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Existence and Asymptotic of Solutions for a p-Laplace
Schrödinger Equation with Critical Frequency

Juan Mayorga-Zambrano1∗, Juan Burbano-Gallegos2,
Bryan Pérez-Pilco3 and Josué Castillo-Jaramillo4

Abstract. We study the Schrödinger equation (Qε): −ε2(p−1)∆pv+
V (x) |v|p−2v − |v|q−1v = 0, x ∈ RN , with v(x) → 0 as |x| → +∞,
for the infinite case, as given by Byeon and Wang for a situation
of critical frequency, {x ∈ RN / V (x) = inf V = 0} ̸= ∅. In the
semiclassical limit, ε → 0, the corresponding limit problem is (P):
∆pw + |w|q−1w = 0, x ∈ Ω, with w(x) = 0, x ∈ ∂Ω, where Ω ⊆ RN

is a smooth bounded strictly star-shaped region related to the po-
tential V . We prove that for (Qε) there exists a non-trivial solution
with any prescribed Lq+1-mass. Applying a Ljusternik-Schnirelman
scheme, shows that (Qε) and (P) have infinitely many pairs of so-
lutions. Fixed a topological level k ∈ N, we show that a solution
of (Qε), vk,ε, sub converges, in W1,p(RN ) and up to scaling, to a
corresponding solution of (P). We also prove that the energy of
each solution, vk,ε converges to the corresponding energy of the
limit problem (P) so that the critical values of the functionals asso-
ciated, respectively, to (Qε) and (P) are topologically equivalent.

1. Introduction

The time-dependent nonlinear Schrödinger equation

(1.1) iℏΨt(x, t) +
ℏ2

2
∆Ψ(x, t)− V0(x)Ψ(x, t) + |Ψ(x, t)|q−1Ψ(x, t) = 0,

helps to study phenomena like the evolution of Bose-Einstein conden-
sates [12] and the propagation of light through nonlinear optical materi-
als [7]. Here ℏ is the reduced Planck constant. Whenever ℏ is treated as a
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small positive parameter which could tend to zero, a semi-classical state
of (1.1) is a standing wave having the form Ψ(x, t) = v(x) exp(−iEt/ℏ),
where v verifies
(1.2) ε2∆v(x)− V (x) v(x) + |v(x)|q−1v(x) = 0,

with ε2 = ℏ2/2 and V (x) = V0(x)− E.
In this paper, we consider the Dirichlet problem

(1.3)

−ε2(p−1)∆pv + V (x)|v|p−2v − |v|q−1v = 0, x ∈ RN ,

lim
|x|→+∞

v(x) = 0,

where ε > 0 and 1 < p < q + 1 < p∗ with p∗ = pN/(N − p) if N > p
and p∗ = +∞ if N ≤ p. Therefore, we generalize (1.2) by replacing
the Laplace operator ∆ = ∆2 with the p-Laplace operator, ∆pw =
div(|∇w|p−2∇w), which helps to model nonlinear diffusion phenomena.

Let’s assume that Z =
{
x ∈ RN / V (x) = inf(V )

}
̸= ∅, and consider

the following conditions:
(V1) V ∈ C(R) is non-negative;
(V2) V (x) → +∞, as |x| → +∞;
(V3) inf(V ) = 0;
(V4) Z = {0} and V (x) = exp(−1/a(x)) if |x| ≤ 1, where, for a

bounded strictly star-shaped domain Ω ⊆ RN , a is an asymp-
totically (Ω, b)-quasihomogeneous function (see Section 2.1 for
the precise statement).

Let’s consider a positive function g ∈ C(]0,+∞[), whose form will be
specified later, see (2.3). Then, by using the scaling

v(x) = [εg(ε)]2(p−1)/(q+1−p) u(g(ε)x),

Vε(x) =
1

[εg(ε)]2(p−1)
V

(
x

g(ε)

)
,(1.4)

x ∈ RN , it’s clear that (1.3) is equivalent to
(1.5)−∆pu(x) + Vε(x)|u(x)|p−2u(x)− |u(x)|q−1u(x) = 0, x ∈ RN ,

lim
|x|→+∞

u(x) = 0.

Conditions (V1)-(V3) are assumed throughout the document. The co-
ercivity condition (V2) is typical to get compactness of the embedding
of Ep

ε, the Sobolev-like space where the solutions of (1.5) are to be found
(see the beginning of Section 2.2), into a range of Lebesgue spaces. It is
well known that, to obtain the same compactness, (V2) can be replaced
by other weaker coercivity properties, see e.g. conditions (V8) and (V9)
in [3]. With the help of the mentioned compact embedding, we prove
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that the functions associated with (1.5) verify the Palais-Smale condi-
tion. Then, by a direct method, we first show that for (1.5), there exists a
non-trivial solution with any prescribed Lq+1-mass; see Theorem 2.2 and
Remark 2.3 below. Second, applying a Ljusternik-Schnirelman scheme,
shows that (1.5) has infinitely many pairs of solutions, see Theorem 2.4
below.

In the context of Quantum Mechanics, p = 2, condition (V3) is usually
referred to as a situation of critical frequency because the solutions of
(1.5) present concentration phenomena quite different to those of their
counterparts in the non-critical setting, inf V > 0, see e.g. [1], [6] and
[9] and the references therein.

Grossly speaking, condition (V4) says that V (x) exponentially de-
creases to zero as x gets closer to x0 = 0 and corresponds to the infinite
case, as considered in [6] and [1]. For this situation, in Sections 4 and 5,
we prove the asymptotic properties of the solutions as ε→ 0. We show,
see Theorem 2.8, that the energy of each solution, uk,ε, k ∈ N, obtained
by the Ljusternik-Schnirelman scheme converges to the corresponding
energy of the functions associated with the limit problem of (1.5),

(1.6)
{
∆pw(x) + |w(x)|q−1w(x) = 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω,

where Ω ⊆ RN is a smooth, bounded, strictly star-shaped domain related
to the potential V via condition (V4) (see Section 2.1). Since the index
k represents the topological characteristic of the level set, as captured
by Krasnoselskii’s genus, the energy asymptotics says that the critical
values of the functionals associated, respectively, to (1.5) and (1.6) are
topologically equivalent. Finally, we prove asymptotic profiles for the
mentioned solutions, see Theorem 2.9. In fact, up to scaling, each of
these solutions converges in W1,p(RN ) to a function whose restriction to
Ω is a solution of (1.6) and shares the energy level.

This paper is organized in the following way. In Section 2.1, we in-
troduce, in a precise way, the setting of the infinite case for a critical
frequency situation. Section 2.2, presents the Sobolev-like space Ep

ε,
where we find solutions of (1.5) and prove that it is reflexive. The state-
ments of our existence results are also given in Section 2.2. Section 2.3,
present the abstract theorems which are key tools in our work. The
asymptotic properties are stated in Section 2.4. In Section 2.5 some es-
timates important, which to deal with the infinite case are introduced,
together with some other valuable inequalities. In Section 3.1, we deal
with the regularity of the functionals related to the problem (1.5). In
Section 3.2, we prove that the functions associated with (1.5) verify the
Palais-Smale condition, fundamental property to apply the mentioned
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abstract tools. The energy asymptotics are proved in Section 4. Finally,
the asymptotic profiles are proved in Section 5.

2. Preliminaries, Infinite Case and Main Results

2.1. Infinite Case Setting. Let’s consider Ω ⊆ RN , a smooth bounded
domain which is stricly star-shaped, i.e., there exists a ball B ⊆ Ω such
that for every (x, y) ∈ B × Ω, the segment [x, y] is contained in Ω. For
every q ≥ 1, Ω is a q-Poincaré domain, i.e., for some Mq > 0 and every
u ∈ C1(Ω), ∥u− uΩ∥Lq(Ω) ≤ Mq

(∫
Ω |∇u(x)|q dx

)1/q, where uΩ denotes
the average of u over Ω, [15].

Let’s assume that the domain Ω is generated by a positive function
r ∈ C(RN \ {0}) that verifies

x/t ∈ ∂Ω,
x/t ∈ Ω,
x/t ∈ Ωc,

if t = r(x),
if t > r(x),
if t < r(x).

(2.1)

Therefore, for every x ∈ RN \ {0} there exists a unique s(x) ∈ ∂Ω such
that x = r(x) s(x). It also holds

r(x) = 1,
r(x) > 1,
r(x) < 1,

if x ∈ ∂Ω,
if x ∈ Ω̄c,
if x ∈ Ω,

(2.2)

and r (x/t) = r(x)/t, for every x ∈ RN \ {0} and every t > 0.
Let’s pick b : RN → R, a continuous Ω-quasi homogeneous function:

there exists a function β : [0,+∞[→ R such that
b1) b(x) = β(r(x)), for every x ∈ RN ;
b2) β is non-negative and strictly-increasing;
b3) given L = lim

r→0
β(cr)/β(r), it holds L < 1 if c < 1 and L > 1 if

c > 1.
The function a ∈ C(RN ) that appears in (V4) is asymptotically (Ω, b)-
quasihomogeneous function, i.e., a is positive and verifies

a(x)

b(x)
→ 1, as |x| → 0.

2.2. Existence of solutions in a Sobolev-like space. As usual,
W1,p(RN ) denotes the Sobolev space of all the functions that, together
with their weak derivatives, belong to Lp(RN ); it’s equipped with the
norm given by

∥u∥W1,p(RN ) =
[
∥∇u∥p

Lp(RN )
+ ∥u∥p

Lp(RN )

]1/p
.
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We denote by Ep
ε the completion of C∞

0 (RN ) in the norm given by

∥u∥ε =
(∫

RN

[|∇u(x)|p + Vε(x)|u(x)|p] dx
)1/p

,

where Vε is given in (1.4) and

(2.3) g(ε) =
1

β−1

(
−1

ln(ε2)

) .
It’s quite clear that, for r ∈ [p, p∗], the embeddings Ep

ε ⊆ W1,p(RN ) ⊆
Lr(RN ) are continuous and, therefore, there exists cr > 0 such that, for
every u ∈ Ep

ε,
∥u∥Lr(RN ) ≤ cr ∥u∥ε ,(2.4)

∥u∥W1,p(RN ) ≤ (1 + cpp)
1/p ∥u∥ε .(2.5)

Actually, by applying Fréchet-Kolmogorov’s theorem (see e.g. [5, Cor.4.27]),
it’s obtained, for every r ∈ [p, p∗[, that
(2.6) Ep

ε ⊆ Lr(RN ), compactly.
It is worth to mention that in the proof of (2.6), the coercivity property
(V2) compensates the non-boundedness of the domain.

Lemma 2.1. Let ε > 0. The space Ep
ε is reflexive.

Proof. Let’s consider the Banach space Y = Lp
ε(RN )×

[
Lp(RN )

]N , where

∥(u,w)∥Y =
(
∥u∥p

Lp
ε(RN )

+ ∥w∥[Lp(RN )]N

)1/p
,

∥u∥Lp
ε(RN ) =

(∫
RN

|u|pdµ
)1/p

, dµ = Vε(x)dx,

∥w∥[Lp(RN )]N = ∥(w1, . . . , wN )∥[Lp(RN )]N =

(∫
RN

|w|pdx
)1/p

.

The reflexivity of the spaces Lp(RN ) and Lp
ε(RN ) (see [4, Th. 4.7.15 and

Cor. 4.7.16]) implies that of Y . The operator T : Ep
ε → Y , given by

T (u) = (u,∇u),
is an isometry. Since Ep

ε is a Banach space, it follows that T (Ep
ε) is

a closed subspace of Y . Therefore, by [5, Prop. 3.20], T (Ep
ε) is also

reflexive, so that Ep
ε is reflexive. □

Let’s consider the functional Iϵ : Ep
ε → R, given by

Iϵ(u) =
1

p
∥u∥pε ,
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and, given α > 0, the functional Jϵ,α, which is the restriction of Iϵ
to the manifold Mϵ,α =

{
u ∈ Ep

ε / ∥u∥Lq+1(RN ) = α
}

. We shall denote
Mϵ = Mϵ,1 and Jϵ = Jϵ,1.

Now we can state our first main result.

Theorem 2.2. Let α > 0. There exists w∗ ∈ Mϵ,α such that
Jϵ,α(w∗) = inf

w∈Mϵ,α

Jϵ,α(w).

Moreover, the function given by

(2.7) u∗(x) =

[
αq+1

pc

]1/(p−q−1)

w∗(x), x ∈ RN ,

with c = Jε,α(w∗), is a weak solution of (1.5).

Remark 2.3. Let α > 0 and u, v and w functions related to each other
by

v(x) = [εg(ε)]2(p−1)/(q+1−p) u(g(ε)x), u(x) =

[
αq+1

pc

]1/(p−q−1)

w(x),

x ∈ RN . If w ∈ Mϵ,α, then u ∈ Mϵ,α1 and v ∈ Mϵ,α2 , where

α1 =

[
αp

pc

]1/(p−q−1)

, α2 =
[
ε2(p−1)gν(ε)

pc

αp

]1/(p−q−1)
,

with ν = 2(p − 1) − N [1 − p/(q + 1)]. Therefore, Theorem 2.2 implies
that, by choosing an appropriate value of α > 0, we can find a non-trivial
solution of (1.5) (or (1.3)) with any prescribed Lq+1-mass.

Our second main result provides infinitely many pairs of solutions for
(1.5), by means of a Ljusternik-Schnirelman scheme. For this we need
the concept of genus. Let E be a Banach space. We write

ΣE =
{
A ⊆ E / A = A, A = −A, 0 /∈ A

}
.

By γ(A), we denote the genus of A ∈ ΣE , i.e., the least natural number
k for which there exists an odd function f ∈ C

(
A,Rk\{0}

)
. If there

is no such k, then γ(A) = +∞; and, by definition, γ(∅) = 0. The
concept of genus generalizes, [14] the notion of dimension: if Sm−1 and
S∞X are the unit-spheres of Rm and X, an infinite-dimension Banach
space, respectively, then γ(Sm−1) = m and γ(S∞X ) = +∞.

let us fix α = 1 and write
Σε = {A ⊆ Ep

ε / A = Ā, A = −A, 0 /∈ A}.
It’s clear that Mε ∈ Σε. For k ∈ N, we put

Ak,ε = {A ∈ Σε / A ⊆ Mε ∧ γ(A) ≥ k} ,
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ck,ε = inf
A∈Ak,ε

max
u∈A

Jε(u).(2.8)

Theorem 2.4. Let k ∈ N.
i) ck,ε is a positive critical value of Jε which has at least two

corresponding critical points.
ii) If wk,ε is a critical point of Jε such that Jε(wk,ε) = ck,ε, then

the function given by

(2.9) uk,ε(x) = [pck,ε]
1/(q+1−p)wk,ε(x), x ∈ RN ,

is a weak solution of (1.5).

By using Lagrange multipliers, it’s not difficult to see that formulas
(2.7) and (2.9) produce weak solutions of (1.5) departing from critical
points of Jε,α and Jε. For example, if we assume that w is a critical
point of Jε,α, then L′

λ(w) = 0 and ∥w∥Lq+1(RN ) = α, where λ ∈ R is the
Lagrange multiplier and Lλ = Iε − λΦ with Φ : Ep

ε → R, the function
that defines the manifold, given by
(2.10) Φ(u) = ∥u∥q+1

Lq+1(RN )
− αq+1.

Therefore, see Proposition 3.2 below, for every h ∈ Ep
ε,

(2.11)∫
RN

[
|∇w|p−2∇w∇h+ Vε |w|p−2wh

]
dx−λ(q+1)

∫
RN

|w|q−1whdx = 0.

By choosing h = w, we get λ(q+1) = pc/αq+1 with c = Jε,α(w), so that
w is a weak solution of
−∆pw(x) + Vε(x)|w(x)|p−2w(x)− pc

αq+1
|w(x)|q−1w(x) = 0, x ∈ RN ,

whence the function u =
[
αq+1/(pc)

]1/(p−q−1)
w is a weak solution of

(1.5).

2.3. Abstract Tools. Let E be a Banach space, I ∈ C1(E) and M =
G−1({0}) ⊆ E, the manifold determined by a functional G ∈ C1,η(E),
η > 0, which verifies

∀u ∈M : G′(u) ̸= 0.

Recall that G ∈ C1,η(E) means that G′ : E → E′ is of class C0,η.
A sequence (un)n∈N ⊆M is said to be a Palais-Smale sequence, or sim-

ply a (PS) sequence, for the functional I iff (I(un))n∈N ⊆ R is bounded
and I|′M (un) → 0 in E′, as n → +∞. If for some m ∈ R, it holds
I(un) → m, as n → +∞, we say that (un)n∈N ⊆ M is a (PS)m se-
quence.

We say that the functional I verifies the condition (PS) (or (PS)m) on
M iff every (PS) (or (PS)m ) sequence has a converging subsequence. If
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(PS)m holds, the critical level Km = {u ∈M /I|′M (u) = 0 ∧ I(u) = m}
is compact.

We shall prove Theorem 2.2 by applying the following result, see [2,
Theorem 7.12 and Remark 7.13] and [8].
Theorem 2.5. Suppose that I|M is bounded from below and satisfies
(PS)µ, where µ = inf

w∈M
I(w). Then, there exists w0 ∈M such that

I(w0) = µ, (I|M )′(w0) = 0.

To prove Theorem 2.4, we shall use Theorem 2.7 below, see e.g. [13].
In Section 2.2, Krasnoselskii’s genus was introduced; it verifies the fol-
lowing properties whose proof can be found in [14].
Proposition 2.6. Let A,B ∈ ΣE.

i) If f ∈ C(A,B) is odd, then γ(A) ≤ γ(B).
ii) If A ⊆ B, then γ(A) ≤ γ(B).
iii) If A is compact, then γ(A) < +∞.

Now we can present our second abstract tool, a Ljusternik-Schnirelman
scheme.
Theorem 2.7. Let M̃ ∈ ΣE be a C1 manifold and assume that I is
even. Suppose that I|M̃ verifies the (PS) condition. For each k ∈ N, let

Ck(I) = inf
A∈Ak(M̃)

max
u∈A

I(u),

where Ak(M̃) = {A ∈ ΣE / A ⊆M ∧ γ(A) ≥ k}.
i) If Ck(I) ∈ R, then Ck(I) is a critical value for I|M̃ .
ii) If c ≡ Ck(I) = · · · = Ck+m(I), then γ (Kc) ≥ m + 1. In

particular, if m > 1, Kc, contains infinitely many elements.
Then, in the context of Theorems 2.5 and 2.7, we shall prove that the

following objects verify the needed conditions:
E = Ep

ε, M = M̃ = Mε, I = Iε, I|M = I|M̃ = Jε,α, G = Φ.

2.4. Asymptotic behaviour of the solutions. Now we deal with the
infinite case as given in [6] and [1], so that condition (V4), detailed in
Section 2.1, is assumed to hold.

Let’s first mention that Theorem 2.7 can be applied to (1.6), the
limit problem of (1.5). For this, let’s consider the functional J : M ⊆
W1,p

0 (Ω) → R, given by

J(u) =
1

p
∥u∥p

W1,p
0 (Ω)

=
1

p

∫
Ω
|∇u(x)|pdx,
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where M =
{
u ∈ W1,p

0 (Ω) / ∥u∥Lq+1(Ω) = 1
}

. Let’s write, for k ∈ N,

Σ =
{
A ⊆ W1,p

0 (Ω) /A = Ā, A = −A, 0 /∈ A
}
,

Ak = {A ∈ Σ/A ⊆ M∧ γ(A) ≥ k} ,
ck = inf

A∈Ak

max
u∈A

J(u).(2.12)

Let k ∈ N. As in Theorem 2.4, the following points are true.
i) ck is a positive critical value of J which has at least two corre-

sponding critical points.
ii) If wk is a critical point of J such that J(wk) = ck, then the

function given by uk(x) = [pck]
1/(q+1−p)wk(x), x ∈ Ω, is a weak

solution of (1.6).
In the context of Theorem 2.7, the Ljusternik-Schnirelman device is

applied to problems (1.5) and (1.6) to obtain the solutions uk,ε and uk,
k ∈ N, respectively, the index k represents the topological characteristic
of the level set, as captured by Krasnoselskii’s genus. Therefore, the fol-
lowing result on the asymptotic energies implies that the critical values
of Jε and J are topologically equivalent.

Theorem 2.8. Let k ∈ N. Then, ck,ε → ck, as ε→ 0.

Grossly speaking, our last main result, that we will present states that,
as ε→ 0 and up to scaling, each function uk,ε sub converges in W1,p(RN )
to a solution of (1.6) that shares the energy level. Let’s recall [6] that
a family of functions (fε)ε>0 is said to sub converge in a space X, as
ε→ 0, iff every sequence (εn)n∈N converging to zero, has a subsequence
(εni)i∈N such that

(
fεni

)
i∈N converges in X, as i→ +∞.

Theorem 2.9. Let k ∈ N. Then, as ε→ 0, thefamily (uk,ε)ε>0 subcon-
verges in W1,p(RN ) to some ϕk ∈ W1,p(RN ) such that its restriction to
Ω is a solution of (1.6) and verifies J

(
ϕ̂k

∣∣∣
Ω

)
= ck, where

ϕ̂k(x) = [pck]
1/(q+1−p) ϕk(x), x ∈ RN .

2.5. Preliminaries and Some Useful Results. Let’s review some
properties which come from (2.1), b1), b2) and b3).

The functions g and Vε are given in (1.4) and (2.3) so that, by (V4),

Vε(x) =
1

[ε g(ε)]2(p−1)
exp

(
− 1

a (x/g(ε))

)
, |x| ≤ g(ε).

In [6] the following properties are stated. First we have that g(ε) → +∞,
as ε → 0. Second, there exists γ > 0 such that β(r)/rγ → 0, as r → 0,
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and g(ε)/| ln(ε)|1/γ → 0, as ε→ 0. Third, for every τ > 0,

lim
ε→0

1

g2(ε)
exp

(
τ

β (1/g(ε))

)
= lim

ε→0

1

[ετg(ε)]2

= +∞.

As a consequence of condition b3), the following results are true. Propo-
sition 2.10 is stated in [6] for compact subsets of Ω. Proposition 2.11 is
given as in [1, Prop. 2.9].

Proposition 2.10. For every measurable set B ⊆ Ω,

∥Vε∥L∞(B) → 0, as ε→ 0.

Proposition 2.11. There exists D ∈]0, 1[ such that for all d > 1,

lim
ε→0

min
x∈Rε,D,d

Vε(x) = +∞,

where Rε,D,d =
{
x ∈ RN/|x| ≤ Dg(ε) ∧ r(x) ≥ d

}
.

Remark 2.12. As a consequence of Proposition 2.10, we have that
(2.13) ∀µ > 0, ∃ε̌ = ε̌(µ) > 0 : ε ∈ ]0, ε̌[ ⇒ ∥Vε∥L∞(Ω) < µ.

By (2.2), in the context of Proposition 2.11, Rε,D,d is the set of points
that belong to the closed ball centered at zero and of radius Dg(ε) but
which are outside the expanded star Ωd = {x ∈ RN / r(x) < d}.

Given an open set ω ⊆ RN , we will always identify a function f ∈
W1,p

0 (ω) with its extension by zero: f(x) = f(x) if x ∈ ω and f(x) = 0
if x ∈ ωc. We have the following result.

Proposition 2.13. Let ε > 0. Then the embedding W1,p
0 (Ω) ⊆ Ep

ε is
continuous. On W1,p

0 (Ω) the norms ∥ · ∥ε and ∥·∥
W1,p

0 (Ω)
are equivalent.

Proof. We have, for every u ∈ W1,p
0 (Ω), that

(2.14) ∥u∥
W1,p

0 (Ω)
≤ ∥u∥ε ≤ CΩ,ε ∥u∥W1,p

0 (Ω)
,

where

(2.15) CΩ,ε =
(
1 + Cp

Ω ∥Vε∥L∞(Ω)

)1/p
> 0.

with Cp
Ω > 0 the constant appearing in Poincaré’s inequality, [5, Cor.

9.19]. □

Remark 2.14. For future reference, let’s mention that Proposition 2.13,
in particular point (2.14), is still true if we replace Ω by any U ⊆ RN

open and bounded.
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Let’s recall that the inverse Hölder’s inequality is given in the following
way, [16, Th.13.6]. Let r ∈]0, 1[, f ∈ Lr(RN ) and g ∈ Lr′(RN ). Then,

(2.16)
∫
RN

f(x)g(x) dx ≥
(∫

RN

f(x)r dx

)1/r (∫
RN

g(x)r
′
dx

)1/r′

.

To end this section, we introduce a number of useful inequalities, [10].
Let x, y ∈ RN . Then,

22−θ|y − x|θ−1 ≥
∣∣∣|y|θ−2y − |x|θ−2x

∣∣∣ , if 1 ≤ θ ≤ 2;(2.17)

22−θ|y − x|θ ≤ (|y|θ−2y − |x|θ−2x) · (y − x), if θ ≥ 2;(2.18)

|y − x|2 ≤ (|y|θ−2y − |x|θ−2x) · (y − x)

(θ − 1)(1 + |y|2 + |x|2)(θ−2)/2
, if 1 < θ < 2;(2.19)

|x− y|θ ≤ 2θ/2
(
|x|2 + |y|2

)θ/2
, if θ > 0.(2.20)

In (2.18) and (2.19), the dot represents the inner-product on RN . The
inequality (2.20) follows easily from the parallelogram identity in RN .

3. Proof of the Existence Results

In this section we prove our existence results, Theorems 2.2 and 2.4,
by verifying the conditions of Theorems 2.5 and 2.7, respectively.

3.1. Regularity of the manifold and the energy functional. Let’s
first show that the manifold Mε verifies the conditions required in The-
orems 2.5 and 2.7. Observe that the closedness of Mε comes from point
(2.4). The symmetry of Mε and 0 /∈ Mε is clear.

Proposition 3.1. The manifold Mε is of class C1,q.

Proof. The proof that Φ, given in (2.10), is Fréchet-differentiable is quite
standard and uses the continuity of the embedding Ep

ε ⊆ Lq+1(RN ). We
have, for u, h ∈ Ep

ε, that

⟨Φ′(u), h⟩ = (q + 1)

∫
RN

|u(x)|q−1u(x)h(x)dx.

Let’s prove that Φ ∈ C1,q, i.e., that Φ′ : Ep
ε → (Ep

ε)′ is of class C0,q:
(3.1) ∃β > 0, ∀u, v ∈ Ep

ε : ∥Φ′(u)− Φ′(v)∥ ≤ β ∥u− v∥qε .
Let’s assume that 1 < p < 1+ q < min{p∗, 2} so that, by (2.17), it holds
(3.2) ∀x, y ∈ RN :

∣∣|y|q−1y − |x|q−1x
∣∣ ≤ 21−q|y − x|q.

Let u, v, w ∈ Ep
ε. By (3.2) and Hölder inequality with P = (q+1)/q and

P ′ = q + 1, we get
1

q + 1
|Φ′(u)w − Φ′(v)w|
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=

∣∣∣∣∫
RN

[
|u(x)|q−1u(x)− |v(x)|q−1v(x)

]
w(x)dx

∣∣∣∣
≤

[∫
RN

∣∣|u|q−1u− |v|q−1v
∣∣(q+1)/q

dx

]q/(q+1)

∥w∥Lq+1(RN )

≤ 21−q

[∫
RN

|u(x)− v(x)|q+1 dx

]q/(q+1)

∥w∥Lq+1(RN )

≤ 21−qcq+1
q+1 ∥u− v∥qε ∥w∥ε ,

which, by the arbitrariness of w, u and v, implies (3.1) with β = (q +

1)21−q cq+1
q+1, where cq+1 comes from (2.4). The case of 2 ≤ 1 + q < p∗ is

handled in a similar way. □
Having in mind Theorems 2.5 and 2.7, let’s now verify that the energy

functional, Iϵ, is of class C1.
Proposition 3.2. The functional Iε is Fréchet-differentiable and, for
every u, h ∈ Ep

ε,

(3.3) ⟨I ′ε(u), h⟩ =
∫
RN

[
|∇u|p−2∇u∇h+ Vε(x) |u|p−2uh

]
dx.

Proof. Let u, h ∈ Ep
ε. By direct computation,

∂hIϵ(u) =
d

dt
Jε(u+ th)

∣∣∣∣
t=0

=

∫
RN

[
|∇u|p−2∇u · ∇h+ Vε(x) |u|p−2uh

]
dx,

so that the directional derivative exists and coincides with the right side
of (3.3).

The linear functional Ψ : Ep
ε → R, given by

Ψ(w) =

∫
RN

[
|∇u|p−2∇u · ∇w + Vε(x) |u|p−2uw

]
dx,

is continuous so that Iε is differentiable at u. In fact, since p′ = p/(p−1),
given w ∈ Ep

ε, we have, by Hölder and triangle inequalities, that

|Ψ(w)| ≤
∫
RN

∣∣∣|∇u|p−2∇u · ∇w + (V 1/p′
ε |u|p−2u)(V 1/p

ε w)
∣∣∣ dx

≤ ∥∇u∥p−1
Lp(RN )

∥∇w∥Lp(RN )

+

(∫
RN

Vϵ |u|pdx
)(p−1)/p(∫

RN

Vϵ |w|pdx
)1/p

≤ ∥∇u∥p−1
Lp(RN )

∥w∥ε + ∥u∥p−1
ε ∥w∥ε ≤ c ∥w∥ε ,

for any constant c > ∥∇u∥p−1
Lp(RN )

+ ∥u∥p−1
ε .
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Let’s recall that for z > 0 and µ ∈ R such that z + µ > 0 it holds

(z + µ)p/2 = zp/2 +
p

2
z(p−2)/2µ+ g(µ),

with g(µ) = o(µ). With this, it is not difficult to show that Γ(h)/ ∥h∥ε →
0, as ∥h∥ε → 0, where Γ(h) = Iϵ(u+ h)− Iϵ(u)−Ψ(h), so that Γ(h) =
o(h). Since u and h were chosen arbitrarily, we have proved that Iε is
Fréchet-differentiable and that (3.3) holds. □
Proposition 3.3. The functional Iε is of class C1.

Proof. We have to prove that I ′ε is continuous. I ′ϵ is continuous at u0 ∈
Ep
ε iff given any µ > 0 there exists δ > 0 such that if u ∈ Ep

ε verifies
∥u− u0∥ε < δ, then
(3.4) ∀v ∈ Ep

ε :
∣∣⟨I ′ϵ(u)− I ′ϵ(u0), v⟩

∣∣ ≤ µ ∥v∥ε .
Let’s assume that 1 < p ≤ 2. Let u0 ∈ Ep

ε and µ > 0. Take 0 < δ <(
2p−3µ

)1/(p−1). Then, for u, v ∈ Ep
ε with ∥u− u0∥ε < δ, we get, by using

(2.17) and Hölder’s inequality, that∣∣⟨I ′ε(u0)− I ′ε(u), v⟩
∣∣ ≤ ∫

RN

∣∣|∇u0|p−2∇u0 − |∇u|p−2∇u
∣∣ |∇v|dx

+

∫
RN

Vε(x)
∣∣|u0|p−2u0 − |u|p−2u

∣∣ |v|dx
≤ 22−p

(∫
RN

|∇u0 −∇u|p−1|∇v| dx+

∫
RN

Vε(x)|u0 − u|p−1|v| dx
)

≤ 22−p

[(∫
RN

|∇u0 −∇u|p dx
) p−1

p

∥∇v∥Lp(RN )

+

(∫
RN

Vε(x)|u0 − u|p dx
) p−1

p
∥∥∥V 1/p

ε v
∥∥∥
Lp(RN )

]

≤ 22−p

(
∥∇u0 −∇u∥p−1

Lp(RN )
+
∥∥∥V 1/p

ε (u0 − u)
∥∥∥p−1

Lp(RN )

)
∥v∥ε

≤ 23−p ∥u0 − u∥p−1
ε ∥v∥ε ≤ 23−pδp−1 ∥v∥ε ≤ µ ∥v∥ε .

We conclude (3.4) by the arbitrariness of u0, µ and v. The case of p > 2
is worked out in a similar way. □
3.2. Palais-Smale condition. In this section we prove that the energy
functional verifies the Palais-Smale Condition.

Theorem 3.4. The functional Iε verifies (PS) on Mε.

Proof. Let (un)n∈N ⊆ Ep
ε be such that, for some D > 0,

∀n ∈ N : 0 ≤ Iε(un) ≤ D;(3.5)
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I ′ε(un) → 0, as n→ +∞.(3.6)

From (3.5) we get that ∥un∥ε ≤ (pD)1/p, for every n ∈ N, so that,
by Lemma 2.1 and [5, Th.3.8], there exist a subsequence (um)m∈N =
(unm)m∈N ⊆ Ep

ε and some u ∈ Ep
ε such that un ⇀ u, as m→ +∞, i.e.,

(3.7) ∀η ∈ (Ep
ε)

′ : ⟨η, um − u⟩ → 0, as m→ +∞.

Now let’s assume that (un)n∈N ⊆ Mε. Since Mε is closed in Ep
ε, the

limit function u also belongs to Mε.
By (3.6) and (3.7), it follows that

(3.8) ⟨I ′ε(um)− I ′ε(u), um − u⟩ → 0, as m→ +∞.

Using (3.3) we get
⟨I ′ε(um)− I ′ε(u), um − u⟩(3.9)

=

∫
RN

(
|∇um|p−2∇um − |∇u|p−2∇u

)
· (∇um −∇u) dx

+

∫
RN

Vε(x)
(
|um|p−2um − |u|p−2u

)
· (um − u) dx.

i) Let’s assume that p ≥ 2. Then, from (3.9) and (2.18), we get

⟨I ′ε(um)− I ′ε(u), um − u⟩ ≥ 22−p

∫
RN

[|∇um −∇u|p + Vε(x)|um − u|p] dx

(3.10)

= 22−p ∥um − u∥pε .

ii) Let’s assume that 1 < p < 2. Then, by (3.9), (2.19), (2.16) and
(2.20) with r = p/2, r′ = p/(p− 2) and θ = p, it follows that

⟨I ′ε(um)− I ′ε(u), um − u⟩

(3.11)

≥ (p− 1)

∫
RN

|∇um −∇u|2
(
1 + |∇um|2 + |∇u|2

) p−2
2 dx

+ (p− 1)

∫
RN

Vε(x)|um − u|2
(
1 + |um|2 + |u|2

) p−2
2 dx

≥ (p− 1)

(∫
RN

|∇um −∇u|p
) 2

p
(∫

RN

(
|∇um|2 + |∇u|2

) p
2

) p−2
p

+ (p− 1)

(∫
RN

Vε(x)|um − u|p
) 2

p
(∫

RN

Vε(x)
(
|um|2 + |u|2

) p
2

) p−2
p

≥ p− 1

2p/2

(∫
RN

|∇um −∇u|p
) 2

p
(∫

RN

|∇um −∇u|p
) p−2

p
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+
p− 1

2p/2

(∫
RN

Vε(x)|um − u|p
) 2

p
(∫

RN

Vε(x)|um − u|p
) p−2

p

≥ p− 1

2p/2

∫
RN

[|∇um −∇u|p + Vε(x)|um − u|p] dx

=
p− 1

2p/2
∥um − u∥pε .

Points (3.10) and (3.11), together with (3.8), imply that (um)m∈N con-
verges to u in Ep

ε. □

4. Energy Asymptotics

In this setion we prove energy asymptotics: Theorem 2.8 states that,
given k ∈ N, ck,ε → ck, as ε→ 0. Our first step is the following result.
Proposition 4.1. Let k ∈ N. Then, for every ε > 0, Ak ⊆ Ak,ε, and
ck,ε ≤ ckCΩ,ε, where CΩ,ε > 0 is given in (2.15). Moreover,
(4.1) lim sup

ε→0
ck,ε ≤ ck.

Proof. Let ε > 0. Since, by Proposition 2.13, the norms ∥ · ∥ε and
∥ · ∥

W1,p
0 (Ω)

are equivalent on W1,p
0 (Ω), it follows that Ak ⊆ Ak,ε. By the

points (2.8), (2.12) and (2.14), we get
ck,ε = inf

A∈Ak,ε

max
u∈A

Jε(u)(4.2)

≤ inf
A∈Ak

max
u∈A

Jε(u)

≤ CΩ,ε inf
A∈Ak

max
u∈A

J(u)

= CΩ,εck.

Proposition 2.10 implies that ∥Vε∥L∞(Ω) → 0, as ε→ 0. Therefore, (4.1)
follows from (2.14) and (4.2). □

In what follows we shall need an auxiliary problem:

(4.3)
{
∆pw(x) + |w(x)|q−1w(x) = 0, x ∈ Ωδ,

w(x) = 0, x ∈ ∂Ωδ,

where, for δ > 0, Ωδ = {x ∈ RN / dist(Ω, x) < δ} is an expanded
star. Theorem 2.7 also deals with problem (4.3) via the the functional
Jδ : Mδ ⊆ W1,p

0 (Ωδ) → R, given by

Jδ(u) =
1

p
∥u∥p

W1,p
0 (Ωδ)

=
1

p

∫
Ωδ

|∇u(x)|pdx,
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where, Mδ =
{
u ∈ W1,p

0 (Ωδ) / ∥u∥Lq+1(Ωδ) = 1
}

. We write, for k ∈ N,

Σδ = {A ⊆ W1,p
0 (Ωδ) / A = Ā, A = −A, 0 /∈ A},

Aδ
k =

{
A ∈ Σδ / A ⊆ Mδ ∧ γ(A) ≥ k

}
cδk = inf

A∈Aδ
k

max
u∈A

Jδ(u).

Then, given k ∈ N, the following points hold.
i) cδk is a positive critical value of Jδ which has at least two corre-

sponding critical points.
ii) If wδ

k is a critical point of Jδ such that J(wδ
k) = cδk, then the

function given by uδk(x) =
[
pcδk

]1/(q+1−p)
wδ
k(x), x ∈ Ωδ, is a

weak solution of (4.3).

Proposition 4.2. Let k ∈ N and σ > 0. There exist δ0, ε2 > 0 such
that

cδk ≤ σ

4
+

[
1

1− δ

(
1 +

1

δrVδ/2,ε

)]p (
ck,ε +

σ

4

)
,

for every δ ∈ ]0, δ0[ and every ε ∈ ]0, ε2[.

Proof. We shall walk thru several steps.
i) Let ε > 0 and δ ∈]0, 1 [ . By (2.8) there exists Aσ(ε) ∈ Ak,ε such

that
(4.4) max

u∈Aσ(ε)
Jε(u) ≤ ck,ε +

σ

4
.

In (2.13) we choose

(4.5) µ =
σp

4pCp
Ωc

p
k

,

and ε0 = ε̌(µ) = ε0(σ, k) > 0. From now on, let’s assume that
ε ∈]0, ε0[. Then, as in the proof of Proposition 4.1, we get, using
(4.5), that

cpk,ε ≤ cpk + Cp
Ω ∥Vε∥L∞(Ω) c

p
k(4.6)

≤ cpk +
Cp
Ωc

p
kσ

p

4pCp
Ωc

p
k

= cpk +
σp

4p

≤
(
ck +

σ

4

)p

≡ bpk,σ.
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Then, points (4.4) and (4.6) imply that, for every v ∈ Aσ(ε),
Jε(v) ≤ bk,σ,∫
RN

|∇v(x)|pdx ≤ p bk,σ,(4.7) ∫
RN

Vε(x) · |v(x)|pdx ≤ p bk,σ.(4.8)

ii) For ρ > 0, let’s denote Vρ,ε = inf{Vε(x) / x ∈ RN\Ωρ}. By
Proposition 2.11 and condition (V2), we get

(4.9) Vδ,ε → +∞, as ε→ 0.

From (4.8) we get, for every v ∈ Aσ(ε),

∥v∥p
Lp(RN\Ωδ)

=

∫
RN\Ωδ

|v(x)|pdx(4.10)

≤
p bk,σ
Vδ,ε

.

On the other hand, by (4.7) and Sobolev-Gagliardo-Nirenberg
theorem, [5], it follows, for every v ∈ Aσ(ε), that

∥v∥Lp∗ (RN\Ω) ≤ ∥v∥Lp∗ (RN )(4.11)
≤ θ∥∇v∥Lp(RN )

≤ θ (p bk,σ)
1/p ,

where θ = θp,N > 0. Now, since 1 < p < q + 1 < p∗ we choose
β ∈]0, 1 [ such that 1/(q + 1) = (1 − β)/p + β/p∗. Hence by
(4.10), (4.11) and the interpolation inequality for Lp-spaces, [5,
pg.93], it follows, for v ∈ Aσ(ε), that

∥v∥Lq+1(RN\Ωδ) ≤ ∥v∥1−β

Lp(RN\Ωδ)
∥v∥β

Lp∗(RN\Ωδ)

≤
(
p bk,σ
Vδ,ε

)(1−β)/p

θβ (p bk,σ)
β/p

=
θβ (p bk,σ)

1/p

V
(1−β)/p
δ,ε

,

which, by (4.9), implies that
max

v∈Aσ(ε)
∥v∥Lq+1(RN\Ωδ) → 0, as ε→ 0.

Therefore, given s > 0, there exists ε1 = ε1(δ, s;σ, k) ∈ ]0, ε0[
such that, for every ε ∈ ]0, ε1[, max

v∈Aσ(ε)
∥v∥Lq+1(RN\Ωδ) < δs. In
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particular, for s = 1 and ε̂1 = ε1 (δ, 1;σ, k) ∈ ]0, ε0[, we get, for
every ε ∈ ]0, ε̂1[,

(4.12) ∀v ∈ Aσ(ε) : ∥v∥Lq+1(Ωδ) ≥ 1− δ.

iii) Let’s denote Λδ = Ωδ\Ωδ/2 and pick a cut-off function ϕδ ∈
C∞
0

(
RN

)
such that, for some r > 1, ϕδ(x) = 1 if x ∈ Ωδ/2,

ϕδ(x) = 0 if x ∈ RN\Ωδ, ϕδ(x) ∈]0, 1[ if x ∈ Λδ and |∇ϕδ(x)| ≤
1/δr if x ∈ Λδ. Let’s prove that Γδ : Aσ(ε) ⊆ Mε → Mδ, given
by

Γδ[u] =
uϕδ

∥uϕδ∥Lq+1(Ωδ)
,

is well-defined and Lipschitz continuous. From now on we as-
sume that ε ∈]0, ε̃1 [ , where ε̃1 = min {ε̂1, ε1(δ/2, 1;σ, k)}.

a) By (4.12) we have, for v ∈ Aσ(ε), that

1 ≥ ∥vϕδ∥q+1

Lq+1(Ωδ)
(4.13)

=

∫
Ωδ/2

|v(x)|q+1dx+

∫
Λδ

|ϕδ(x)v(x)|q+1 dx

≥
∫
Ωδ/2

|v(x)|q+1dx

≥ (1− δ/2)q+1

> (1− δ)q+1 ,

so that Γδ is well defined.
b) Let u, v ∈ Aσ(ε) ⊆ Mε. Then, by (4.13),

∥Γδ[u]− Γδ[v]∥W1
0(Ωδ)(4.14)

=

∥∥∥∥∥ ∇(uϕδ)

∥uϕδ∥Lq+1(Ωδ)

− ∇(vϕδ)

∥vϕδ∥Lq+1(Ωδ)

∥∥∥∥∥
Lp(Ωδ)

≤ 1

1− δ
∥∇ (ϕδ(u− v))∥Lp(Ωδ)

≤ 1

1− δ

[
∥ϕδ∇(u− v)∥Lp(Ωδ) + ∥(u− v)∇ϕδ∥Lp(Ωδ)

]
.

By Remark 2.14 with U = Ωδ, we get

∥ϕδ∇(u− v)∥Lp(Ωδ) =

(∫
Ωδ

ϕpδ(x)|∇(u− v)(x)|pdx
)1/p

(4.15)

≤ ∥u− v∥W1
0(Ωδ) ≤ ∥u− v∥ε.
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On the other hand, by the defining properties of ϕδ, we
have that

∥(u− v)∇ϕδ∥Lp(Ωδ) =

(∫
Gδ

|u(x)− v(x)|p |∇ϕδ(x)|p dx
)1/p

≤ 1

δr inf
y∈Gδ

Vε(y)

(∫
Gδ

Vε(x)|u(x)− v(x)|pdx
)1/p

≤ ∥u− v∥ε
δrVδ/p,ε

,

which, together with (4.14) and (4.15), imply that

∥Γδ[u]− Γδ[v]∥W1
0(Ωδ) ≤

1

1− δ

(
1 +

1

δrVδ/2,ε

)
∥u− v∥ε.

Since u and v were chosen arbitrarily, we have proved that
Γδ is Lipschitz continuous.

iv) Since the operator Γδ is odd and continuous, point i) in Propo-
sition 2.6 implies that

Γδ [Aσ(ε)] ∈ Aδ
k, c

δ
k ≤ max

v∈Γδ[Aσ(ε)]
Jδ(v).

We choose u ∈ Aσ(ε) such that v̄ = Γδ[u] verifies

(4.16) cδk ≤ max
v∈Γδ[Aσ(ε)]

Jδ(v) ≤ Jδ(v̄) +
σ

4
.

Now we claim that there exists some w ∈ Aσ(ε) such that

(4.17) Jδ(v̄) ≤
[

1

1− δ

(
1 +

1

δrVδ/2,ε

)]p
Jε(w).

Then, points (4.4), (4.16) and (4.17) allow us to conclude:

cδk ≤ Jδ(v̄) +
σ

4

≤ σ

4
+

[
1

1− δ

(
1 +

1

δrVδ/2,ε

)]p
max

u∈Aσ(ε)
Jε(u)

≤ σ

4
+

[
1

1− δ

(
1 +

1

δrVδ/2,ε

)]p (
ck,ε +

σ

4

)
.

v) To finish, let us prove the claim (4.17). We shall prove that the
choice w = u works well. Working as in points iii)-b), we prove
that, for every ũ ∈ Aσ(ε),

∥Γδ[ũ]∥W1
0(Ωδ) ≤

1

1− δ

(
1 +

1

δrVδ/2,ε

)
∥ũ∥ε.



82 J. MAYORGA-ZAMBRANO, J. BURBANO-GALLEGOS ET AL

By choosing ũ = u in the last inequality, we get
∥v∥

W1,p
0 (Ωδ)

= ∥Γδ[u]∥W1,p
0 (Ωδ)

≤ 1

1− δ

(
1 +

1

δrVδ/2,ε

)
∥u∥ε,

whence the estimate (4.17) follows. □

Before proving Theorem 2.8, let’s observe that, choosing δ > 0 small
enough and using (4.9), we get

(4.18)
[

1

1− δ

(
1 +

1

δrVδ/2,ε

)]p
→ (1− δ)−p ≈ 1, as ε→ 0.

Proof of Theorem 2.8. By adapting Lemmas 3.3 and 3.4 of [9], we get,
for k ∈ N, that

∀δ > 0 : cδk ≤ ck;

∀σ > 0, ∃δσ > 0, ∀δ ∈]0, δσ[: ck ≤ cδk + σ.(4.19)
Let σ > 0 such that σ << 1 and take δσ from (4.19). We take δ0 = δ0(σ)
and ε2 = ε2(σ) from Proposition 4.2. We also choose δ∗ > 0 such that
(4.20) ∀δ ∈]0, δ∗[: (1− δ)p < 1 + σ.

Let’s take δ̃σ = {δσ, δ0, δ∗}. Then, by (4.19), (4.20) and Proposition 4.1,
we have that

ck ≤ cδk + σ

≤ 5

4
σ +

[
1

1− δ

(
1 +

1

δrVδ/2,ε

)]p (
ck,ε +

σ

4

)
≤ (5 + [. . . ]p)

σ

4
+ [. . . ]pck · CΩ,ε.

The last inequality, together with (4.20), (4.18), (2.15), Proposition 2.10
and the arbitrariness of σ, proves that ck,ε → ck, ε→ 0. □

5. Asymptotic Profiles

In this section, we prove Theorem 2.9. Given k ∈ N, it states that,
as ε→ 0, the family (uk,ε)ε>0 sub converges in W1,p(RN ) to some ϕk ∈
W1,p(RN ) such that its restriction to Ω is a solution of (1.6) and verifies
J
(
ϕ̂k

∣∣∣
Ω

)
= ck, where ϕ̂k(x) = [pck]

1/(q+1−p) ϕk(x), x ∈ RN .

Lemma 5.1. Let k ∈ N. Then, there exists ϕ̂k ∈ Ep
ε such that (wk,ε)ε>0

subconverges to ϕ̂k pointwise and weakly both in Ep
ε and W1,p(RN ), as

ε→ 0.
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Proof. By Theorem 2.8 and point (2.5), given σ > 0, there exists εσ,1 > 0
such that, for every ε ∈]0, εσ,1[,

pck,ε ≤ pck + σ ≡ Bk,σ

(1 + cpp)
−1/p ∥wk,ε∥W1,p(RN ) ≤ ∥wk,ε∥pε ≤ Bk,σ.(5.1)

Therefore, by [5, Th.3.18&4.9] and Theorem 2.1, there exists ϕ̂k ∈ Ep
ε ⊆

W1,p(RN ) toward which (wk,ε)ε>0 subconverges pointwise and weakly
both in Ep

ε and W1,p(RN ). □

Lemma 5.2. Let k ∈ N. The function ϕk is a weak solution of the limit
problem (1.6) and J

(
ϕ̂k

∣∣∣
Ω

)
= ck.

Proof. i) Let σ > 0 and εσ,1 > 0 as in Lemma 5.1, and let ε ∈
]0, εσ,1[. Since wk,ε ∈ Mε is a critical point of Jε we have, by
(2.11), that, for every η ∈ C∞

0

(
RN

)
,∫

RN

[
|∇wk,ε|p−2∇wk,ε∇η + Vε |wk,ε|p−2wk,εη

]
dx(5.2)

= pck,ε

∫
RN

|wk,ε|q−1wk,εηdx.

ii) By [5, Th.9.9], we have that

(5.3) ∥wk,ε∥pLp∗ (RN )
≤ cpp

∫
RN

|∇wk,ε(x)|p dx ≤ cppBk,σ.

Let 0 < δ < 1. By Hölder’s inequality and (5.3), we get

∥wk,ε∥pLp(Ωδ)
≤

∣∣∣Ωδ
∣∣∣p/N ∥wk,ε∥pLp∗(Ωδ)

(5.4)

≤
∣∣∣Ωδ

∣∣∣p/N ∥wk,ε∥pLp∗ (RN )

≤ cpp

∣∣∣Ωδ
∣∣∣p/N Bk,σ.

By (4.9), there exists εσ,2 ∈] 0, εσ,1[ such that, for all ε ∈]0, εσ,2[,
it holds V −1

δ,ε < 1 and, thanks to (5.1),

(5.5) ∥ŵk,ε∥pLp(RN\Ωδ)
≤

∫
RN\Ωδ

Vε(x)

Vδ,ε
|ŵk,ε(x)|p dx ≤ Bk,σ.

iii) Let η ∈ C∞
0 (Ω) and ε ∈]0, εσ,2[. By (5.4), (5.5) and Proposition

2.10, we get∣∣∣∣∫
Ω
Vε(x)ŵk,εη(x)dx

∣∣∣∣ ≤ ∥wk,ε∥Lp(Ω) ∥η∥Lp′ (Ω) ∥Vε∥L∞(Ω)
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≤
[
Bk,σ

(
1 + Cp

N

∣∣∣Ωδ
∣∣∣p/N)]1/p

∥η∥Lp′ (Ω) ∥Vε∥L∞(Ω)

and

(5.6)
∫
Ω
Vε(x)wk,εη(x)dx→ 0, as ε→ 0.

iv) By (2.6), (wk,ε)ε>0 subconverges in Lq+1(RN ) to ϕ̂k. Therefore,
by (5.2), (5.6), Theorem 2.8 and the arbitrariness of η, we get,
for every η ∈ C∞

0 (Ω), that

(5.7)
∫
Ω
∇ϕ̂k∇ηdx = pck

∫
Ω

∣∣∣ϕ̂k∣∣∣q−1
ϕ̂kη dx.

Now let us pick (ψn)n∈N ⊆ C∞
0 (Ω) converging in Lq+1(Ω) to

ϕ̂k|Ω. Then, by replacing η = ψn in (5.7) and letting n→ +∞,
we get, by Lemma 5.1, that ck = J

(
ϕ̂k

∣∣∣
Ω

)
.

v) Given any δ, β > 0, we put Γδ,β =
{
x ∈ RN / Ωδ : |ûk(x)| ≥ β

}
.

By Reduction to Absurdity, we prove that |Γδ,β| = 0. Therefore,

(5.8) ûk(x) = 0 for a.e. x ∈ RN\Ω,

which, by Proposition 9.18 in [5], implies that ûk|Ω ∈ W1
0(Ω).

We conclude by this and (5.7).
□

Proof of Theorem 2.9. By (2.6), Lemma 5.1 and point (5.8), it follows
that

(5.9) ∥wk,ε∥Lp(RN ) →
∥∥∥ϕ̂k∥∥∥

Lp(RN )
, as ε→ 0.

By (4.1) and (5.9), we have that

lim sup
ε→0

∫
RN

|∇wk,ε|p dx ≤ p lim sup
ε→0

ck,ε(5.10)

≤ pck

=

∫
RN

∣∣∣∇ϕ̂k∣∣∣p dx.
From (5.9) and (5.10) it follows that

lim sup
ε→0

∥ŵk,ε∥W1,p(RN ) ≤ ∥ûk∥W1,p(RN ) ,

so that, by [5, Prop.3.32], we have that (wk,ε)ε>0 subconverges in W1,p(RN )

to ϕ̂k, as ε→ 0. We conclude by Lemma 5.2. □
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To finish, let us mention that, working like in this paper, the asymp-
totic results on energy and profiles obtained, respectively, in [9] and [11]
for the flat case and finite case (cases also introduced in [6]) should also
hold for the p-version we dealt with.
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