+\sigma^{n} R_{\lambda_{2}, M_{2}(\ldots .)}^{H_{2}(. .)}\left\{H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}^{n}\right)\right. \\
& \left.-\lambda_{2}\left(F_{2}\left(x_{1}^{n}\right)+G_{2}\left(\varpi_{2}, x_{1}^{n}\right)\right)\right\},
\end{aligned}
$$

where $\left\{\beta^{n}\right\},\left\{\sigma^{n}\right\} \subset[0,1], \quad \forall n \geq 0$.
Now, we give the convergence analysis of the sequences generated by the Iterative Algorithm 4.1.

Theorem 4.4. Let X be a real q-uniformly smooth Banach space. Let for each $i=1,2, j \in\{1,2\} \backslash i G_{i}: \Omega \times X \rightarrow X, F_{i}, f_{i}, g_{i}, A_{i}, B_{i}: X \rightarrow X$ and $H_{i}: X \times X \rightarrow X$ be single-valued mappings. Let $M_{i}: X \times X \rightarrow 2^{X}$ be $H_{i}(.,$.$) -mixed mappings with respect to mappings A_{i}$ and B_{i}. Let $H_{i}\left(A_{i}, B_{i}\right)$ be s_{i}-Lipschitz continuous with respect to A_{i} and t_{i}-Lipschitz
continuous with respect to B_{i}, F_{i} be $L_{F_{i}}$ Lipschitz continuous and \hbar_{i} strongly monotone with respect to $H_{j}\left(A_{j}, B_{j}\right)$. Further, suppose that G_{i} be $L_{G_{i_{2}}}$-Lipschitz continuous in the second argument and ξ_{i}-strongly monotone with respect to $H_{j}\left(A_{j}, B_{j}\right)$ in the second argument. Suppose the sequences $\left\{x_{1}^{n}\right\},\left\{x_{2}^{n}\right\}$ generated by above Iterative Algorithm 4.1 and satisfies

$$
\sum_{n=0}^{\infty} \beta^{n}=\infty, \quad \sum_{n=0}^{\infty} \delta^{n}<\infty, \quad \sigma^{n} \rightarrow 1
$$

and $0<\Psi_{1}, \Psi_{2}<1$
where

$$
\begin{aligned}
& \Psi_{1}=L_{2}\left[\left(\left(s_{1}+t_{1}\right)^{q}+c_{q} \lambda_{2}^{q} L_{G_{2_{2}}}^{q}-q \lambda_{2} \xi_{2}\right)^{\frac{1}{q}}+\lambda_{2} L_{F_{2}}\right] \\
& \Psi_{2}=L_{1}\left[\left(\left(s_{2}+t_{2}\right)^{q}+c_{q} \lambda_{1}^{q} L_{G_{1_{2}}}^{q}-q \lambda_{1} \xi_{1}\right)^{\frac{1}{q}}+\lambda_{1} L_{F_{1}}\right]
\end{aligned}
$$

Then the sequences $\left\{x_{1}^{n}\right\},\left\{x_{2}^{n}\right\}$ generated by above Iterative Algorithm 4.1 converge strongly to x_{1}, x_{2} where x_{1}, x_{2} are solutions of SGMVIP (2.4).

Proof. Since $\left(x_{1}, x_{2}\right) \in X \times X$ is a solution of SGMVIP (2.4), from Lemma 3.1, we have

$$
\begin{aligned}
& x_{1}=R_{\lambda_{1}, M_{1}(., .)}^{H_{1}(., .)}\left\{H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}\right)-\lambda_{1}\left(F_{1}\left(x_{2}\right)+G_{1}\left(\varpi_{1}, x_{2}\right)\right)\right\} \\
& x_{2}=R_{\lambda_{2}, M_{2}(., .)}^{H_{2}(, .)}\left\{H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right\}
\end{aligned}
$$

Let $P=\sup _{n>0}\left\{\sup _{n>0}\left\|z_{1}^{n}-x_{1}\right\|, \sup _{n>0}\left\|z_{2}^{n}-x_{2}\right\|,\left\|x_{1}-x_{2}\right\|\right\}$.
Using Iterative Algorithm 4.1, Lemma 3.1 and Theorem 2.14, we have

$$
\begin{align*}
\| x_{1}^{n+1} & -x_{1} \| \tag{4.1}\\
= & \|\left\{\left(1-\beta^{n}-\delta^{n}\right) x_{1}^{n}+\beta^{n} R_{\lambda_{1}, M_{1}(\ldots .)}^{H_{1}(\ldots)}\left\{H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}^{n}\right)\right.\right. \\
& \left.\left.-\lambda_{1}\left(F_{1}\left(x_{2}^{n}\right)+G_{1}\left(\varpi_{1}, x_{2}^{n}\right)\right)\right\}+\delta^{n} z_{1}^{n}\right\} \\
& -\left\{\left(1-\beta^{n}-\delta^{n}\right) x_{1}+\beta^{n} R_{\lambda_{1}, M_{1}(., .)}^{H_{1}(. .)}\left\{H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}\right)\right.\right. \\
& \left.\left.-\lambda_{1}\left(F_{1}\left(x_{2}\right)+G_{1}\left(\varpi_{1}, x_{2}\right)\right)\right\}+\delta^{n} x_{1}\right\} \| \\
\leq & \|\left(1-\beta^{n}-\delta^{n}\right)\left(x_{1}^{n}-x_{1}\right)+\beta^{n}\left\{R _ { \lambda _ { 1 } , M _ { 1 } (\ldots .) } ^ { H _ { 1 } (\ldots .) } \left\{H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}^{n}\right)\right.\right. \\
& \left.-\lambda_{1}\left(F_{1}\left(x_{2}^{n}\right)+G_{1}\left(\varpi_{1}, x_{2}^{n}\right)\right)\right\}-R_{\lambda_{1}, M_{1}(., .)}^{H_{1}(. .)}\left\{H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}\right)\right. \\
& \left.\left.-\lambda_{1}\left(F_{1}\left(x_{2}\right)+G_{1}\left(\varpi_{1}, x_{2}\right)\right)\right\}\right\}+\delta^{n}\left(z_{1}^{n}-x_{1}\right) \|
\end{align*}
$$

$$
\begin{aligned}
\leq & \left(1-\beta^{n}-\delta^{n}\right)\left\|x_{1}^{n}-x_{1}\right\|+\beta^{n} L_{1} \| H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}^{n}\right)-H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}\right) \\
& -\lambda_{1}\left(G_{1}\left(\varpi_{1}, x_{2}^{n}\right)-G_{1}\left(\varpi_{1}, x_{2}\right)\right)\left\|+\beta^{n} L_{1} \lambda_{1}\right\| F_{1}\left(x_{2}^{n}\right)-F_{1}\left(x_{2}\right) \| \\
& +\delta^{n}\left\|z_{1}^{n}-x_{1}\right\| .
\end{aligned}
$$

Since G_{1} is $L_{G_{1_{2}}}$-Lipschitz continuous in the second argument and ξ_{1} strongly monotone in the second argument with respect to $H_{2}\left(A_{2}, B_{2}\right)$, $H_{2}\left(A_{2}, B_{2}\right)$ is s_{2}-Lipschitz continuous with respect to A_{2} and t_{2}-Lipschitz continuous with respect to B_{2}, using Lemma 2.4, it follows that

$$
\begin{align*}
\| & H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}^{n}\right)-H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}\right)-\lambda_{1}\left(G_{1}\left(\varpi_{1}, x_{2}^{n}\right)-G_{1}\left(\varpi_{1}, x_{2}\right)\right) \|^{q} \tag{4.2}\\
\leq & \left\|H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}^{n}\right)-H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}\right)\right\|^{q} \\
\quad & +c_{q} \lambda_{1}^{q}\left\|G_{1}\left(\varpi_{1}, x_{2}^{n}\right)-G_{1}\left(\varpi_{1}, x_{2}\right)\right\|^{q}-q \lambda_{1}\left\langle G_{1}\left(\varpi_{1}, x_{2}^{n}\right)-G_{1}\left(\varpi_{1}, x_{2}\right),\right. \\
& \left.J_{q}\left(H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}^{n}\right)-H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}\right)\right)\right\rangle \\
\leq & \left(\left(s_{2}+t_{2}\right)^{q}+c_{q} \lambda_{1}^{q} L_{G_{12}}^{q}-q \lambda_{1} \xi_{1}\right)\left\|x_{2}^{n}-x_{2}\right\|^{q},
\end{align*}
$$

then

$$
\begin{aligned}
& \left\|H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}^{n}\right)-H_{2}\left(A_{2}, B_{2}\right)\left(x_{2}\right)-\lambda_{1}\left(G_{1}\left(\varpi_{1}, x_{2}^{n}\right)-G_{1}\left(\varpi_{1}, x_{2}\right)\right)\right\| \\
& \quad \leq\left(\left(s_{2}+t_{2}\right)^{q}+c_{q} \lambda_{1}^{q} L_{G_{1_{2}}}^{q}-q \lambda_{1} \xi_{1}\right)^{\frac{1}{q}}\left\|x_{2}^{n}-x_{2}\right\| .
\end{aligned}
$$

Also, since F_{1} is $L_{F_{1}}$-Lipschitz continuous, we have

$$
\begin{equation*}
\left\|F_{1}\left(x_{2}^{n}\right)-F_{1}\left(x_{2}\right)\right\| \leq L_{F_{1}}\left\|x_{2}^{n}-x_{2}\right\| . \tag{4.3}
\end{equation*}
$$

Combining (4.1)-(4.3), we have

$$
\begin{align*}
&\left\|x_{1}^{n+1}-x_{1}\right\| \tag{4.4}\\
& \quad \leq\left(1-\beta^{n}-\delta^{n}\right)\left\|x_{1}^{n}-x_{1}\right\| \\
& \quad+\beta^{n} L_{1}\left\{\left(\left(s_{2}+t_{2}\right)^{q}+c_{q} \lambda_{1}^{q} L_{G_{1_{2}}}^{q}-q \lambda_{1} \xi_{1}\right)^{\frac{1}{q}}+\lambda_{1} L_{F_{1}}\right\}\left\|x_{2}^{n}-x_{2}\right\| \\
& \quad+\delta^{n} P,
\end{align*}
$$

then

$$
\left\|x_{1}^{n+1}-x_{1}\right\| \leq\left(1-\beta^{n}\right)\left\|x_{1}^{n}-x_{1}\right\|+\beta^{n} \Psi_{2}\left\|x_{2}^{n}-x_{2}\right\|+\delta^{n} P
$$

where

$$
\Psi_{2}=L_{1}\left\{\left(\left(s_{2}+t_{2}\right)^{q}+c_{q} \lambda_{1}^{q} L_{G_{1_{2}}}^{q}-q \lambda_{1} \xi_{1}\right)^{\frac{1}{q}}+\lambda_{1} L_{F_{1}}\right\} .
$$

Next, consider

$$
\begin{align*}
\| x_{2}^{n} & -x_{2} \| \tag{4.5}\\
= & \|\left\{\left(1-\sigma^{n}-\nu^{n}\right) x_{1}^{n}+\sigma^{n} R_{\lambda_{2}, M_{2}(\ldots,)}^{H_{2}(\ldots .)}\left\{H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}^{n}\right)\right.\right. \\
& \left.\left.-\lambda_{2}\left(F_{2}\left(x_{1}^{n}\right)+G_{2}\left(\varpi_{2}, x_{1}^{n}\right)\right)\right\}+\nu^{n} z_{2}^{n}\right\} \\
& -\left\{\left(1-\sigma^{n}-\nu^{n}\right) x_{2}+\sigma^{n} R_{\lambda_{2}, M_{2}(, .,)}^{H_{2}(.,)}\left\{H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)\right.\right. \\
& \left.\left.-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right\}+\nu^{n} x_{2}\right\} \| \\
\leq & \|\left(1-\sigma^{n}-\nu^{n}\right)\left(x_{1}^{n}-x_{2}\right) \\
& +\sigma^{n}\left\{R_{\lambda_{2}, M_{2}(\ldots,)}^{H_{2}(.,)}\left\{H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}^{n}\right)-\lambda_{2}\left(F_{2}\left(x_{1}^{n}\right)+G_{2}\left(\varpi_{2}, x_{1}^{n}\right)\right)\right\}\right. \\
& \left.-R_{\lambda_{2}, M_{2}(\ldots)}^{H_{2}(\ldots)}\left\{H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(F_{2}\left(x_{1}\right)+G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right\}\right\} \\
& +\nu^{n}\left(z_{2}^{n}-x_{2}\right) \| \\
\leq & \left(1-\sigma^{n}-\nu^{n}\right)\left\|x_{1}^{n}-x_{2}\right\|+\sigma^{n} L_{2} \| H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}^{n}\right)-H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right) \\
& -\lambda_{2}\left(G_{2}\left(\varpi_{2}, x_{1}^{n}\right)-G_{2}\left(\varpi_{2}, x_{1}\right)\right) \| \\
& +\sigma^{n} L_{2} \lambda_{2}\left\|F_{2}\left(x_{1}^{n}\right)-F_{2}\left(x_{1}\right)\right\|+\nu^{n}\left\|z_{2}^{n}-x_{2}\right\| .
\end{align*}
$$

Since G_{2} is $L_{G_{2_{2}}}$-Lipschitz continuous in the second argument and $\xi_{2^{-}}$ strongly monotone in the second argument with respect to $H_{1}\left(A_{1}, B_{1}\right)$, $H_{1}\left(A_{1}, B_{1}\right)$ is s_{1}-Lipschitz continuous with respect to A_{1} and t_{1}-Lipschitz continuous with respect to B_{1}, using Lemma 2.4, and following the same procedure as in (4.2), we have

$$
\begin{align*}
& \left\|H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}^{n}\right)-H_{1}\left(A_{1}, B_{1}\right)\left(x_{1}\right)-\lambda_{2}\left(G_{2}\left(\varpi_{2}, x_{1}^{n}\right)-G_{2}\left(\varpi_{2}, x_{1}\right)\right)\right\| \tag{4.6}\\
& \quad \leq\left(\left(s_{1}+t_{1}\right)^{q}+c_{q} \lambda_{2}^{q} L_{G_{2}}^{q}-q \lambda_{2} \xi_{2}\right)^{\frac{1}{q}}\left\|x_{1}^{n}-x_{1}\right\| .
\end{align*}
$$

Also, since F_{2} is $L_{F_{2}}$-Lipschitz continuous, we have

$$
\begin{equation*}
\left\|F_{2}\left(x_{1}^{n}\right)-F_{2}\left(x_{1}\right)\right\| \leq L_{F_{2}}\left\|x_{1}^{n}-x_{1}\right\| . \tag{4.7}
\end{equation*}
$$

Combining (4.5)-(4.7), we have

$$
\begin{aligned}
& \left\|x_{2}^{n}-x_{2}\right\| \\
& \quad \leq\left(1-\sigma^{n}-\nu^{n}\right)\left\|x_{1}^{n}-x_{2}\right\|
\end{aligned}
$$

$$
+\sigma^{n} L_{2}\left\{\left(\left(s_{1}+t_{1}\right)^{q}+c_{q} \lambda_{2}^{q} L_{G_{2_{2}}}^{q}-q \lambda_{2} \xi_{2}\right)^{\frac{1}{q}}+\lambda_{2} L_{F_{2}}\right\}\left\|x_{1}^{n}-x_{1}\right\|+\nu^{n} P
$$

which implies

$$
\begin{equation*}
\left\|x_{2}^{n}-x_{2}\right\| \leq\left(1-\sigma^{n}-\nu^{n}\right)\left\|x_{1}^{n}-x_{2}\right\|+\sigma^{n} \Psi_{1}\left\|x_{1}^{n}-x_{1}\right\|+\nu^{n} P, \tag{4.8}
\end{equation*}
$$

where

$$
\Psi_{1}=L_{2}\left\{\left(\left(s_{1}+t_{1}\right)^{q}+c_{q} \lambda_{2}^{q} L_{G_{2_{2}}}^{q}-q \lambda_{2} \xi_{2}\right)^{\frac{1}{q}}+\lambda_{2} L_{F_{2}}\right\} .
$$

This implies

$$
\begin{align*}
\left\|x_{2}^{n}-x_{2}\right\| \leq & \left(1-\sigma^{n}-\nu^{n}\right)\left\|x_{1}^{n}-x_{1}\right\|+\sigma^{n} \Psi_{1}\left\|x_{1}^{n}-x_{1}\right\| \tag{4.9}\\
& +\left(1-\sigma^{n}-\nu^{n}\right)\left\|x_{1}-x_{2}\right\|+\nu^{n} P \\
\leq & \left(1-\sigma^{n}-\nu^{n}\right)\left\|x_{1}^{n}-x_{1}\right\|+\sigma^{n} \Psi_{1}\left\|x_{1}^{n}-x_{1}\right\| \\
& +\left(1-\sigma^{n}-\nu^{n}\right) P+\nu^{n} P \\
\leq & \left(1-\nu^{n}\right)\left\|x_{1}^{n}-x_{1}\right\|+\left(1-\sigma^{n}\right) P \\
\leq & \left\|x_{1}^{n}-x_{1}\right\|+\left(1-\sigma^{n}\right) P .
\end{align*}
$$

Using (4.9) in (4.4), we have

$$
\begin{align*}
\left\|x_{1}^{n+1}-x_{1}\right\| & \leq\left(1-\beta^{n}\right)\left\|x_{1}^{n}-x_{1}\right\|+\beta^{n} \Psi_{2}\left(\left\|x_{1}^{n}-x_{1}\right\|+\left(1-\sigma^{n}\right) P\right)+\delta^{n} P \tag{4.10}\\
& \leq\left(1-\beta^{n}\left(1-\Psi_{2}\right)\right)\left\|x_{1}^{n}-x_{1}\right\|+\beta^{n}\left(1-\sigma^{n}\right) P+\delta^{n} P .
\end{align*}
$$

Let

$$
\begin{array}{rlrl}
a^{n} & =\left\|x_{1}^{n}-x_{1}\right\|, & d^{n}=\beta^{n}\left(1-\Psi_{2}\right), \\
b^{n} & =\beta^{n}\left(1-\sigma^{n}\right) P, & & c^{n}=\delta^{n} P .
\end{array}
$$

Therefore, by Lemma 2.5, we have $a^{n}=\left\|x_{1}^{n}-x_{1}\right\| \rightarrow 0$ as $n \rightarrow \infty$. This implies from (4.9) that $\left\|x_{2}^{n}-x_{2}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

This completes the proof.

Acknowledgment. The author would like to express her sincere thanks to the referees for their valuable comments and anonymous reading of the original manuscript.

References

1. S.M. Basem, Iterative approximation of a solution of a multi-valued variational-like inclusion involving δ-strongly maximal $P-\eta-$ monotone mapping in real Hilbert space, IJMSEA, 10(II)(2016), pp. 197-206.
2. M.I. Bhat, S. Shafi and M.A. Malik, H-mixed accretive mapping and proximal point method for solving a system of generalized set-valued variational inclusions, Numer. Funct. Anal. Optim., 42(8)(2021), pp. 955-972.
3. G. Cai and S . Bu , Convergence analysis for variational inequality problems and fixed point problems in 2-uniformly smooth and uniformly convex Banach spaces, Math. Comput. Model., 55(2012), pp. 538-546.
4. L.C. Ceng and M. Shang, Strong convergence theorems for variational inequalities and common fixed-point problems using relaxed mann implicit iteration methods, Math., 7(424)(2019), pp. 1-16.
5. L.C. Ceng, M. Postolache and Y. Yao, Iterative algorithms for a system of variational inclusions in Banach spaces, Symmetry, 11(811)(2019), pp. 1-12.
6. X. Gong and W. Wang, A new convergence theorem in a reflexive Banach space, J. Nonlinear Sci. Appl., 9(2016), pp. 1891-1901.
7. S. Husain, S. Gupta and V.N. Mishra, Graph convergence for the $H(.,$.$) -mixed mapping with an application for solving the system$ of generalized variational inclusions, Fixed Point Theory Appl., 304(2013), pp. 1-21.
8. J.U. Jeong, Convergence of parallel iterative algorithms for a system of nonlinear variational inequalities in Banach spaces, J. Appl. Math. Inform., 34(2016), pp. 61-73.
9. K.R. Kazmi, N. Ahmad and M. Shahzad, Convergence and stability of an iterative algorithm for a system of generalized implicit variational-like inclusions in Banach spaces, Appl. Math. Comput., 218(2012), pp. 9208-9219.
10. K.R. Kazmi, M.I. Bhat and N. Ahmad, An iterative algorithm based on M-proximal mappings for a system of generalized implicit variational inclusions in Banach spaces, J. Comput. Appl. Math., 233(2009), pp. 361-371.
11. K.R. Kazmi, F.A. Khan and M. Shahzad, A system of generalized variational inclusions involving generalized $H(.,$.$) -accretive map-$ ping in real q-uniformly smooth Banach spaces, Appl. Math. Comput., 217(2)(2011), pp. 9679-9688.
12. J.K. Kim, M.I. Bhat and S. Shafi, Convergence and stability of a perturbed mann iterative algorithm with errors for a system of generalized variational-like inclusion problems in q-uniformly smooth Banach spaces, Commun. Math. Appl., 12(1)(2021), pp. 29-50.
13. J.K. Kim, M.I. Bhat and S. Shafi, Convergence and stability of iterative algorithm of system of generalized implicit variational-like inclusion problems using $(\theta, \varphi, \gamma)$-relaxed cocoercivity, Nonlinear

Funct. Anal. Appl., 26(4)(2021), pp. 749-780.
14. X. Li and N.J. Huang, Graph convergence for the $H(.,$.$) -accretive$ operator in Banach spaces with an application, Appl. Math. Comput., 217(2011), pp. 9053-9061.
15. L.S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., 194(1995), pp. 114-127.
16. Y. Liu and H. Kong, Strong convergence theorems for relatively nonexpansive mappings and Lipschitz-continuous monotone mappings in Banach spaces, Indian J. Pure Appl. Math., 50(4)(2019), pp. 1049-1065.
17. P. Mishra and R.R. Agrawal, Strong convergence theorem for common solution of variational inequality and fixed point of λ-strictly pseudo-contractive mapping in uniformly smooth Banach space, Global J. Math. Sci.: Theory and Practical., 9(3)(2017), pp. 261276.
18. T.M.M. Sow, C. Diop and M.M. Gueye, General iterative algorithm for solving system of variational inequality problems in real Banach spaces, Results in Nonlinear Analysis, 3(1)(2020), pp. 1-11.
19. H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16(12)(1991), pp. 1127-1138.
20. H.K. Xu and L. Muglia, On solving variational inequalities defined on fixed point sets of multivalued mappings in Banach spaces, J. Fixed Point Theory Appl., 22(79)(2020).
21. Y. Xu, J. Guan, Y. Tang and Y. Su, Multivariate systems of nonexpansive operator equations and iterative algorithms for solving them in uniformly convex and uniformly smooth Banach spaces with applications, Journal of Inequalities and Applications, 37(2018).
22. Y.Z. Zou and N.J. Huang, $H(.,$.$) -accretive operator with an appli-$ cation for solving variational inclusions in Banach spaces, Appl. Math. Comput., 204(2)(2008), pp. 809-816.
23. Y.Z. Zou and N.J. Huang, A new system of variational inclusions involving $H(.,$.$) -accretive operator in Banach spaces, Appl. Math.$ Comput., 212(2009), pp. 135-144.

Department of Mathematics, S.P. College, Cluster University, Srinagar190001, INDIA.

Email address: sumeera.shafi@gmail.com

[^0]: 2010 Mathematics Subject Classification. 47H09, 47J20, 49J40.
 Key words and phrases. System of generalized mixed variational inclusion problem, $H(.,$.$) -mixed mappings, Proximal-point mapping.$

 Received: 31 January 2022, Accepted: 22 October 2022.

