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ABSTRACT. We study the Schrodinger equation (Q.): —52“’71)Ap11+
V(z) w|P~20 — v tv = 0, € RN, with v(z) — 0 as |z| — oo,
for the infinite case, as given by Byeon and Wang for a situation
of critical frequency, {z € RY / V(z) = infV = 0} # 0. In the
semiclassical limit, e — 0, the corresponding limit problem is (P):
Apw + [w]Trw =0, z € Q, with w(z) = 0,z € 99, where Q C RV
is a smooth bounded strictly star-shaped region related to the po-
tential V. We prove that for (Q.) there exists a non-trivial solution
with any prescribed L¢"!-mass. Applying a Ljusternik-Schnirelman
scheme, shows that (Qc) and (P) have infinitely many pairs of so-
lutions. Fixed a topological level k € N, we show that a solution
of (Qc.), ke, sub converges, in W?(RY) and up to scaling, to a
corresponding solution of (P). We also prove that the energy of
each solution, v . converges to the corresponding energy of the
limit problem (P) so that the critical values of the functionals asso-
ciated, respectively, to (Qc) and (P) are topologically equivalent.

1. INTRODUCTION

The time-dependent nonlinear Schrédinger equation

(1.1) ihy(z, t) + h;mm,t) — Vola)U(x, ) + [Tz, t)[9 (2, t) = 0,

helps to study phenomena like the evolution of Bose-Einstein conden-
sates [12] and the propagation of light through nonlinear optical materi-
als [[7]. Here i is the reduced Planck constant. Whenever 7 is treated as a
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small positive parameter which could tend to zero, a semi-classical state
of (EID) is a standing wave having the form ¥ (x,t) = v(x) exp(—iEt/h),
where v verifies

(1.2) e2Av(z) — V(z)v(z) + [v(z)|T to(z) = 0,

with 2 = h?/2 and V (z) = V() —
In this paper, we consider the Dirichlet problem

—2P= DA 0 + V()P 20 — [v|T v =0, xecRY,
(1.3) lim wv(z) =0,
|z|—+o0
where ¢ > 0and 1 < p < ¢+ 1 < p* with p* = pN/(N.—p) if N >p
and p* = 400 if N < p. Therefore, we generalize (E) by replacing
the Laplace operator A = A, with the p-Laplace operator, A,w =
div(|Vw|P~2Vw), which helps to model nonlinear diffusion phenomena.
Let’s assume that Z = {z € RN / V(z) = inf(V)} # 0, and consider
the following conditions:
V1) V € C(R) is non-negative;
V2) V(x )—>+oo as |z| — +o0;
V3) inf(V) =
V4) 2 = {0} and V(z) = exp(—1/a(x)) if |z| < 1, where, for a
bounded strictly star-shaped domain Q C RY, ¢ is an asymp-
totically (€2, b)-quasihomogeneous function (see Section for
the precise statement).

A~ NS

Let’s consider a positive function g € C(]0, +0o0]), whose form will be
specified later, see (@) Then, by using the scaling

v(z) = [eg(e) PP/ TPy (g(e)a),

1 T
(1.4) Ve(z) = [gg(g)P(pfl)V <g(6)> ’

z € RV, it’s clear that (B) is equivalent to

(1.5)
—Apu(z) + Ve(@)|u(@)P~?u(z) — |u(@)| u(z) =0, xeRY,

Conditions (V1)-(V3) are assumed throughout the document. The co-
ercivity condition (V2) is typical to get compactness of the embedding
of EZ, the Sobolev-like space where the solutions of ([L.5) are to be found
(see the beginning of Section R.9), into a range of Lebesgue spaces. It is
well known that, to obtain the same compactness, (V2) can be replaced
by other weaker coercivity properties, see e.g. conditions (V8) and (V9)
in [3]. With the help of the mentioned compact embedding, we prove
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that the functions associated with (@) verify the Palais-Smale condi-
tion. Then, by a direct method, we first show that for (@), there exists a
non-trivial solution with any prescribed L4 !'-mass; see Theorem P.9 and
Remark below. Second, applying a Ljusternik-Schnirelman scheme
shows that ([l.5) has infinitely many pairs of solutions, see Theorem @
below.

In the context of Quantum Mechanics, p = 2, condition (V3) is usually
referred to as a situation of critical frequency because the solutions of
(IL.5) present concentration phenomena quite different to those of their
counterparts in the non-critical setting, inf V' > 0, see e.g. [l], [6] and
[9] and the references therein.

Grossly speaking, condition (V4) says that V(z) exponentially de-
creases to zero as x gets closer to zo = 0 and corresponds to the_infinite
case, as considered in [(] and [[L]. For this situation, in Sections f} and f,
we prove the asymptotic properties of the solutions as ¢ — 0. We show,
see Theorem P.§, that the energy of each solution, uy ., £ € N, obtained
by the Ljusternik-Schnirelman scheme converges to the corresponding
energy of the functions associated with the limit problem of (@),

(1.6) {pr(x) + Jw(z) |9 w(z) =0, z€Q,

w(z) =0, x € 09,

where Q C RY is a smooth, bounded, strictly star-shaped domain related
to the potential V' via condition (V4) (see Section ﬁ) Since the index
k represents the topological characteristic of the level set, as captured
by Krasnoselskii’s genus, the energy asymptotics says that the critical
values of the functionals associated, respectively, to (@) and ([L.G) are
topologically equivalent. Finally, we prove asymptotic profiles for the
mentioned solutions, see Theorem PR.9. In fact, up to scaling, each of
these solutions conyerges in WHP(R™Y) to a function whose restriction to
Q is a solution of (@% and shares the energy level.

This paper is organized in the following way. In Section @, we in-
troduce, in a precise way, the setting of the infinite case for a critical
frequency situation. Section , presents the Sobolev-like space EZ,
where we find solutions of ([L.5) and prove that it is reflexive. The state-
ments of our existence results are also given in Section R.2. Section R.3,
present the abstract theorems which are key tools in our work. The
asymptotic properties are stated in Section R.4. In Section some es-
timates important, which to deal with the infinite case are introduced,
together with some other valuable inequalities. In Section B.1, we deal
with the regularity of the functionals related to the problem () In
Section B.2, we prove that the functions associated with (@) verify the
Palais-Smale condition, fundamental property to apply the mentioned
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abstract tools. The energy asymptotics are proved in Section H Finally,
the asymptotic profiles are proved in Section f.

2. PRELIMINARIES, INFINITE CASE AND MAIN RESULTS

2.1. Infinite Case Setting. Let’s consider 2 C RN, a smooth bounded
domain which is stricly star-shaped, i.e., there exists a ball B C Q) such
that for every (x,y) € B x €, the segment [x,y] is contained in 2. For
every ¢ > 1, Q is a g-Poincaré domain, i.e., for some M, > 0 and every

u € CHQ), [Ju— ug|[ra) < My (Jo [Vu(z)[? dx)l/q, where uq denotes
the average of u over , [1L5].

Let’s assume that the domain ) is generated by a positive function
r € C(RN\ {0}) that verifies

x/t € 0, ift=r(x),
(2.1) x/teQ, ift>r(x),
xz/t € Q°, ift <r(z).

Therefore, for every x € R™ \ {0} there exists a unique s(z) € 9Q such
that x = r(x) s(x). It also holds

r(r) =1, if z € 0Q,
(2.2) r(z)>1, ifxeQ°,
r(z) <1, ifzxeQ,

and r (z/t) = r(z)/t, for every x € RV \ {0} and every ¢ > 0.
Let’s pick b : RV — R, a continuous £-quasi homogeneous function:
there exists a function £ : [0, +oo[— R such that
bl) b(x) = B(r(z)), for every x € RV;
b2) [ is non-negative and strictly-increasing;
b3) given L = }i_r}(l)ﬁ(cr)/ﬁ(r), it holds L <1lifec<1and L > 1 if

c>1.
The function a € C(RY) that appears in (V4) is asymptotically (2, b)-
quasihomogeneous function, i.e., a is positive and verifies

a(x)

— =1, — 0.

o) as |z
2.2. Existence of solutions in a Sobolev-like space. As usual,
WLP(RY) denotes the Sobolev space of all the functions that, together
with their weak derivatives, belong to LP(RY); it’s equipped with the
norm given by

p

» 1/p
el = [IV0lE gy + 1l | -
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We denote by E? the completion of C5°(R™) in the norm given by

.= ([, 19w + vl o)

where V; is given in (Q) and
1

(2. =— .
2.3) 9(€) 5‘1<1nz€12))

It’s quite clear that, for » € [p, p*], the embeddings EZ C WIP(RV) C
L"(RY) are continuous and, therefore, there exists ¢, > 0 such that, for
every u € EE,

(2.4) lullr @y < e lull.
(2.5) el < (14 )P full,.

Actually, by applying Fréchet-Kolmogorov’s theorem (see e.g. [B, Cor.4.27]),
it’s obtained, for every r € [p, p*[, that

(2.6) EP C L"(RY), compactly.

It is worth to mention that in the proof of (@), the coercivity property
(V2) compensates the non-boundedness of the domain.

Lemma 2.1. Let € > 0. The space EE is reflezive.

Proof. Let’s consider the Banach space Y = LE(RY) x [LP(R")] N, where
1/p
s w)lly = (el gy + Il gy )

1/p
folhey = ([ lpdn) " = Vitoas,

1/p
sy = Il = ( [ foPae)

The reflexivity of the spaces LP(RY) and LE(RY) (see [4, Th. 4.7.15 and
Cor. 4.7.16]) implies that of Y. The operator T': EY — Y, given by

T(u) = (u, Vu),

is an isometry. Since Ef is a Banach space, it follows that T'(Ef) is
a closed subspace of Y. Therefore, by [b, Prop. 3.20], T(EZ) is also
reflexive, so that E? is reflexive. O

Let’s consider the functional I, : EZ — R, given by

1
Ie(u) = » 2,
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and, given o > 0, the functional J.,, which is the restriction of I
to the manifold M, = {u € B2/ |lull a1y = a}. We shall denote
M= M1 and Je = Je 1.

Now we can state our first main result.

Theorem 2.2. Let o > 0. There exists w, € Mo such that
Jeo(ws) = inf  Je o(w).

we €,

Moreover, the function given by

(2.7) us(x) = wy(z), xRV,

{oﬂ"‘l} 1/(p—q—1)

pe
with ¢ = Je o(wy), is a weak solution of (@)

Remark 2.3. Let a > 0 and u, v and w functions related to each other

by
- - qat11Y/ (-1
(o) = g @ o), o) = [T wte)
reRN. Ifwe Mo, then u € M, o, and v € M, o,, where
ap] V=D ) 11/ (p—a-1)
- | = — [220-1) v\ PE
a [pc} ’ a2 [8 g (E)ap} ’

with v = 2(p — 1) — N[1 — p/(q + 1)]. Therefore, Theorem @ implies
that, by choosing an appropriate value of o > 0, we can find a non-trivial
solution of ([L.5) (or (ﬁ)) with any prescribed L¢*!-mass.

Our second main result provides infinitely many pairs of solutions for
(L.5), by means of a Ljusternik-Schnirelman scheme. For this we need
the concept of genus. Let E be a Banach space. We write

Sp={ACE/A=A4 A=—-A0¢A}.

By 7(A), we denote the genus of A € ¥, i.e., the least natural number
k for which there exists an odd function f € C (4, R*\{0}). If there
is no such k, then v(A) = +4o0; and, by definition, v(f)) = 0. The
concept of genus generalizes, [[14] the notion of dimension: if S™~! and
S§ are the unit-spheres of R™ and X, an infinite-dimension Banach
space, respectively, then v(S™71) = m and y(S¥) = +oo.

let us fix & = 1 and write

Ye={ACEP/A=A A=—-A 0¢ A}
It’s clear that M. € ¥.. For k € N, we put
Ak,e:{AGEE/AgME A ’)’(A)Zk:},
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2.8 = inf J. ().
(2.8) Che = ,dnl max =(u)

Theorem 2.4. Let k € N.

i) cke is a positive critical value of J. which has at least two
corresponding critical points.

ii) If wie is a critical point of J. such that Je(wge) = cpe, then
the function given by

(2.9) upe(x) = [pep ] TP wy (x), xe RV,
is a weak solution of (@)

By using_Lagrange multipliers, it’s not difficult to see that formulas
(@) and E) produce weak solutions of (E) departing from critical
points of J., and J.. For example, if we assume that w is a critical
point of Je o, then L) (w) = 0 and |[w]|4+1(gv) = o, where A € R is the
Lagrange multiplier and Ly = I, — A® with ® : EZ — R, the function
that defines the manifold, given by

(2.10) D(u) = [JullZF]) vy — 0t

Therefore, see Proposition @ below, for every h € EZ,
(2.11)

/ [[VwP"2VwVh + Ve [wP~2wh] dz — A(g+1) / |w|? twhdz = 0.
RN RN
By choosing h = w, we get A\(¢+ 1) = pc/ad™! with ¢ = J. o(w), so that
w is a weak solution of

_ pc
—Apw(z) + Ve(@)w(@) [ w(@) -~

1/(p—q—1)

lw(z)|" w(z) =0, = eRY,

whence the function u = [a?™/(pc)] w is a weak solution of

(9.

2.3. Abstract Tools. Let E be a Banach space, I € C}(E) and M =
G~1({0}) C E, the manifold determined by a functional G € CY"(E),
1 > 0, which verifies

Vu e M : G'(u) # 0.
Recall that G € C(E) means that G’ : E — E’ is of class C%".

A sequence (uy)neny € M is said to be a Palais-Smale sequence, or sim-
ply a (PS) sequence, for the functional I iff (I(uy))neny € R is bounded
and I|);(up) — 0 in E', as n — +oo. If for some m € R, it holds
I(u,) — m, as n — 400, we say that (up)ney € M is a (PS)y, se-
quence.

We say that the functional I verifies the condition (PS) (or (PS),,) on
M iff every (PS) (or (PS)y, ) sequence has a converging subsequence. If
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(PS)m holds, the critical level K, = {u € M /I|);(u) =0 A I(u) = m}
is compact.

We shall prove Theorem @ by applying the following result, see [2,
Theorem 7.12 and Remark 7.13] and [g].

Theorem 2.5. Suppose that I|pr is bounded from below and satisfies
(PS),, where p = ing/[ I(w). Then, there exists wy € M such that
we

I(wo) = p,  (Ilnm) (wo) = 0.

To prove Theorem P4, we shall use Theorem @ below, see e.g. [13].
In Section R.2, Krasnoselskii’s genus was introduced; it verifies the fol-
lowing properties whose proof can be found in [14].

Proposition 2.6. Let A,B € Y.
i) If f € C(A, B) is odd, then v(A) < v(B).
ii) If AC B, then v(A) < ~(B).
iii) If A is compact, then v(A) < +oo.
Now we can present our second abstract tool, a Ljusternik-Schnirelman
scheme.

Theorem 2.7. Let M € X be a C' manifold and assume that I is
even. Suppose that I|y; verifies the (PS) condition. For each k € N, let
Cy(I) = inf maxI(u),

A€AL(M) u€A
where Ay(M) ={AcXp/ACM A ~v(A) >k}
i) If Cyp(I) € R, then Cy(I) is a critical value for I| ;.
i) If ¢ = Cx(I) = -+ = Crym(I), then v(K.) > m+ 1. In
particular, if m > 1, K., contains infinitely many elements.

Then, in the context of Theorems @ and @, we shall prove that the
following objects verify the needed conditions:

E=F, M=M=M.,, I=1I, Iy=Ig=Jya G=02.

2.4. Asymptotic behaviour of the solutions. Now we deal with the
infinite case as given in [6] and [1], so that condition (V4), detailed in
Section R.1|, is assumed to hold.

Let’s first mention that Theorem @ can be applied to (@), the
limit problem of (@) For this, let’s consider the functional J : M C
Wé’p(Q) — R, given by

1

J(U) = - HquNLp(Q)

D 0
1

= - Vu(z)|Pdz,
p/Q| (@)
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where M = {u € Wé’p(Q)/ ull e = 1}. Let’s write, for k € N,

S={ACWP(@Q) /A=A, A=-4,0¢ A},
Ar={AeX/ACMA~(A) >k},
2.12 = inf J(u).
212 a= il maxJ0)
Let k£ € N. As in Theorem @, the following points are true.

i) ¢ is a positive critical value of J which has at least two corre-
sponding critical points.

ii) If wy is a critical point of J such that J(wg) = cg, then the
function given by uy(z) = [pex] TP wy(z), z € Q, is a weak
solution of ([L.G).

In the context of Theorem the Ljusternik-Schnirelman device is
applied to problems (@) and (]L.6) to obtain the solutions uy . and wy,
k € N, respectively, the index k represents the topological characteristic
of the level set, as captured by Krasnoselskii’s genus. Therefore, the fol-
lowing result on the asymptotic energies implies that the critical values
of J. and J are topologically equivalent.

Theorem 2.8. Let k € N. Then, ¢t — ¢k, as € — 0.

Grossly speaking, our last main result, that we will present states that,
as € — 0 and up to scaling, each function uy, . sub converges in WLP(RY)
to a solution of ([l.6) that shares the energy level. Let’s recall [6] that
a family of functions (f:)s>0 is said to sub converge in a space X, as
e — 0, iff every sequence (e, )nen converging to zero, has a subsequence
(€n, )ien such that (fgni)z.GN converges in X, as i — +oo0.

Theorem 2.9. Let k € N. Then, as e — 0,thefamily (uy.),., subcon-
verges in WYP(RN) to some ¢, € WHP(RN) such that its restriction to

Q is a solution of (@) and verifies J (qgk‘g)) = ¢k, where

dr(x) = [per] TP gy (a), xRV

2.5. Preliminaries and Some Useful Results. Let’s review some
properties which come from (@), bl), b2) and b3).
The functions g and V; are given in ([l.4) and (R.3) so that, by (V4),

1 1
Vo) = e P (‘a <x/g<s>>> el = g(e).

In [6] the following properties are stated. First we have that g(¢) — 400,
as € — 0. Second, there exists v > 0 such that 5(r)/r7 — 0, as r — 0,
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and g(e)/|In(¢)|'/Y — 0, as € — 0. Third, for every 7 > 0,

. 1 T _ lim 1
M 26 P (5 <1/g<e>>> = @R

= +o0.

As a consequence of condition b3), the following results are true. Propo-
sition is stated in [6] for compact subsets of 2. Proposition is
given as in [l, Prop. 2.9].

Proposition 2.10. For every measurable set B C €,
||VE||L°°(B) —0, ase—0.
Proposition 2.11. There exists D €]0,1[ such that for all d > 1,

lim min V.(z) = +o0,
e—=0x€R; p g

where R, pqa = {x € R /|z| < Dg(e) Ar(z) > d}.
Remark 2.12. As a consequence of Proposition , we have that
(2.13) Vie>0,3=¢&(u)>0: e€]0,¢] = |[[Vellpo(o) < p-

By (@), in the context of Proposition , R. p.q is the set of points
that belong to the closed ball centered at zero and of radius Dg(e) but
which are outside the expanded star Qg = {z € RV /r(z) < d}.

Given an open set w C RY | we will always identify a function f €
W(l]’p(w) with its extension by zero: f(z) = f(z) if 2 € w and f(x) =0
if x € w°. We have the following result.

Proposition 2.13. Let € > 0. Then the embedding Wé’p(Q) C E? is
continuous. On Wé’p(Q) the norms || - || and H-||W1,p(Q) are equivalent.
0

Proof. We have, for every u € W(l)’p(ﬂ), that

(2.14) lullwir ) < lulle < Coellullyirg) -
where

1/p
(2.15) Coe = (1+Ch IVellmy) > 0.

with C’g > 0 the constant appearing in Poincaré’s inequality, [5, Cor.
9.19]. O

Remark 2.14. For future reference, let’s mention that Proposition ,
in particular point (R.14), is still true if we replace Q by any U C RY
open and bounded.
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Let’s recall that the inverse Holder’s inequality is given in the following
way, [16, Th.13.6]. Let ~ €]0,1[, f € L"(RY) and ¢g € L' (RV). Then,

210 [ sz ([ i) " (] ot d:c)l/rl .

To end this section, we introduce a number of useful inequalities, [10].
Let ,y € RY. Then,

(217) 22 fly— o)/l > ‘|y|9_2y — x|, if1<6<2

(218) 2Py —a)’ < (I Py — |2’ 2) - (y—x), if6>2;

2o W™y~ el 0) - (y ~ )
=0 P )R

(220) |z —yl? <22 (ja)2 + |y2)"*, if 6> 0.

In (M) and ( E.la), the dot represents the inner-product on RY. The
inequality (2.20) follows easily from the parallelogram identity in R,

(2.19) |y—=

ifl<f<2

3. PROOF OF THE EXISTENCE RESULTS

In this section we prove our existence results, Theorems @ and @,
by verifying the conditions of Theorems and .7, respectively.

3.1. Regularity of the manifold and the energy functional. Let’s
first show that the manifold M. verifies the conditions required in The-
orems and R.7. Observe that the closedness of M. comes from point
(@) The symmetry of M. and 0 ¢ M. is clear.

Proposition 3.1. The manifold M. is of class C'19.

Proof. The proof that ®, given in (), is Fréchet-differentiable is quite
standard and uses the continuity of the embedding E£ C L¢1(RY). We
have, for u, h € EZ, that

@ = (1) [ @) u)h)d.

Let’s prove that ® € C19, i.e., that ® : Ef — (EE) is of class C*:
(3.1) 38> 0,Vu,v € EZ: [|®'(u) — @' (v)|| < B llu—v]||?.
Let’s assume that 1 < p < 1+¢ < min{p*, 2} so that, by (), it holds
(3.2) Va,y € RV . Hy|q71y — \x|q71m‘ < 217q|y —x|%.
Let u,v,w € EE. By (@) and Holder inequality with P = (¢+1)/q and
P =q+1, we get

1

1@ (e = )
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/ ()| () — (@) o ()] w(z)dz
]RN

q/(g+1)
< [/ “u‘q—lu_ |v|q—1U’(q+1)/q dm} ||w||Lq+1(RN)
RN

]q/(qﬂ)

< 2l-a [/RN lu(x) — v(z)| " da

21qq

HwHLq+1(RN)

g1 lw =l flwl.

which, by the arbitrariness of w,u and v, implies (@) with 8 = (¢ +
1)2t-4 cqi}, where ¢g41 comes from (2.4). The case of 2 <1+ ¢ < p* is
handled in a similar way. O

Having in mind Theorems @ and @, let’s now verify that the energy
functional, I, is of class C'.

Proposition 3.2. The functional I, is Fréchet-differentiable and, for
every u, h € EE,

(3.3) (I'(u),h) = / [|Vu|p_2Vth + V() |u|p_2uh] dzx.
RN
Proof. Let u, h € EZ. By direct computation,
d
Oplc(u) = —Jz(u+th)
dt t=0

_ / (VP 2V - Vh + Va(e) ulP~2uh] dx,
]RN

so that the directional derivative exists and coincides with the right side

of (B.3).

The linear functional ¥ : E? — R, given by
U(w) = / [[VulP2Vu - Vw + Ve(z) [ulP?uw] dz,
RN

is continuous so that I, is differentiable at u. In fact, since p’ = p/(p—1),
given w € EL, we have, by Holder and triangle inequalities, that

U (w)| < / ‘|Vu\p*2Vu -Vw + (Vsl/p/]u\pﬁu)(vgl/pw)‘ dz
RN

< [Vullf vy IVe0llpgny

(p—1)/p 1/p
+ </ Ve |u|pda:> </ Ve \w]pdx>
RN RN

< Vullf, vy lwll. + 27wl < el

for any constant ¢ > ||Vu||Lp ®~) T Hqu*l.



p-LAPLACE SCHRODINGER EQ. 75

Let’s recall that for z > 0 and ¢ € R such that z + > 0 it holds
(2 + /2 = /2 4 220D 4 g ),

with g(p) = o(p). With this, it is not difficult to show that I'(h)/ ||k, —
0, as [|h]|. — 0, where I'(h) = I.(u+ h) — I.(u) — ¥(h), so that I'(h) =
o(h). Since u and h were chosen_arbitrarily, we have proved that I, is
Fréchet-differentiable and that (@) holds. O

Proposition 3.3. The functional I, is of class C'.

Proof. We have to prove that I is continuous. I/ is continuous at ug €
EZ iff given any p > 0 there exists § > 0 such that if u € EL verifies
lu —uol|, < 9, then

(3.4) Ve B |(I!(u) ~ Il(uo).v)| < p o]
Let’s assume that 1 < p < 2. Let ug € Ef and u > 0. Take 0 < § <

2p_3,u)1/(p71). Then, for u,v € Ef with |ju — ug||, < d, we get, by using
() and Holder’s inequality, that

[(IZ(uo) — IZ(u),v)| < /N |[Vuo P2 Vug — [VulP~Vul |Vo|da
R
+ / V() |JuoP~2uo — [ul>u] [v]de
RN

< 2%P (/ Vg — VP~ Vol dz + / Ve(#)luo — ufP "o dﬂf)
RN RY

p—1

<92 [( [ 1V urds) " T,

p=1
+ (/ Ve(w)]uo—u]pdx) ’ ‘
RN

<2277 (1900 = Vulf b, +

V. Py

LP(RN)]

p—1
" o) 0l

_ -1 D ep—
<257 [lug — wlPH [Jufl, < 22726 o]l < plloll, -

(RN

VAP (g — )|

We conclude (@) by the arbitrariness of ug, i and v. The case of p > 2
is worked out in a similar way. O

3.2. Palais-Smale condition. In this section we prove that the energy
functional verifies the Palais-Smale Condition.

Theorem 3.4. The functional I verifies (PS) on M..

Proof. Let (up)nen € EE be such that, for some D > 0,
(3.5) YneN: 0<I.(uy) <D;
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(3.6) I'(up) =0, asn— +oo.

From (@) we get that |lu,|. < (pD)Y?, for every n € N, so that,
by Lemma and [b, Th.3.8], there exist a subsequence (um)men =
(tn,, )men C EZ and some u € EZ such that u, — u, as m — +o0o, i.e.,

(3.7) Vne (ER)Y :  (n,um—u)—0, asm — +oo.

Now let’s assume that (up)neny € Me. Since M. is closed in E£, the
limit function u also belongs to M..
By (@) and (@), it follows that

(3.8) (I () — IL(u), U —u) — 0, as m — +oo.
Using (@) we get
(3-9)  (Ii(um) — IL(u), um — u)

= / (V[P 2V, — |VuP~2Vu) - (Vuy, — Vu) dz
RN

+/ Ve(x) (|um|/p_2um — |u|p_2u) (U, — u) dx.
RN
i) Let’s assume that p > 2. Then, from (@) and (), we get
(3.10)
(L () — T ().t — ) > 2“/ [Vt — Vul? + V(@) |t — ul?] da
]RN
= 2272 [|uy, — ull?.

ii) Let’s assume that 1 < p < 2. Then, by (@), (), () and
() with r = p/2, 7" = p/(p — 2) and 0 = p, it follows that

(3.11)

p—2

<Ié(um) - Ié(u), Um — u>
> (p— 1)/ Vm — Val? (14 [Vaml® + [Vul2) 7 do
]RN

p—2

- 1) / Ve(@)ltm — ul? (14 [uml? + uf2) 7 da
RN

y

z(p-1) </RN Vi, — wp>i </RN (IVuml? + w|2)’5> v
to-0 ([ Veolun - u|p>f° ([ o) ol W)gyﬁ

P

p—1 % %2
> / |V, — Vul|P / [V, — VulP
2p/2 ]RN ]RN
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p— 1 v » % v » ijQ
+ op/2 RN =(@)um — ul . () |um — ul
p—1
> — UylP _ P
— 20/2 /RN [|Vum — VulP + Vo(x)|uy, — ulP] dz
p—1
= o2 [wm —ull?.
Points () and (), together with (@), imply that (%, )men con-
verges to v in EZ. 0O

4. ENERGY ASYMPTOTICS

In this setion we prove energy asymptotics: Theorem @ states that,
given k € N, ¢ . — ¢, as € — 0. Our first step is the following result.

Proposition 4.1. Let k € N. Then, for every e > 0, A, C A, and
ke < cxCae, where Co . > 0 is given in () Moreover,

(4.1) limsup ¢ < cg.
e—0

Proof. Let ¢ > 0. Since, by Proposition , the norms || - ||c and
are equivalent on W(l)’p (92), it follows that Ay C Ay.. By the

Il
points (%), (I‘E) and (M), we get

(4.2) Che = Aér}liﬁ max Je(u)

< inf max J-(u)
Ac A, ueA

< C inf maxJ(u
- Q’aAeAk u€A ( )

= Cgﬁck.

Proposition mplies that HVa”Loo(Q) — 0, as € = 0. Therefore, (@)
(.14

follows from ) and (@) O

In what follows we shall need an auxiliary problem:

(4.3) Apw(z) + |w(@)| T w(z) =0, x€ QI

' w(z) =0, x €090,
where, for § > 0, Q° = {z € RY /dist(Q.z) < ¢} is an expanded
star. Theorem also deals with problem (.3) via the the functional

JO i MO C Wé’p(Q‘s) — R, given by

1
9 _ - D
A OOR e U
1

= - Vu(x)Pdr,
HRZC)
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where, M°® = {u € WoP (@) / lullor (qs) = 1}. We write, for k € N,
D= {ACWP(Q) /A=A, A=—A, 0¢ A},
A‘;:{AEE‘;/AQM‘S A W(A)Zk}

¢ = inf maxJ°(u).
Ae Al ueA

Then, given k € N, the following points hold.

i) ci is a positive critical value of J° which has at least two corre-

sponding critical points.
ii) If w? is a critical point of J° such that J(wl) = 2, then the

1/(g+1-p)
function given by wug(z) = [pci} wi(z), = € Q0 is a

weak solution of (@)

Proposition 4.2. Let k € N and o > 0. There exist dyg,e2 > 0 such

that
AN R P p( +2)
C — C —
F=4 " |1=5 5"Vs/g.c heTg)

for every § € 10,d0] and every € € ]0,¢e2].

Proof. We shall walk thru several steps.
i) Let ¢ > 0 and ¢ €]0,1]. By (@) there exists A, (¢) € Ay . such
that

ag
4.4 J.(u) < z.
(4.4) s c(u) < cpe+ 1

In () we choose
oP

n= 4ngCZ,

and g9 = &(u) = eg(o, k) > 0. From now on, let’s assume that
e €]0,ep[. Then, as in the proof of Proposition {.1], we get, using
(1.9), that
(4.6) e < G+ COIVell oo ()

Chilor
6
oP
4p

IN
BQS

+

IN
qu%’ﬁ‘ s
=
+
9
~—
bS]

q-

+



(4.9)

(4.10)

(4.11)
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Then, points (@) and (@) imply that, for every v € A,(¢),
Js(v) < bk,m

[ IV@pds < b,

RN

[, V@) - lo(@)Pde < b
RN

For p > 0, let’s denote V,. = inf{V.(z)/ z € RN\Q’}. By
Proposition m and condition (V2), we get

Vse — +00, ase— 0.
From (@) we get, for every v € A, (¢),

P _ P
I vy = 7P

< b bk,a .
Ve
On the other hand, by (@) and Sobolev-Gagliardo-Nirenberg
theorem, [5], it follows, for every v € A,(e), that
HUHLP*(RN\Q) < HU”LP*(RN)

<OVl @)

<0(pbro)'”,
where 0 = 6, y > 0. Now, since 1 < p < ¢+ 1 < p* we choose

B_€]0,1] such that 1/(¢+1) = (1 — 5)/p + B/p*. Hence by
(4.10), (1.11)) and the interpolation inequality for LP-spaces, [5,
pg.93], it follows, for v € A,(e), that

1-8 B
||U||Lq+1(RN\Q¢S) < ||U”LP(RN\Q5) ||U||Lp* (RN\Q(S)

b 1-8)/p
< (pvk,a) 08 (p bk,a)ﬁ/p
d,e

0% (pbyo)'?
Ty

d,e

which, by (@), implies that

—0 — 0.
2 Wb ey =0 s
Therefore, given s > 0, there exists g1 = €1(0, s;0,k) € ]0,ep[

such that, for every ¢ € ]0, 1], U&E:}({g) Hv||Lq+1(RN\Qa) <5 In
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(4.12)

iii)

(4.13)

(4.14)

(4.15)
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particular, for s =1 and &1 = €1 (9, 1;0,k) € ]0,e0[, we get, for
every € € 10,é1],

Yv € Ay(e) : ||v||Lq+1(m) >1-4.
Let’s denote A° = Q°\Q9/2 and pick a cut-off function ¢s5 €
Cee (]RN) such that, for some r > 1, ¢s5(x) = 1 if z € Q9/2,
ps(x) =0 if 2 € RN\QO, ps(x) €]0,1[ if x € A% and |Vs(x)| <
1/6"if x € A%, Let’s prove that Ty : Ay(e) S M. — MO, given
by
ugs

T - ¥
sl HU¢6HLq+1(Qa) ’

is well-defined and Lipschitz continuous. From now on we as-
sume that € €]0,&; [, where £; = min {é;,e1(6/2,1;0,k)}.
a) By () we have, for v € A,(g), that

+1
1> Hv¢6”iq+l(96)

- / jo(a)| e+ dz + / 6520 (z)| " da
0s/2 AS

> [ @[
09/2

> (1—06/2)"

> (1—0)7,

so that I's is well defined.
b) Let u,v € Ay(e) C M.. Then, by (),

5] — Tolellyga o)

| Vugs)  V(vgs)
[ugsllLatisy  llvgsllietr oo

< IV (650w~ ) o)

< (1859 = )l oy + 18 = ) Vslagan) -

Lp(Q9)

By Remark with U = Q°, we get

1/p
166 (0 = O)lngay = ( [, 5@V = o))

< Jlu = vllygy sy < lu = o]l
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On the other hand, by the defining properties of ¢g5, we
have that

1/p
= ) Vslhany = [ fulo) — o) (90500 o

< (Snflv(y) ( /G Vo) () - v(x)\pdx) v
yeGs

Ju— vl
B 5rv5/p,€ 7

which, together with (4.14)) and (), imply that

1 1
—_ < . .
|75 [u] P5[U]”w(1)(95) =15 (1 + 5r%/2’6> lu — v

Since u and v were chosen arbitrarily, we have proved that
I's is Lipschitz continuous.
iv) Since the operator I's is odd and continuous, point i) in Propo-
sition implies that

Ds[A ()] € A2, < max  J(v).
Mo € ALh < _max I

We choose u € A, (g) such that v = I's[u] verifies

4.16 0 < TS < I (o) + 2
(4.16) %S max (v) < J°(v) + 1

Now we claim that there exists some w € A, (¢) such that

(4.17) T (5) < [1; <1 + %)]pk(w).

Then, points (@), (m) and ('4_17|) allow us to conclude:

& < J°(v) +%

o 1 1 b

< - 1 Je

— 4 * |:1 -0 < + (57"‘/5/275)] ugzl‘laa}(ca) (U)
g
4

1 1 p o
1 — .
| ()| (e D)

v) To finish, let us prove the claim () We shall prove that the

choice w = u works well. Working as in points iii)-b), we prove
that, for every @ € A, (¢),

i 1 1 i
ICsflhy o < 7 (1+ 75— ) e
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By choosing @ = w in the last inequality, we get
I | [

<t (e Y
_1_5 5,’,,‘/;;/2’5 €9

whence the estimate () follows. O

Before proving Theorem @, let’s observe that, choosing § > 0 small
enough and using (4.9), we get

1 1 p
4.1 1 1—-0)P~1 .
(4.18) [1_5< +(5TV;;/275)] — (1-9) , ase—0

Proof of Theorem @ By adapting Lemmas 3.3 and 3.4 of [9], we get,
for k € N, that

Vo >0: cigck;

(4.19) Vo > 0,36, > 0,6 €]0,0,[: ¢ <& +o.

Let o > 0 such that 0 << 1 and take 6, from () We take 69 = do(0)
and g9 = e9(0) from Proposition §.2. We also choose d, > 0 such that
(4.20) Vo €]0,0.: (1-0)P<1l+o.

Let’s take 6y = {dc,00,04+}. Then, by (), () and Proposition EI,

we have that

cp < cz +o
< § + L 1 + ; . ( + g)
=477 155 5 Vype )] \ TG
<(+]. ..]P)% [ Po - Ca
The last inequality, together with (|42d), (|4.154), (blﬂ), Proposition
and the arbitrariness of o, proves that cj . — cx, € = 0. O

5. AsYMPTOTIC PROFILES

In this section, we prove Theorem @ Given k € N, it states that,
as € — 0, the family (uy.),., sub converges in lep(R%to some ¢ €

WLP(RN) such that its restriction to €2 is a solution of ([L.6) and verifies
J (gzgk‘(» = ¢, where ¢y (z) = [pep] VTP g (2), 2 € RY.

Lemma 5.1. Let k € N. Then, there exists ¢y, € EE such that (Wke) .50

subconverges to qgk pointwise and weakly both in EY and W'P(RYN), as
e — 0.



p-LAPLACE SCHRODINGER EQ. 83

Proof. By Theorem @ and point (@), given o > 0, there exists €51 > 0
such that, for every € €]0,&,1],

PCe < pcgp + 0 = By,
(5.1) (14 )P ||wy.

WL (RN) < Hwk,eug < Bk,o‘-

Therefore, by [5, Th.3.18&4.9] and Theorem @, there exists q@k €El C
WLP(RY) toward which (wye),., subconverges pointwise and weakly

both in EZ and WHP(RYN). O

Lemma 5.2. Let k € N. The function ¢y, is a weak solution of the limit
problem (@) and J (q@k‘g) = k.
Proof. i) Let 0 > 0 and &,; > 0 as in Lemma @, and let € €

10.e51]. Since wy . € M. is a critical point of J. we have, by
(m), that, for every n € C§° (RN),

(5.2) /N [[Vwpe|P2 Vg,V + Ve |we [P wi on] do
R

= PCke / |wk,6
RN

ii) By [b, Th.9.9], we have that

qilwk,sndx'

(5.3) el e gy < €& /R [Vune(o) do < B

Let 0 < 0 < 1. By Holder’s inequality and (@), we get
‘p/

N
(54) (T A ]

< ‘95‘17/1\7

Hwkﬁ ||€p* (RN)

é

<dlo

By (@), there exists €592 €] 0,¢4,1[ such that, for all € €]0,¢,2],
it holds V(S;l < 1 and, thanks to (p.1),

Ve() |
A~ p £ p
(5.5) IIwk,alle(RN\m) < /R s Ve k.o ()P dz < Bjg-

p/N
‘ Bro.

iii) Let n € CF(Q2) and € €]0,e42[. By (@), (@) and Proposition
.10, we get

/ Vi (2o (a)de
Q

< ||wk'78||LP(Q) HUHm’(Q) ||VsHLo<>(Q)
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o s PN 1/p
< B (14 €2 [") | il Vel
and

(5.6) / Ve(x)wgen(z)de — 0, ase— 0.
Q

iv) By (R.6), (ws )., subconverges in LITH(RY) to o1 Therefore,
by (b.2), (p.6), Theorem and the arbitrariness of 7, we get,

for every n € C5°(2), that

~ ~ 19—1 «
(5.7) /V%VUCMZPCIC/ ‘qbk‘ ¢rndx.
Q Q

Now let us pick (n),eny € C3(Q) converging in LIT(Q) to
dr|a. Then, by replacing 17 = 1, in (@) and letting n — +o0,
we get, by Lemma @, that ¢ = J (cﬁk‘ﬂ)
v) Given any 6,3 > 0, we put I's g = {z € RV / Q° : |y (2)| > B}.
By Reduction to Absurdity, we prove that [I's g| = 0. Therefore,
(5.8) tg(z) =0 for a.e. z € RM\Q,

which, by Proposition 9.18 in [5], implies that |, € W(€).
We conclude by this and (@)
g

Proof of Theorem @ By (@), Lemma EI and point (@), it follows
that

(5.9) HwkﬁHLP(RN) — H¢kHLP(RN) , ase—0.
By (@) and (@), we have that
(5.10) limsup/ |Vwy [P de < plimsup ¢y
e—0 RN e—0
< pck
AP
= / ‘wsk‘ dz.
RN

From (@) and () it follows that

lim sup ||y
e—0

WLp(RN) < Hakle,p(RN)a

so that, by [5, Prop.3.32], we have that (wg ). , subconverges in WLr(RY)
to qASk, as € — 0. We conclude by Lemma p.2. O
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To finish, let us mention that, working like in this paper, the asymp-
totic results on energy and profiles obtained, respectively, in [9] and [L1]
for the flat case and finite case (cases also introduced in [6]) should also
hold for the p-version we dealt with.
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