Existence and Asymptotic of Solutions for a p-Laplace Schrödinger Equation with Critical Frequency

Juan Mayorga-Zambrano, Juan Burbano-Gallegos, Bryan Pérez-Pilco and Josué Castillo-Jaramillo

Sahand Communications in Mathematical Analysis

Print ISSN: 2322-5807
Online ISSN: 2423-3900
Volume: 20
Number: 4
Pages: 63-86
Sahand Commun. Math. Anal.
DOI: 10.22130/scma.2023.1986209.1232

[^0] http://scma.maragheh.ac.ir

Existence and Asymptotic of Solutions for a p-Laplace Schrödinger Equation with Critical Frequency

Juan Mayorga-Zambrano ${ }^{1 *}$, Juan Burbano-Gallegos ${ }^{2}$, Bryan Pérez-Pilco ${ }^{3}$ and Josué Castillo-Jaramillo ${ }^{4}$

Abstract

We study the Schrödinger equation $\left(\mathrm{Q}_{\varepsilon}\right):-\varepsilon^{2(p-1)} \Delta_{p} v+$ $V(x)|v|^{p-2} v-|v|^{q-1} v=0, x \in \mathbb{R}^{N}$, with $v(x) \rightarrow 0$ as $|x| \rightarrow+\infty$, for the infinite case, as given by Byeon and Wang for a situation of critical frequency, $\left\{x \in \mathbb{R}^{N} / V(x)=\inf V=0\right\} \neq \emptyset$. In the semiclassical limit, $\varepsilon \rightarrow 0$, the corresponding limit problem is (P) : $\Delta_{p} w+|w|^{q-1} w=0, x \in \Omega$, with $w(x)=0, x \in \partial \Omega$, where $\Omega \subseteq \mathbb{R}^{N}$ is a smooth bounded strictly star-shaped region related to the potential V. We prove that for $\left(\mathrm{Q}_{\varepsilon}\right)$ there exists a non-trivial solution with any prescribed L^{q+1}-mass. Applying a Ljusternik-Schnirelman scheme, shows that $\left(\mathrm{Q}_{\varepsilon}\right)$ and (P) have infinitely many pairs of solutions. Fixed a topological level $k \in \mathbb{N}$, we show that a solution of $\left(\mathrm{Q}_{\varepsilon}\right), v_{k, \varepsilon}$, sub converges, in $\mathrm{W}^{1, p}\left(\mathbb{R}^{N}\right)$ and up to scaling, to a corresponding solution of (P). We also prove that the energy of each solution, $v_{k, \varepsilon}$ converges to the corresponding energy of the limit problem (P) so that the critical values of the functionals associated, respectively, to $\left(\mathrm{Q}_{\varepsilon}\right)$ and (P) are topologically equivalent.

1. Introduction

The time-dependent nonlinear Schrödinger equation

$$
\begin{equation*}
i \hbar \Psi_{t}(x, t)+\frac{\hbar^{2}}{2} \Delta \Psi(x, t)-V_{0}(x) \Psi(x, t)+|\Psi(x, t)|^{q-1} \Psi(x, t)=0, \tag{1.1}
\end{equation*}
$$

helps to study phenomena like the evolution of Bose-Einstein condensates 12 and the propagation of light through nonlinear optical materials $\| 7]$. Here \hbar is the reduced Planck constant. Whenever \hbar is treated as a

[^1]small positive parameter which could tend to zero, a semi-classical state of (1.1) is a standing wave having the form $\Psi(x, t)=v(x) \exp (-i E t / \hbar)$, where v verifies
\[

$$
\begin{equation*}
\varepsilon^{2} \Delta v(x)-V(x) v(x)+|v(x)|^{q-1} v(x)=0 \tag{1.2}
\end{equation*}
$$

\]

with $\varepsilon^{2}=\hbar^{2} / 2$ and $V(x)=V_{0}(x)-E$.
In this paper, we consider the Dirichlet problem

$$
\left\{\begin{array}{l}
-\varepsilon^{2(p-1)} \Delta_{p} v+V(x)|v|^{p-2} v-|v|^{q-1} v=0, \quad x \in \mathbb{R}^{N}, \tag{1.3}\\
\lim _{|x| \rightarrow+\infty} v(x)=0
\end{array}\right.
$$

where $\varepsilon>0$ and $1<p<q+1<p^{*}$ with $p^{*}=p N /(N-p)$ if $N>p$ and $p^{*}=+\infty$ if $N \leq p$. Therefore, we generalize (1.2) by replacing the Laplace operator $\Delta=\Delta_{2}$ with the p-Laplace operator, $\Delta_{p} w=$ $\operatorname{div}\left(|\nabla w|^{p-2} \nabla w\right)$, which helps to model nonlinear diffusion phenomena.

Let's assume that $\mathcal{Z}=\left\{x \in \mathbb{R}^{N} / V(x)=\inf (V)\right\} \neq \emptyset$, and consider the following conditions:
(V1) $V \in \mathrm{C}(\mathbb{R})$ is non-negative;
(V2) $V(x) \rightarrow+\infty$, as $|x| \rightarrow+\infty$;
(V3) $\inf (V)=0$;
(V4) $\mathcal{Z}=\{0\}$ and $V(x)=\exp (-1 / a(x))$ if $|x| \leq 1$, where, for a bounded strictly star-shaped domain $\Omega \subseteq \mathbb{R}^{N}, a$ is an asymptotically (Ω, b)-quasihomogeneous function (see Section 2.1 for the precise statement).
Let's consider a positive function $g \in \mathrm{C}(] 0,+\infty[)$, whose form will be specified later, see (2.3). Then, by using the scaling

$$
\begin{align*}
& v(x)=[\varepsilon g(\varepsilon)]^{2(p-1) /(q+1-p)} u(g(\varepsilon) x), \\
& V_{\varepsilon}(x)=\frac{1}{[\varepsilon g(\varepsilon)]^{2(p-1)}} V\left(\frac{x}{g(\varepsilon)}\right), \tag{1.4}
\end{align*}
$$

$x \in \mathbb{R}^{N}$, it's clear that (1.3) is equivalent to

$$
\left\{\begin{array}{l}
-\Delta_{p} u(x)+V_{\varepsilon}(x)|u(x)|^{p-2} u(x)-|u(x)|^{q-1} u(x)=0, \quad x \in \mathbb{R}^{N}, \tag{1.5}\\
\lim _{|x| \rightarrow+\infty} u(x)=0
\end{array}\right.
$$

Conditions (V1)-(V3) are assumed throughout the document. The coercivity condition (V2) is typical to get compactness of the embedding of $\mathrm{E}_{\varepsilon}^{p}$, the Sobolev-like space where the solutions of (1.5) are to be found (see the beginning of Section 2.2), into a range of Lebesgue spaces. It is well known that, to obtain the same compactness, (V2) can be replaced by other weaker coercivity properties, see e.g. conditions (V8) and (V9) in [3]. With the help of the mentioned compact embedding, we prove
that the functions associated with (1.5) verify the Palais-Smale condition. Then, by a direct method, we first show that for (1.5), there exists a non-trivial solution with any prescribed L^{q+1}-mass; see Theorem 2.2 and Remark 2.3 below. Second, applying a Ljusternik-Schnirelman scheme, shows that (1.5) has infinitely many pairs of solutions, see Theorem 2.4 below.

In the context of Quantum Mechanics, $p=2$, condition (V3) is usually referred to as a situation of critical frequency because the solutions of (1.5) present concentration phenomena quite different to those of their counterparts in the non-critical setting, $\inf V>0$, see e.g. [1], [6] and [9] and the references therein.

Grossly speaking, condition (V4) says that $V(x)$ exponentially decreases to zero as x gets closer to $x_{0}=0$ and corresponds to the infinite case, as considered in [6] and [1]. For this situation, in Sections 4 and 5, we prove the asymptotic properties of the solutions as $\varepsilon \rightarrow 0$. We show, see Theorem 2.8, that the energy of each solution, $u_{k, \varepsilon}, k \in \mathbb{N}$, obtained by the Ljusternik-Schnirelman scheme converges to the corresponding energy of the functions associated with the limit problem of (1.5),

$$
\begin{cases}\Delta_{p} w(x)+|w(x)|^{q-1} w(x)=0, & x \in \Omega \tag{1.6}\\ w(x)=0, & x \in \partial \Omega\end{cases}
$$

where $\Omega \subseteq \mathbb{R}^{N}$ is a smooth, bounded, strictly star-shaped domain related to the potential V via condition (V4) (see Section 2.1). Since the index k represents the topological characteristic of the level set, as captured by Krasnoselskii's genus, the energy asymptotics says that the critical values of the functionals associated, respectively, to (1.5) and (1.6) are topologically equivalent. Finally, we prove asymptotic profiles for the mentioned solutions, see Theorem 2.9. In fact, up to scaling, each of these solutions converges in $\mathrm{W}^{1, p}\left(\mathbb{R}^{N}\right)$ to a function whose restriction to Ω is a solution of (1.6) and shares the energy level.

This paper is organized in the following way. In Section 2.1, we introduce, in a precise way, the setting of the infinite case for a critical frequency situation. Section 2.2, presents the Sobolev-like space $\mathrm{E}_{\varepsilon}^{p}$, where we find solutions of (1.5) and prove that it is reflexive. The statements of our existence results are also given in Section 2.2. Section 2.3, present the abstract theorems which are key tools in our work. The asymptotic properties are stated in Section 2.4. In Section 2.5 some estimates important, which to deal with the infinite case are introduced, together with some other valuable inequalities. In Section 3.1, we deal with the regularity of the functionals related to the problem (1.5). In Section 3.2, we prove that the functions associated with (1.5) verify the Palais-Smale condition, fundamental property to apply the mentioned
abstract tools. The energy asymptotics are proved in Section 4. Finally, the asymptotic profiles are proved in Section 5 .

2. Preliminaries, Infinite Case and Main Results

2.1. Infinite Case Setting. Let's consider $\Omega \subseteq \mathbb{R}^{N}$, a smooth bounded domain which is stricly star-shaped, i.e., there exists a ball $B \subseteq \Omega$ such that for every $(x, y) \in B \times \Omega$, the segment $[x, y]$ is contained in Ω. For every $q \geq 1, \Omega$ is a q-Poincaré domain, i.e., for some $M_{q}>0$ and every $u \in \mathrm{C}^{1}(\Omega),\left\|u-u_{\Omega}\right\|_{\mathrm{L}^{q}(\Omega)} \leq M_{q}\left(\int_{\Omega}|\nabla u(x)|^{q} d x\right)^{1 / q}$, where u_{Ω} denotes the average of u over $\Omega,[15]$.

Let's assume that the domain Ω is generated by a positive function $r \in \mathrm{C}\left(\mathbb{R}^{N} \backslash\{0\}\right)$ that verifies

$$
\begin{array}{ll}
x / t \in \partial \Omega, & \text { if } t=r(x) \\
x / t \in \Omega, & \text { if } t>r(x) \tag{2.1}\\
x / t \in \Omega^{c}, & \text { if } t<r(x)
\end{array}
$$

Therefore, for every $x \in \mathbb{R}^{N} \backslash\{0\}$ there exists a unique $s(x) \in \partial \Omega$ such that $x=r(x) s(x)$. It also holds

$$
\begin{array}{ll}
r(x)=1, & \text { if } x \in \partial \Omega \\
r(x)>1, & \text { if } x \in \bar{\Omega}^{c} \tag{2.2}\\
r(x)<1, & \text { if } x \in \Omega
\end{array}
$$

and $r(x / t)=r(x) / t$, for every $x \in \mathbb{R}^{N} \backslash\{0\}$ and every $t>0$.
Let's pick $b: \mathbb{R}^{N} \rightarrow \mathbb{R}$, a continuous Ω-quasi homogeneous function: there exists a function $\beta:[0,+\infty[\rightarrow \mathbb{R}$ such that
b1) $b(x)=\beta(r(x))$, for every $x \in \mathbb{R}^{N}$;
b2) β is non-negative and strictly-increasing;
b3) given $L=\lim _{r \rightarrow 0} \beta(c r) / \beta(r)$, it holds $L<1$ if $c<1$ and $L>1$ if $c>1$.
The function $a \in \mathrm{C}\left(\mathbb{R}^{N}\right)$ that appears in (V4) is asymptotically (Ω, b) quasihomogeneous function, i.e., a is positive and verifies

$$
\frac{a(x)}{b(x)} \rightarrow 1, \quad \text { as }|x| \rightarrow 0
$$

2.2. Existence of solutions in a Sobolev-like space. As usual, $\mathrm{W}^{1, p}\left(\mathbb{R}^{N}\right)$ denotes the Sobolev space of all the functions that, together with their weak derivatives, belong to $\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)$; it's equipped with the norm given by

$$
\|u\|_{\mathrm{W}^{1, p}\left(\mathbb{R}^{N}\right)}=\left[\|\nabla u\|_{\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)}^{p}+\|u\|_{\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)}^{p}\right]^{1 / p}
$$

We denote by $\mathrm{E}_{\varepsilon}^{p}$ the completion of $\mathrm{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ in the norm given by

$$
\|u\|_{\varepsilon}=\left(\int_{\mathbb{R}^{N}}\left[|\nabla u(x)|^{p}+V_{\varepsilon}(x)|u(x)|^{p}\right] d x\right)^{1 / p}
$$

where V_{ε} is given in (1.4) and

$$
\begin{equation*}
g(\varepsilon)=\frac{1}{\beta^{-1}\left(\frac{-1}{\ln \left(\varepsilon^{2}\right)}\right)} \tag{2.3}
\end{equation*}
$$

It's quite clear that, for $r \in\left[p, p^{*}\right]$, the embeddings $\mathrm{E}_{\varepsilon}^{p} \subseteq \mathrm{~W}^{1, p}\left(\mathbb{R}^{N}\right) \subseteq$ $\mathrm{L}^{r}\left(\mathbb{R}^{N}\right)$ are continuous and, therefore, there exists $c_{r}>0$ such that, for every $u \in \mathrm{E}_{\varepsilon}^{p}$,

$$
\begin{align*}
& \|u\|_{\mathrm{L}^{r}\left(\mathbb{R}^{N}\right)} \leq c_{r}\|u\|_{\varepsilon} \tag{2.4}\\
& \|u\|_{\mathrm{W}^{1, p}\left(\mathbb{R}^{N}\right)} \leq\left(1+c_{p}^{p}\right)^{1 / p}\|u\|_{\varepsilon} \tag{2.5}
\end{align*}
$$

Actually, by applying Fréchet-Kolmogorov's theorem (see e.g. [5, Cor.4.27]), it's obtained, for every $r \in\left[p, p^{*}[\right.$, that

$$
\begin{equation*}
\mathrm{E}_{\varepsilon}^{p} \subseteq \mathrm{~L}^{r}\left(\mathbb{R}^{N}\right), \text { compactly. } \tag{2.6}
\end{equation*}
$$

It is worth to mention that in the proof of (2.6), the coercivity property (V2) compensates the non-boundedness of the domain.

Lemma 2.1. Let $\varepsilon>0$. The space $\mathrm{E}_{\varepsilon}^{p}$ is reflexive.
Proof. Let's consider the Banach space $Y=\mathrm{L}_{\varepsilon}^{p}\left(\mathbb{R}^{N}\right) \times\left[\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)\right]^{N}$, where

$$
\begin{aligned}
& \|(u, w)\|_{Y}=\left(\|u\|_{L_{\varepsilon}^{p}\left(\mathbb{R}^{N}\right)}^{p}+\|w\|_{\left[\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)\right]^{N}}\right)^{1 / p} \\
& \|u\|_{L_{\varepsilon}^{p}\left(\mathbb{R}^{N}\right)}=\left(\int_{\mathbb{R}^{N}}|u|^{p} d \mu\right)^{1 / p}, \quad d \mu=V_{\varepsilon}(x) d x \\
& \|w\|_{\left[L^{p}\left(\mathbb{R}^{N}\right)\right]^{N}}=\left\|\left(w_{1}, \ldots, w_{N}\right)\right\|_{\left[L^{p}\left(\mathbb{R}^{N}\right)\right]^{N}}=\left(\int_{\mathbb{R}^{N}}|w|^{p} d x\right)^{1 / p} .
\end{aligned}
$$

The reflexivity of the spaces $\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)$ and $\mathrm{L}_{\varepsilon}^{p}\left(\mathbb{R}^{N}\right)$ (see [4, Th. 4.7.15 and Cor. 4.7.16]) implies that of Y. The operator $T: \mathrm{E}_{\varepsilon}^{p} \rightarrow Y$, given by

$$
T(u)=(u, \nabla u),
$$

is an isometry. Since $\mathrm{E}_{\varepsilon}^{p}$ is a Banach space, it follows that $T\left(\mathrm{E}_{\varepsilon}^{p}\right)$ is a closed subspace of Y. Therefore, by [5, Prop. 3.20], $T\left(\mathrm{E}_{\varepsilon}^{p}\right)$ is also reflexive, so that $\mathrm{E}_{\varepsilon}^{p}$ is reflexive.

Let's consider the functional $I_{\epsilon}: \mathrm{E}_{\varepsilon}^{p} \rightarrow \mathbb{R}$, given by

$$
I_{\epsilon}(u)=\frac{1}{p}\|u\|_{\varepsilon}^{p}
$$

and, given $\alpha>0$, the functional $J_{\epsilon, \alpha}$, which is the restriction of I_{ϵ} to the manifold $\mathcal{M}_{\epsilon, \alpha}=\left\{u \in \mathrm{E}_{\varepsilon}^{p} /\|u\|_{\mathrm{L}^{q+1}\left(\mathbb{R}^{N}\right)}=\alpha\right\}$. We shall denote $\mathcal{M}_{\epsilon}=\mathcal{M}_{\epsilon, 1}$ and $J_{\epsilon}=J_{\epsilon, 1}$.

Now we can state our first main result.
Theorem 2.2. Let $\alpha>0$. There exists $w_{*} \in \mathcal{M}_{\epsilon, \alpha}$ such that

$$
J_{\epsilon, \alpha}\left(w_{*}\right)=\inf _{w \in \mathcal{M} \epsilon, \alpha} J_{\epsilon, \alpha}(w) .
$$

Moreover, the function given by

$$
\begin{equation*}
u_{*}(x)=\left[\frac{\alpha^{q+1}}{p c}\right]^{1 /(p-q-1)} w_{*}(x), \quad x \in \mathbb{R}^{N}, \tag{2.7}
\end{equation*}
$$

with $c=J_{\varepsilon, \alpha}\left(w_{*}\right)$, is a weak solution of (1.5).
Remark 2.3. Let $\alpha>0$ and u, v and w functions related to each other by
$v(x)=[\varepsilon g(\varepsilon)]^{2(p-1) /(q+1-p)} u(g(\varepsilon) x), \quad u(x)=\left[\frac{\alpha^{q+1}}{p c}\right]^{1 /(p-q-1)} w(x)$, $x \in \mathbb{R}^{N}$. If $w \in \mathcal{M}_{\epsilon, \alpha}$, then $u \in \mathcal{M}_{\epsilon, \alpha_{1}}$ and $v \in \mathcal{M}_{\epsilon, \alpha_{2}}$, where

$$
\alpha_{1}=\left[\frac{\alpha^{p}}{p c}\right]^{1 /(p-q-1)}, \quad \alpha_{2}=\left[\varepsilon^{2(p-1)} g^{\nu}(\varepsilon) \frac{p c}{\alpha^{p}}\right]^{1 /(p-q-1)}
$$

with $\nu=2(p-1)-N[1-p /(q+1)]$. Therefore, Theorem 2.2 implies that, by choosing an appropriate value of $\alpha>0$, we can find a non-trivial solution of (1.5) (or (1.3)) with any prescribed L^{q+1}-mass.

Our second main result provides infinitely many pairs of solutions for (1.5), by means of a Ljusternik-Schnirelman scheme. For this we need the concept of genus. Let E be a Banach space. We write

$$
\Sigma_{E}=\{A \subseteq E / A=\bar{A}, A=-A, 0 \notin A\}
$$

By $\gamma(A)$, we denote the genus of $A \in \Sigma_{E}$, i.e., the least natural number k for which there exists an odd function $f \in \mathrm{C}\left(A, \mathbb{R}^{k} \backslash\{0\}\right)$. If there is no such k, then $\gamma(A)=+\infty$; and, by definition, $\gamma(\emptyset)=0$. The concept of genus generalizes, [14] the notion of dimension: if \mathbb{S}^{m-1} and \mathbb{S}_{X}^{∞} are the unit-spheres of \mathbb{R}^{m} and X, an infinite-dimension Banach space, respectively, then $\gamma\left(\mathbb{S}^{m-1}\right)=m$ and $\gamma\left(\mathbb{S}_{X}^{\infty}\right)=+\infty$.
let us fix $\alpha=1$ and write

$$
\Sigma_{\varepsilon}=\left\{A \subseteq \mathrm{E}_{\varepsilon}^{p} / A=\bar{A}, A=-A, 0 \notin A\right\}
$$

It's clear that $\mathcal{M}_{\varepsilon} \in \Sigma_{\varepsilon}$. For $k \in \mathbb{N}$, we put

$$
\mathcal{A}_{k, \varepsilon}=\left\{A \in \Sigma_{\varepsilon} / A \subseteq \mathcal{M}_{\varepsilon} \wedge \gamma(A) \geq k\right\},
$$

$$
\begin{equation*}
c_{k, \varepsilon}=\inf _{A \in \mathcal{A}_{k, \varepsilon}} \max _{u \in A} J_{\varepsilon}(u) . \tag{2.8}
\end{equation*}
$$

Theorem 2.4. Let $k \in \mathbb{N}$.
i) $c_{k, \varepsilon}$ is a positive critical value of J_{ε} which has at least two corresponding critical points.
ii) If $w_{k, \varepsilon}$ is a critical point of J_{ε} such that $J_{\varepsilon}\left(w_{k, \varepsilon}\right)=c_{k, \varepsilon}$, then the function given by

$$
u_{k, \varepsilon}(x)=\left[p c_{k, \varepsilon}\right]^{1 /(q+1-p)} w_{k, \varepsilon}(x), \quad x \in \mathbb{R}^{N},
$$

is a weak solution of (1.5).
By using Lagrange multipliers, it's not difficult to see that formulas (2.7) and (2.9) produce weak solutions of (1.5) departing from critical points of $J_{\varepsilon, \alpha}$ and J_{ε}. For example, if we assume that w is a critical point of $J_{\varepsilon, \alpha}$, then $L_{\lambda}^{\prime}(w)=0$ and $\|w\|_{L^{q+1}\left(\mathbb{R}^{N}\right)}=\alpha$, where $\lambda \in \mathbb{R}$ is the Lagrange multiplier and $L_{\lambda}=I_{\varepsilon}-\lambda \Phi$ with $\Phi: \mathrm{E}_{\varepsilon}^{p} \rightarrow \mathbb{R}$, the function that defines the manifold, given by

$$
\begin{equation*}
\Phi(u)=\|u\|_{\mathrm{L}^{q+1}\left(\mathbb{R}^{N}\right)}^{q+1}-\alpha^{q+1} . \tag{2.10}
\end{equation*}
$$

Therefore, see Proposition 3.2 below, for every $h \in \mathrm{E}_{\varepsilon}^{p}$,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left[|\nabla w|^{p-2} \nabla w \nabla h+V_{\varepsilon}|w|^{p-2} w h\right] d x-\lambda(q+1) \int_{\mathbb{R}^{N}}|w|^{q-1} w h d x=0 . \tag{2.11}
\end{equation*}
$$

By choosing $h=w$, we get $\lambda(q+1)=p c / \alpha^{q+1}$ with $c=J_{\varepsilon, \alpha}(w)$, so that w is a weak solution of

$$
-\Delta_{p} w(x)+V_{\varepsilon}(x)|w(x)|^{p-2} w(x)-\frac{p c}{\alpha^{q+1}}|w(x)|^{q-1} w(x)=0, \quad x \in \mathbb{R}^{N},
$$

whence the function $u=\left[\alpha^{q+1} /(p c)\right]^{1 /(p-q-1)} w$ is a weak solution of (1.5).
2.3. Abstract Tools. Let E be a Banach space, $I \in \mathrm{C}^{1}(E)$ and $M=$ $G^{-1}(\{0\}) \subseteq E$, the manifold determined by a functional $G \in \mathrm{C}^{1, \eta}(E)$, $\eta>0$, which verifies

$$
\forall u \in M: G^{\prime}(u) \neq 0
$$

Recall that $G \in \mathrm{C}^{1, \eta}(E)$ means that $G^{\prime}: E \rightarrow E^{\prime}$ is of class $\mathrm{C}^{0, \eta}$.
A sequence $\left(u_{n}\right)_{n \in \mathbb{N}} \subseteq M$ is said to be a Palais-Smale sequence, or simply a $(P S)$ sequence, for the functional I iff $\left(I\left(u_{n}\right)\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ is bounded and $\left.I\right|_{M} ^{\prime}\left(u_{n}\right) \rightarrow 0$ in E^{\prime}, as $n \rightarrow+\infty$. If for some $m \in \mathbb{R}$, it holds $I\left(u_{n}\right) \rightarrow m$, as $n \rightarrow+\infty$, we say that $\left(u_{n}\right)_{n \in \mathbb{N}} \subseteq M$ is a $(P S)_{m}$ sequence.

We say that the functional I verifies the condition $(P S)\left(\right.$ or $\left.(P S)_{m}\right)$ on M iff every $(P S)$ (or $\left.(P S)_{m}\right)$ sequence has a converging subsequence. If
$(P S)_{m}$ holds, the critical level $K_{m}=\left\{u \in M /\left.I\right|_{M} ^{\prime}(u)=0 \wedge I(u)=m\right\}$ is compact.

We shall prove Theorem 2.2 by applying the following result, see [2, Theorem 7.12 and Remark 7.13] and [8].

Theorem 2.5. Suppose that $\left.I\right|_{M}$ is bounded from below and satisfies $(P S)_{\mu}$, where $\mu=\inf _{w \in M} I(w)$. Then, there exists $w_{0} \in M$ such that

$$
I\left(w_{0}\right)=\mu, \quad\left(\left.I\right|_{M}\right)^{\prime}\left(w_{0}\right)=0
$$

To prove Theorem [2.4, we shall use Theorem 2.7 below, see e.g. [13]. In Section 2.2, Krasnoselskii's genus was introduced; it verifies the following properties whose proof can be found in [14].

Proposition 2.6. Let $A, B \in \Sigma_{E}$.
i) If $f \in \mathrm{C}(A, B)$ is odd, then $\gamma(A) \leq \gamma(B)$.
ii) If $A \subseteq B$, then $\gamma(A) \leq \gamma(B)$.
iii) If A is compact, then $\gamma(A)<+\infty$.

Now we can present our second abstract tool, a Ljusternik-Schnirelman scheme.
Theorem 2.7. Let $\tilde{M} \in \Sigma_{E}$ be a C^{1} manifold and assume that I is even. Suppose that $\left.I\right|_{\tilde{M}}$ verifies the $(P S)$ condition. For each $k \in \mathbb{N}$, let

$$
C_{k}(I)=\inf _{A \in \mathcal{A}_{k}(\tilde{M})} \max _{u \in A} I(u),
$$

where $\mathcal{A}_{k}(\tilde{M})=\left\{A \in \Sigma_{E} / A \subseteq M \wedge \gamma(A) \geq k\right\}$.
i) If $C_{k}(I) \in \mathbb{R}$, then $C_{k}(I)$ is a critical value for $\left.I\right|_{\tilde{M}}$.
ii) If $c \equiv C_{k}(I)=\cdots=C_{k+m}(I)$, then $\gamma\left(K_{c}\right) \geq m+1$. In particular, if $m>1, K_{c}$, contains infinitely many elements.
Then, in the context of Theorems 2.5 and 2.7, we shall prove that the following objects verify the needed conditions:

$$
E=\mathrm{E}_{\varepsilon}^{p}, \quad M=\tilde{M}=\mathcal{M}_{\varepsilon}, \quad I=I_{\varepsilon},\left.\quad I\right|_{M}=\left.I\right|_{\tilde{M}}=J_{\varepsilon, \alpha}, \quad G=\Phi .
$$

2.4. Asymptotic behaviour of the solutions. Now we deal with the infinite case as given in [6] and [1], so that condition (V4), detailed in Section 2.1, is assumed to hold.

Let's first mention that Theorem 2.7 can be applied to (1.6), the limit problem of (1.5). For this, let's consider the functional $J: \mathcal{M} \subseteq$ $\mathrm{W}_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$, given by

$$
\begin{aligned}
J(u) & =\frac{1}{p}\|u\|_{\mathrm{W}_{0}^{1, p}(\Omega)}^{p} \\
& =\frac{1}{p} \int_{\Omega}|\nabla u(x)|^{p} d x
\end{aligned}
$$

where $\mathcal{M}=\left\{u \in \mathrm{~W}_{0}^{1, p}(\Omega) /\|u\|_{\mathrm{L}^{q+1}(\Omega)}=1\right\}$. Let's write, for $k \in \mathbb{N}$,

$$
\begin{aligned}
& \Sigma=\left\{A \subseteq \mathrm{~W}_{0}^{1, p}(\Omega) / A=\bar{A}, A=-A, 0 \notin A\right\} \\
& \mathcal{A}_{k}=\{A \in \Sigma / A \subseteq \mathcal{M} \wedge \gamma(A) \geq k\} \\
& c_{k}=\inf _{A \in \mathcal{A}_{k}} \max _{u \in A} J(u)
\end{aligned}
$$

Let $k \in \mathbb{N}$. As in Theorem 2.4, the following points are true.
i) c_{k} is a positive critical value of J which has at least two corresponding critical points.
ii) If w_{k} is a critical point of J such that $J\left(w_{k}\right)=c_{k}$, then the function given by $u_{k}(x)=\left[p c_{k}\right]^{1 /(q+1-p)} w_{k}(x), x \in \Omega$, is a weak solution of (1.6).
In the context of Theorem 2.7, the Ljusternik-Schnirelman device is applied to problems (1.5) and (1.6) to obtain the solutions $u_{k, \varepsilon}$ and u_{k}, $k \in \mathbb{N}$, respectively, the index k represents the topological characteristic of the level set, as captured by Krasnoselskii's genus. Therefore, the following result on the asymptotic energies implies that the critical values of J_{ε} and J are topologically equivalent.

Theorem 2.8. Let $k \in \mathbb{N}$. Then, $c_{k, \varepsilon} \rightarrow c_{k}$, as $\varepsilon \rightarrow 0$.
Grossly speaking, our last main result, that we will present states that, as $\varepsilon \rightarrow 0$ and up to scaling, each function $u_{k, \varepsilon}$ sub converges in $\mathrm{W}^{1, p}\left(\mathbb{R}^{N}\right)$ to a solution of (1.6) that shares the energy level. Let's recall [6] that a family of functions $\left(f_{\varepsilon}\right)_{\varepsilon>0}$ is said to sub converge in a space X, as $\varepsilon \rightarrow 0$, iff every sequence $\left(\varepsilon_{n}\right)_{n \in \mathbb{N}}$ converging to zero, has a subsequence $\left(\varepsilon_{n_{i}}\right)_{i \in \mathbb{N}}$ such that $\left(f_{\varepsilon_{n_{i}}}\right)_{i \in \mathbb{N}}$ converges in X, as $i \rightarrow+\infty$.

Theorem 2.9. Let $k \in \mathbb{N}$. Then, as $\varepsilon \rightarrow 0$, thefamily $\left(u_{k, \varepsilon}\right)_{\varepsilon>0}$ subconverges in $\mathrm{W}^{1, p}\left(\mathbb{R}^{N}\right)$ to some $\phi_{k} \in \mathrm{~W}^{1, p}\left(\mathbb{R}^{N}\right)$ such that its restriction to Ω is a solution of (1.6) and verifies $J\left(\left.\hat{\phi}_{k}\right|_{\Omega}\right)=c_{k}$, where

$$
\hat{\phi}_{k}(x)=\left[p c_{k}\right]^{1 /(q+1-p)} \phi_{k}(x), \quad x \in \mathbb{R}^{N} .
$$

2.5. Preliminaries and Some Useful Results. Let's review some properties which come from (2.1), b1), b2) and b3).

The functions g and V_{ε} are given in (1.4) and (2.3) so that, by (V4),

$$
V_{\varepsilon}(x)=\frac{1}{[\varepsilon g(\varepsilon)]^{2(p-1)}} \exp \left(-\frac{1}{a(x / g(\varepsilon))}\right), \quad|x| \leq g(\varepsilon) .
$$

In [6] the following properties are stated. First we have that $g(\varepsilon) \rightarrow+\infty$, as $\varepsilon \rightarrow 0$. Second, there exists $\gamma>0$ such that $\beta(r) / r^{\gamma} \rightarrow 0$, as $r \rightarrow 0$,
and $g(\varepsilon) /|\ln (\varepsilon)|^{1 / \gamma} \rightarrow 0$, as $\varepsilon \rightarrow 0$. Third, for every $\tau>0$,

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \frac{1}{g^{2}(\varepsilon)} \exp \left(\frac{\tau}{\beta(1 / g(\varepsilon))}\right) & =\lim _{\varepsilon \rightarrow 0} \frac{1}{\left[\varepsilon^{\tau} g(\varepsilon)\right]^{2}} \\
& =+\infty
\end{aligned}
$$

As a consequence of condition b3), the following results are true. Proposition 2.10 is stated in [6] for compact subsets of Ω. Proposition 2.11 is given as in [1, Prop. 2.9].

Proposition 2.10. For every measurable set $B \subseteq \Omega$,

$$
\left\|V_{\varepsilon}\right\|_{L^{\infty}(B)} \rightarrow 0, \quad \text { as } \varepsilon \rightarrow 0
$$

Proposition 2.11. There exists $D \in] 0,1[$ such that for all $d>1$,

$$
\lim _{\varepsilon \rightarrow 0} \min _{x \in R_{\varepsilon, D, d}} V_{\varepsilon}(x)=+\infty,
$$

where $R_{\varepsilon, D, d}=\left\{x \in \mathbb{R}^{N} /|x| \leq D g(\varepsilon) \wedge r(x) \geq d\right\}$.
Remark 2.12. As a consequence of Proposition 2.10, we have that

$$
\begin{equation*}
\forall \mu>0, \exists \check{\varepsilon}=\check{\varepsilon}(\mu)>0: \varepsilon \in] 0, \check{\varepsilon}\left[\quad \Rightarrow \quad\left\|V_{\varepsilon}\right\|_{L^{\infty}(\Omega)}<\mu .\right. \tag{2.13}
\end{equation*}
$$

By (2.2), in the context of Proposition 2.11, $R_{\varepsilon, D, d}$ is the set of points that belong to the closed ball centered at zero and of radius $D g(\varepsilon)$ but which are outside the expanded star $\Omega_{d}=\left\{x \in \mathbb{R}^{N} / r(x)<d\right\}$.

Given an open set $\omega \subseteq \mathbb{R}^{N}$, we will always identify a function $f \in$ $\mathrm{W}_{0}^{1, p}(\omega)$ with its extension by zero: $\bar{f}(x)=f(x)$ if $x \in \omega$ and $\bar{f}(x)=0$ if $x \in \omega^{c}$. We have the following result.
Proposition 2.13. Let $\varepsilon>0$. Then the embedding $\mathrm{W}_{0}^{1, p}(\Omega) \subseteq \mathrm{E}_{\varepsilon}^{p}$ is continuous. On $\mathrm{W}_{0}^{1, p}(\Omega)$ the norms $\|\cdot\|_{\varepsilon}$ and $\|\cdot\|_{\mathrm{W}_{0}^{1, p}(\Omega)}$ are equivalent.
Proof. We have, for every $u \in \mathrm{~W}_{0}^{1, p}(\Omega)$, that

$$
\begin{equation*}
\|u\|_{\mathrm{W}_{0}^{1, p}(\Omega)} \leq\|u\|_{\varepsilon} \leq C_{\Omega, \varepsilon}\|u\|_{\mathrm{W}_{0}^{1, p}(\Omega)} \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{\Omega, \varepsilon}=\left(1+C_{\Omega}^{p}\left\|V_{\varepsilon}\right\|_{L^{\infty}(\Omega)}\right)^{1 / p}>0 \tag{2.15}
\end{equation*}
$$

with $C_{\Omega}^{p}>0$ the constant appearing in Poincaré's inequality, $[5$, Cor. 9.19].

Remark 2.14. For future reference, let's mention that Proposition 2.13, in particular point (2.14), is still true if we replace Ω by any $U \subseteq \mathbb{R}^{N}$ open and bounded.

Let's recall that the inverse Hölder's inequality is given in the following way, $[16$, Th.13.6]. Let $r \in] 0,1\left[, f \in \mathrm{~L}^{r}\left(\mathbb{R}^{N}\right)\right.$ and $g \in \mathrm{~L}^{r^{\prime}}\left(\mathbb{R}^{N}\right)$. Then,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} f(x) g(x) d x \geq\left(\int_{\mathbb{R}^{N}} f(x)^{r} d x\right)^{1 / r}\left(\int_{\mathbb{R}^{N}} g(x)^{r^{\prime}} d x\right)^{1 / r^{\prime}} \tag{2.16}
\end{equation*}
$$

To end this section, we introduce a number of useful inequalities, [10]. Let $x, y \in \mathbb{R}^{N}$. Then,

$$
\begin{array}{ll}
2^{2-\theta}|y-x|^{\theta-1} \geq\left||y|^{\theta-2} y-|x|^{\theta-2} x\right|, & \text { if } 1 \leq \theta \leq 2 ; \\
2^{2-\theta}|y-x|^{\theta} \leq\left(|y|^{\theta-2} y-|x|^{\theta-2} x\right) \cdot(y-x), & \text { if } \theta \geq 2 ; \\
|y-x|^{2} \leq \frac{\left(|y|^{\theta-2} y-|x|^{\theta-2} x\right) \cdot(y-x)}{(\theta-1)\left(1+|y|^{2}+|x|^{2}\right)^{(\theta-2) / 2}}, & \text { if } 1<\theta<2 ; \\
|x-y|^{\theta} \leq 2^{\theta / 2}\left(|x|^{2}+|y|^{2}\right)^{\theta / 2}, & \text { if } \theta>0 . \tag{2.20}
\end{array}
$$

In (2.18) and (2.19), the dot represents the inner-product on \mathbb{R}^{N}. The inequality (2.20) follows easily from the parallelogram identity in \mathbb{R}^{N}.

3. Proof of the Existence Results

In this section we prove our existence results, Theorems 2.2 and 2.4 , by verifying the conditions of Theorems 2.5 and 2.7 , respectively.
3.1. Regularity of the manifold and the energy functional. Let's first show that the manifold $\mathcal{M}_{\varepsilon}$ verifies the conditions required in Theorems 2.5 and 2.7. Observe that the closedness of $\mathcal{M}_{\varepsilon}$ comes from point (2.4). The symmetry of $\mathcal{M}_{\varepsilon}$ and $0 \notin \mathcal{M}_{\varepsilon}$ is clear.

Proposition 3.1. The manifold $\mathcal{M}_{\varepsilon}$ is of class $\mathrm{C}^{1, q}$.
Proof. The proof that Φ, given in (2.10), is Fréchet-differentiable is quite standard and uses the continuity of the embedding $\mathrm{E}_{\varepsilon}^{p} \subseteq \mathrm{~L}^{q+1}\left(\mathbb{R}^{N}\right)$. We have, for $u, h \in \mathrm{E}_{\varepsilon}^{p}$, that

$$
\left\langle\Phi^{\prime}(u), h\right\rangle=(q+1) \int_{\mathbb{R}^{N}}|u(x)|^{q-1} u(x) h(x) d x .
$$

Let's prove that $\Phi \in \mathrm{C}^{1, q}$, i.e., that $\Phi^{\prime}: \mathrm{E}_{\varepsilon}^{p} \rightarrow\left(\mathrm{E}_{\varepsilon}^{p}\right)^{\prime}$ is of class $\mathrm{C}^{0, q}$:

$$
\begin{equation*}
\exists \beta>0, \forall u, v \in \mathrm{E}_{\varepsilon}^{p}: \quad\left\|\Phi^{\prime}(u)-\Phi^{\prime}(v)\right\| \leq \beta\|u-v\|_{\varepsilon}^{q} . \tag{3.1}
\end{equation*}
$$

Let's assume that $1<p<1+q<\min \left\{p^{*}, 2\right\}$ so that, by (2.17), it holds

$$
\begin{equation*}
\forall x, y \in \mathbb{R}^{N}:\left.\quad| | y\right|^{q-1} y-|x|^{q-1} x\left|\leq 2^{1-q}\right| y-\left.x\right|^{q} . \tag{3.2}
\end{equation*}
$$

Let $u, v, w \in \mathrm{E}_{\varepsilon}^{p}$. By (3.2) and Hölder inequality with $P=(q+1) / q$ and $P^{\prime}=q+1$, we get

$$
\frac{1}{q+1}\left|\Phi^{\prime}(u) w-\Phi^{\prime}(v) w\right|
$$

$$
\begin{aligned}
& =\left|\int_{\mathbb{R}^{N}}\left[|u(x)|^{q-1} u(x)-|v(x)|^{q-1} v(x)\right] w(x) d x\right| \\
& \leq\left[\int_{\mathbb{R}^{N}}|u u|^{q-1} u-\left.|v|^{q-1} v\right|^{(q+1) / q} d x\right]^{q /(q+1)}\|w\|_{L^{q+1}\left(\mathbb{R}^{N}\right)} \\
& \leq 2^{1-q}\left[\int_{\mathbb{R}^{N}}|u(x)-v(x)|^{q+1} d x\right]^{q /(q+1)}\|w\|_{L^{q+1}\left(\mathbb{R}^{N}\right)} \\
& \leq 2^{1-q} c_{q+1}^{q+1}\|u-v\|_{\varepsilon}^{q}\|w\|_{\varepsilon},
\end{aligned}
$$

which, by the arbitrariness of w, u and v, implies (3.1) with $\beta=(q+$ 1) $2^{1-q} c_{q+1}^{q+1}$, where c_{q+1} comes from (2.4). The case of $2 \leq 1+q<p^{*}$ is handled in a similar way.

Having in mind Theorems 2.5 and 2.7, let's now verify that the energy functional, I_{ϵ}, is of class C^{1}.

Proposition 3.2. The functional I_{ε} is Fréchet-differentiable and, for every $u, h \in \mathrm{E}_{\varepsilon}^{p}$,

$$
\begin{equation*}
\left\langle I_{\varepsilon}^{\prime}(u), h\right\rangle=\int_{\mathbb{R}^{N}}\left[|\nabla u|^{p-2} \nabla u \nabla h+V_{\varepsilon}(x)|u|^{p-2} u h\right] d x . \tag{3.3}
\end{equation*}
$$

Proof. Let $u, h \in \mathrm{E}_{\varepsilon}^{p}$. By direct computation,

$$
\begin{aligned}
\partial_{h} I_{\epsilon}(u) & =\left.\frac{d}{d t} J_{\varepsilon}(u+t h)\right|_{t=0} \\
& =\int_{\mathbb{R}^{N}}\left[|\nabla u|^{p-2} \nabla u \cdot \nabla h+V_{\varepsilon}(x)|u|^{p-2} u h\right] d x,
\end{aligned}
$$

so that the directional derivative exists and coincides with the right side of (3.3).

The linear functional $\Psi: \mathrm{E}_{\varepsilon}^{p} \rightarrow \mathbb{R}$, given by

$$
\Psi(w)=\int_{\mathbb{R}^{N}}\left[|\nabla u|^{p-2} \nabla u \cdot \nabla w+V_{\varepsilon}(x)|u|^{p-2} u w\right] d x
$$

is continuous so that I_{ε} is differentiable at u. In fact, since $p^{\prime}=p /(p-1)$, given $w \in \mathrm{E}_{\varepsilon}^{p}$, we have, by Hölder and triangle inequalities, that

$$
\begin{aligned}
|\Psi(w)| \leq & \int_{\mathbb{R}^{N}}|\nabla u|^{p-2} \nabla u \cdot \nabla w+\left(V_{\varepsilon}^{1 / p^{\prime}}|u|^{p-2} u\right)\left(V_{\varepsilon}^{1 / p} w\right) \mid d x \\
\leq & \|\nabla u\|_{L^{p}\left(\mathbb{R}^{N}\right)}^{p-1}\|\nabla w\|_{L^{p}\left(\mathbb{R}^{N}\right)} \\
& +\left(\int_{\mathbb{R}^{N}} V_{\epsilon}|u|^{p} d x\right)^{(p-1) / p}\left(\int_{\mathbb{R}^{N}} V_{\epsilon}|w|^{p} d x\right)^{1 / p} \\
\leq & \|\nabla u\|_{L^{p}\left(\mathbb{R}^{N}\right)}^{p-1}\|w\|_{\varepsilon}+\|u\|_{\varepsilon}^{p-1}\|w\|_{\varepsilon} \leq c\|w\|_{\varepsilon},
\end{aligned}
$$

for any constant $c>\|\nabla u\|_{\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)}^{p-1}+\|u\|_{\varepsilon}^{p-1}$.

Let's recall that for $z>0$ and $\mu \in \mathbb{R}$ such that $z+\mu>0$ it holds

$$
(z+\mu)^{p / 2}=z^{p / 2}+\frac{p}{2} z^{(p-2) / 2} \mu+g(\mu),
$$

with $g(\mu)=o(\mu)$. With this, it is not difficult to show that $\Gamma(h) /\|h\|_{\varepsilon} \rightarrow$ 0 , as $\|h\|_{\varepsilon} \rightarrow 0$, where $\Gamma(h)=I_{\epsilon}(u+h)-I_{\epsilon}(u)-\Psi(h)$, so that $\Gamma(h)=$ $o(h)$. Since u and h were chosen arbitrarily, we have proved that I_{ε} is Fréchet-differentiable and that (3.3) holds.

Proposition 3.3. The functional I_{ε} is of class C^{1}.
Proof. We have to prove that I_{ε}^{\prime} is continuous. I_{ϵ}^{\prime} is continuous at $u_{0} \in$ $\mathrm{E}_{\varepsilon}^{p}$ iff given any $\mu>0$ there exists $\delta>0$ such that if $u \in \mathrm{E}_{\varepsilon}^{p}$ verifies $\left\|u-u_{0}\right\|_{\varepsilon}<\delta$, then

$$
\begin{equation*}
\forall v \in \mathrm{E}_{\varepsilon}^{p}: \quad\left|\left\langle I_{\epsilon}^{\prime}(u)-I_{\epsilon}^{\prime}\left(u_{0}\right), v\right\rangle\right| \leq \mu\|v\|_{\varepsilon} . \tag{3.4}
\end{equation*}
$$

Let's assume that $1<p \leq 2$. Let $u_{0} \in \mathrm{E}_{\varepsilon}^{p}$ and $\mu>0$. Take $0<\delta<$ $\left(2^{p-3} \mu\right)^{1 /(p-1)}$. Then, for $u, v \in \mathrm{E}_{\varepsilon}^{p}$ with $\left\|u-u_{0}\right\|_{\varepsilon}<\delta$, we get, by using (2.17) and Hölder's inequality, that

$$
\begin{aligned}
& \left|\left\langle I_{\varepsilon}^{\prime}\left(u_{0}\right)-I_{\varepsilon}^{\prime}(u), v\right\rangle\right| \leq\left.\int_{\mathbb{R}^{N}}| | \nabla u_{0}\right|^{p-2} \nabla u_{0}-|\nabla u|^{p-2} \nabla u| | \nabla v \mid d x \\
& +\left.\int_{\mathbb{R}^{N}} V_{\varepsilon}(x)| | u_{0}\right|^{p-2} u_{0}-|u|^{p-2} u| | v \mid d x \\
& \leq 2^{2-p}\left(\int_{\mathbb{R}^{N}}\left|\nabla u_{0}-\nabla u\right|^{p-1}|\nabla v| d x+\int_{\mathbb{R}^{N}} V_{\varepsilon}(x)\left|u_{0}-u\right|^{p-1}|v| d x\right) \\
& \leq 2^{2-p}\left[\left(\int_{\mathbb{R}^{N}}\left|\nabla u_{0}-\nabla u\right|^{p} d x\right)^{\frac{p-1}{p}}\|\nabla v\|_{L^{p}\left(\mathbb{R}^{N}\right)}\right. \\
& \left.+\left(\int_{\mathbb{R}^{N}} V_{\varepsilon}(x)\left|u_{0}-u\right|^{p} d x\right)^{\frac{p-1}{p}}\left\|V_{\varepsilon}^{1 / p} v\right\|_{L^{p}\left(\mathbb{R}^{N}\right)}\right] \\
& \leq 2^{2-p}\left(\left\|\nabla u_{0}-\nabla u\right\|_{L^{p}\left(\mathbb{R}^{N}\right)}^{p-1}+\left\|V_{\varepsilon}^{1 / p}\left(u_{0}-u\right)\right\|_{L^{p}\left(\mathbb{R}^{N}\right)}^{p-1}\right)\|v\|_{\varepsilon} \\
& \leq 2^{3-p}\left\|u_{0}-u\right\|_{\varepsilon}^{p-1}\|v\|_{\varepsilon} \leq 2^{3-p} \delta^{p-1}\|v\|_{\varepsilon} \leq \mu\|v\|_{\varepsilon} .
\end{aligned}
$$

We conclude (3.4) by the arbitrariness of u_{0}, μ and v. The case of $p>2$ is worked out in a similar way.
3.2. Palais-Smale condition. In this section we prove that the energy functional verifies the Palais-Smale Condition.

Theorem 3.4. The functional I_{ε} verifies $(P S)$ on $\mathcal{M}_{\varepsilon}$.
Proof. Let $\left(u_{n}\right)_{n \in \mathbb{N}} \subseteq \mathrm{E}_{\varepsilon}^{p}$ be such that, for some $D>0$,

$$
\begin{equation*}
\forall n \in \mathbb{N}: \quad 0 \leq I_{\varepsilon}\left(u_{n}\right) \leq D ; \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
I_{\varepsilon}^{\prime}\left(u_{n}\right) \rightarrow 0, \quad \text { as } n \rightarrow+\infty . \tag{3.6}
\end{equation*}
$$

From (3.5) we get that $\left\|u_{n}\right\|_{\varepsilon} \leq(p D)^{1 / p}$, for every $n \in \mathbb{N}$, so that, by Lemma 2.1 and [5, Th.3.8], there exist a subsequence $\left(u_{m}\right)_{m \in \mathbb{N}}=$ $\left(u_{n_{m}}\right)_{m \in \mathbb{N}} \subseteq \mathrm{E}_{\varepsilon}^{p}$ and some $u \in \mathrm{E}_{\varepsilon}^{p}$ such that $u_{n} \rightharpoonup u$, as $m \rightarrow+\infty$, i.e.,

$$
\begin{equation*}
\forall \eta \in\left(\mathrm{E}_{\varepsilon}^{p}\right)^{\prime}: \quad\left\langle\eta, u_{m}-u\right\rangle \rightarrow 0, \quad \text { as } m \rightarrow+\infty . \tag{3.7}
\end{equation*}
$$

Now let's assume that $\left(u_{n}\right)_{n \in \mathbb{N}} \subseteq \mathcal{M}_{\varepsilon}$. Since $\mathcal{M}_{\varepsilon}$ is closed in $\mathrm{E}_{\varepsilon}^{p}$, the limit function u also belongs to $\mathcal{M}_{\varepsilon}$.

By (3.6) and (3.7), it follows that

$$
\begin{equation*}
\left\langle I_{\varepsilon}^{\prime}\left(u_{m}\right)-I_{\varepsilon}^{\prime}(u), u_{m}-u\right\rangle \rightarrow 0, \quad \text { as } \quad m \rightarrow+\infty \tag{3.8}
\end{equation*}
$$

Using (3.3) we get

$$
\begin{align*}
& \left\langle I_{\varepsilon}^{\prime}\left(u_{m}\right)-I_{\varepsilon}^{\prime}(u), u_{m}-u\right\rangle \tag{3.9}\\
& \quad=\int_{\mathbb{R}^{N}}\left(\left|\nabla u_{m}\right|^{p-2} \nabla u_{m}-|\nabla u|^{p-2} \nabla u\right) \cdot\left(\nabla u_{m}-\nabla u\right) d x \\
& \quad+\int_{\mathbb{R}^{N}} V_{\varepsilon}(x)\left(\left|u_{m}\right|^{p-2} u_{m}-|u|^{p-2} u\right) \cdot\left(u_{m}-u\right) d x .
\end{align*}
$$

i) Let's assume that $p \geq 2$. Then, from (3.9) and (2.18), we get

$$
\begin{align*}
\left\langle I_{\varepsilon}^{\prime}\left(u_{m}\right)-I_{\varepsilon}^{\prime}(u), u_{m}-u\right\rangle & \geq 2^{2-p} \int_{\mathbb{R}^{N}}\left[\left|\nabla u_{m}-\nabla u\right|^{p}+V_{\varepsilon}(x)\left|u_{m}-u\right|^{p}\right] d x \tag{3.10}\\
& =2^{2-p}\left\|u_{m}-u\right\|_{\varepsilon}^{p}
\end{align*}
$$

ii) Let's assume that $1<p<2$. Then, by (3.9), (2.19), (2.16) and (2.20) with $r=p / 2, r^{\prime}=p /(p-2)$ and $\theta=p$, it follows that

$$
\begin{align*}
& \left\langle I_{\varepsilon}^{\prime}\left(u_{m}\right)-I_{\varepsilon}^{\prime}(u), u_{m}-u\right\rangle \tag{3.11}\\
& \quad \geq(p-1) \int_{\mathbb{R}^{N}}\left|\nabla u_{m}-\nabla u\right|^{2}\left(1+\left|\nabla u_{m}\right|^{2}+|\nabla u|^{2}\right)^{\frac{p-2}{2}} d x \\
& \quad+(p-1) \int_{\mathbb{R}^{N}} V_{\varepsilon}(x)\left|u_{m}-u\right|^{2}\left(1+\left|u_{m}\right|^{2}+|u|^{2}\right)^{\frac{p-2}{2}} d x \\
& \geq(p-1)\left(\int_{\mathbb{R}^{N}}\left|\nabla u_{m}-\nabla u\right|^{p}\right)^{\frac{2}{p}}\left(\int_{\mathbb{R}^{N}}\left(\left|\nabla u_{m}\right|^{2}+|\nabla u|^{2}\right)^{\frac{p}{2}}\right)^{\frac{p-2}{p}} \\
& \quad+(p-1)\left(\int_{\mathbb{R}^{N}} V_{\varepsilon}(x)\left|u_{m}-u\right|^{p}\right)^{\frac{2}{p}}\left(\int_{\mathbb{R}^{N}} V_{\varepsilon}(x)\left(\left|u_{m}\right|^{2}+|u|^{2}\right)^{\frac{p}{2}}\right)^{\frac{p-2}{p}} \\
& \geq \frac{p-1}{2^{p / 2}}\left(\int_{\mathbb{R}^{N}}\left|\nabla u_{m}-\nabla u\right|^{p}\right)^{\frac{2}{p}}\left(\int_{\mathbb{R}^{N}}\left|\nabla u_{m}-\nabla u\right|^{p}\right)^{\frac{p-2}{p}}
\end{align*}
$$

$$
\begin{aligned}
& +\frac{p-1}{2^{p / 2}}\left(\int_{\mathbb{R}^{N}} V_{\varepsilon}(x)\left|u_{m}-u\right|^{p}\right)^{\frac{2}{p}}\left(\int_{\mathbb{R}^{N}} V_{\varepsilon}(x)\left|u_{m}-u\right|^{p}\right)^{\frac{p-2}{p}} \\
\geq & \frac{p-1}{2^{p / 2}} \int_{\mathbb{R}^{N}}\left[\left|\nabla u_{m}-\nabla u\right|^{p}+V_{\varepsilon}(x)\left|u_{m}-u\right|^{p}\right] d x \\
= & \frac{p-1}{2^{p / 2}}\left\|u_{m}-u\right\|_{\varepsilon}^{p} .
\end{aligned}
$$

Points (3.10) and (3.11), together with (3.8), imply that $\left(u_{m}\right)_{m \in \mathbb{N}}$ converges to u in $\mathrm{E}_{\varepsilon}^{p}$.

4. Energy Asymptotics

In this setion we prove energy asymptotics: Theorem 2.8 states that, given $k \in \mathbb{N}, c_{k, \varepsilon} \rightarrow c_{k}$, as $\varepsilon \rightarrow 0$. Our first step is the following result.
Proposition 4.1. Let $k \in \mathbb{N}$. Then, for every $\varepsilon>0, \mathcal{A}_{k} \subseteq \mathcal{A}_{k, \varepsilon}$, and $c_{k, \varepsilon} \leq c_{k} C_{\Omega, \varepsilon}$, where $C_{\Omega, \varepsilon}>0$ is given in (2.15). Moreover,

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0} c_{k, \varepsilon} \leq c_{k} . \tag{4.1}
\end{equation*}
$$

Proof. Let $\varepsilon>0$. Since, by Proposition 2.13, the norms $\|\cdot\|_{\varepsilon}$ and $\|\cdot\|_{\mathrm{W}_{0}^{1, p}(\Omega)}$ are equivalent on $\mathrm{W}_{0}^{1, p}(\Omega)$, it follows that $\mathcal{A}_{k} \subseteq \mathcal{A}_{k, \varepsilon}$. By the points (2.8), (2.12) and (2.14), we get

$$
\begin{align*}
c_{k, \varepsilon} & =\inf _{A \in \mathcal{A}_{k, \varepsilon}} \max _{u \in A} J_{\varepsilon}(u) \tag{4.2}\\
& \leq \inf _{A \in \mathcal{A}_{k}} \max _{u \in A} J_{\varepsilon}(u) \\
& \leq C_{\Omega, \varepsilon} \inf _{A \in \mathcal{A}_{k}} \max _{u \in A} J(u) \\
& =C_{\Omega, \varepsilon} c_{k} .
\end{align*}
$$

Proposition 2.10 implies that $\left\|V_{\varepsilon}\right\|_{L^{\infty}(\Omega)} \rightarrow 0$, as $\varepsilon \rightarrow 0$. Therefore, (4.1) follows from (2.14) and (4.2).

In what follows we shall need an auxiliary problem:

$$
\begin{cases}\Delta_{p} w(x)+|w(x)|^{q-1} w(x)=0, & x \in \Omega^{\delta}, \tag{4.3}\\ w(x)=0, & x \in \partial \Omega^{\delta},\end{cases}
$$

where, for $\delta>0, \Omega^{\delta}=\left\{x \in \mathbb{R}^{N} / \operatorname{dist}(\Omega, x)<\delta\right\}$ is an expanded star. Theorem 2.7 also deals with problem (4.3) via the the functional $J^{\delta}: \mathcal{M}^{\delta} \subseteq \mathrm{W}_{0}^{1, p}\left(\Omega^{\delta}\right) \rightarrow \mathbb{R}$, given by

$$
\begin{aligned}
J^{\delta}(u) & =\frac{1}{p}\|u\|_{\mathrm{W}_{0}^{1, p}\left(\Omega^{\delta}\right)}^{p} \\
& =\frac{1}{p} \int_{\Omega^{\delta}}|\nabla u(x)|^{p} d x
\end{aligned}
$$

where, $\mathcal{M}^{\delta}=\left\{u \in \mathrm{~W}_{0}^{1, p}\left(\Omega^{\delta}\right) /\|u\|_{L^{q+1}\left(\Omega^{\delta}\right)}=1\right\}$. We write, for $k \in \mathbb{N}$,

$$
\begin{aligned}
& \Sigma^{\delta}=\left\{A \subseteq \mathrm{~W}_{0}^{1, p}\left(\Omega^{\delta}\right) / A=\bar{A}, A=-A, 0 \notin A\right\}, \\
& \mathcal{A}_{k}^{\delta}=\left\{A \in \Sigma^{\delta} / A \subseteq \mathcal{M}^{\delta} \wedge \gamma(A) \geq k\right\} \\
& c_{k}^{\delta}=\inf _{A \in \mathcal{A}_{k}^{\delta}} \max _{u \in A} J^{\delta}(u) .
\end{aligned}
$$

Then, given $k \in \mathbb{N}$, the following points hold.
i) c_{k}^{δ} is a positive critical value of J^{δ} which has at least two corresponding critical points.
ii) If w_{k}^{δ} is a critical point of J^{δ} such that $J\left(w_{k}^{\delta}\right)=c_{k}^{\delta}$, then the function given by $u_{k}^{\delta}(x)=\left[p c_{k}^{\delta}\right]^{1 /(q+1-p)} w_{k}^{\delta}(x), x \in \Omega^{\delta}$, is a weak solution of (4.3).

Proposition 4.2. Let $k \in \mathbb{N}$ and $\sigma>0$. There exist $\delta_{0}, \varepsilon_{2}>0$ such that

$$
c_{k}^{\delta} \leq \frac{\sigma}{4}+\left[\frac{1}{1-\delta}\left(1+\frac{1}{\delta^{r} V_{\delta / 2, \varepsilon}}\right)\right]^{p}\left(c_{k, \varepsilon}+\frac{\sigma}{4}\right),
$$

for every $\delta \in] 0, \delta_{0}[$ and every $\varepsilon \in] 0, \varepsilon_{2}[$.
Proof. We shall walk thru several steps.
i) Let $\varepsilon>0$ and $\delta \in] 0,1\left[\right.$. By (2.8) there exists $A_{\sigma}(\varepsilon) \in \mathcal{A}_{k, \varepsilon}$ such that

$$
\max _{u \in A_{\sigma}(\varepsilon)} J_{\varepsilon}(u) \leq c_{k, \varepsilon}+\frac{\sigma}{4} .
$$

In (2.13) we choose

$$
\mu=\frac{\sigma^{p}}{4^{p} C_{\Omega}^{p} c_{k}^{p}},
$$

and $\varepsilon_{0}=\check{\varepsilon}(\mu)=\varepsilon_{0}(\sigma, k)>0$. From now on, let's assume that $\varepsilon \in] 0, \varepsilon_{0}[$. Then, as in the proof of Proposition 4.1, we get, using (4.5), that

$$
\begin{align*}
c_{k, \varepsilon}^{p} & \leq c_{k}^{p}+C_{\Omega}^{p}\left\|V_{\varepsilon}\right\|_{L^{\infty}(\Omega)} c_{k}^{p} \tag{4.6}\\
& \leq c_{k}^{p}+\frac{C_{\Omega}^{p} c_{k}^{p} \sigma^{p}}{4^{p} C_{\Omega}^{p} c_{k}^{p}} \\
& =c_{k}^{p}+\frac{\sigma^{p}}{4^{p}} \\
& \leq\left(c_{k}+\frac{\sigma}{4}\right)^{p} \\
& \equiv b_{k, \sigma}^{p} .
\end{align*}
$$

Then, points (4.4) and (4.6) imply that, for every $v \in A_{\sigma}(\varepsilon)$,

$$
\begin{aligned}
& J_{\varepsilon}(v) \leq b_{k, \sigma}, \\
& \int_{\mathbb{R}^{N}}|\nabla v(x)|^{p} d x \leq p b_{k, \sigma}, \\
& \int_{\mathbb{R}^{N}} V_{\varepsilon}(x) \cdot|v(x)|^{p} d x \leq p b_{k, \sigma} .
\end{aligned}
$$

ii) For $\rho>0$, let's denote $V_{\rho, \varepsilon}=\inf \left\{V_{\varepsilon}(x) / x \in \mathbb{R}^{N} \backslash \Omega^{\rho}\right\}$. By Proposition 2.11 and condition (V2), we get

$$
V_{\delta, \varepsilon} \rightarrow+\infty, \quad \text { as } \varepsilon \rightarrow 0 .
$$

From (4.8) we get, for every $v \in A_{\sigma}(\varepsilon)$,

$$
\begin{aligned}
\|v\|_{\mathrm{L}^{p}\left(\mathbb{R}^{N} \backslash \Omega^{\delta}\right)}^{p} & =\int_{\mathbb{R}^{N} \backslash \Omega^{\delta}}|v(x)|^{p} d x \\
& \leq \frac{p b_{k, \sigma}}{V_{\delta, \varepsilon}} .
\end{aligned}
$$

On the other hand, by (4.7) and Sobolev-Gagliardo-Nirenberg theorem, [5], it follows, for every $v \in A_{\sigma}(\varepsilon)$, that

$$
\begin{aligned}
\|v\|_{L^{p^{*}}\left(\mathbb{R}^{N} \backslash \Omega\right)} & \leq\|v\|_{L^{p^{*}}\left(\mathbb{R}^{N}\right)} \\
& \leq \theta\|\nabla v\|_{\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)} \\
& \leq \theta\left(p b_{k, \sigma}\right)^{1 / p}
\end{aligned}
$$

where $\theta=\theta_{p, N}>0$. Now, since $1<p<q+1<p^{*}$ we choose $\beta \in] 0,1\left[\right.$ such that $1 /(q+1)=(1-\beta) / p+\beta / p^{*}$. Hence by (4.10), (4.11) and the interpolation inequality for L^{p}-spaces, 5 , pg.93], it follows, for $v \in A_{\sigma}(\varepsilon)$, that

$$
\begin{aligned}
\|v\|_{L^{q+1}\left(\mathbb{R}^{N} \backslash \Omega^{\delta}\right)} & \leq\|v\|_{\mathrm{L}^{p}\left(\mathbb{R}^{N} \backslash \Omega^{\delta}\right)}^{1-\beta}\|v\|_{\mathrm{L}^{p^{*}}\left(\mathbb{R}^{N} \backslash \Omega^{\delta}\right)}^{\beta} \\
& \leq\left(\frac{p b_{k, \sigma}}{V_{\delta, \varepsilon}}\right)^{(1-\beta) / p} \theta^{\beta}\left(p b_{k, \sigma}\right)^{\beta / p} \\
& =\frac{\theta^{\beta}\left(p b_{k, \sigma}\right)^{1 / p}}{V_{\delta, \varepsilon}^{(1-\beta) / p}},
\end{aligned}
$$

which, by (4.9), implies that

$$
\max _{v \in A_{\sigma}(\varepsilon)}\|v\|_{\mathrm{L}^{q+1}\left(\mathbb{R}^{N} \backslash \Omega^{\delta}\right)} \rightarrow 0, \quad \text { as } \varepsilon \rightarrow 0
$$

Therefore, given $s>0$, there exists $\left.\varepsilon_{1}=\varepsilon_{1}(\delta, s ; \sigma, k) \in\right] 0, \varepsilon_{0}[$ such that, for every $\varepsilon \in] 0, \varepsilon_{1}\left[, \max _{v \in A_{\sigma}(\varepsilon)}\|v\|_{\mathrm{L}^{q+1}\left(\mathbb{R}^{N} \backslash \Omega^{\delta}\right)}<\delta^{s}\right.$. In
particular, for $s=1$ and $\left.\hat{\varepsilon}_{1}=\varepsilon_{1}(\delta, 1 ; \sigma, k) \in\right] 0, \varepsilon_{0}[$, we get, for every $\varepsilon \in] 0, \hat{\varepsilon}_{1}[$,

$$
\forall v \in A_{\sigma}(\varepsilon): \quad\|v\|_{\mathrm{L}^{q+1}\left(\Omega^{\delta}\right)} \geq 1-\delta
$$

iii) Let's denote $\Lambda^{\delta}=\Omega^{\delta} \backslash \overline{\Omega^{\delta / 2}}$ and pick a cut-off function $\phi_{\delta} \in$ $\mathrm{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ such that, for some $r>1, \phi_{\delta}(x)=1$ if $x \in \Omega^{\delta / 2}$, $\phi_{\delta}(x)=0$ if $\left.x \in \mathbb{R}^{N} \backslash \Omega^{\delta}, \phi_{\delta}(x) \in\right] 0,1\left[\right.$ if $x \in \Lambda^{\delta}$ and $\left|\nabla \phi_{\delta}(x)\right| \leq$ $1 / \delta^{r}$ if $x \in \Lambda^{\delta}$. Let's prove that $\Gamma_{\delta}: A_{\sigma}(\varepsilon) \subseteq \mathcal{M}_{\varepsilon} \rightarrow \mathcal{M}^{\delta}$, given by

$$
\Gamma_{\delta}[u]=\frac{u \phi_{\delta}}{\left\|u \phi_{\delta}\right\|_{\mathrm{L}^{q+1}\left(\Omega^{\delta}\right)}}
$$

is well-defined and Lipschitz continuous. From now on we assume that $\varepsilon \in] 0, \tilde{\varepsilon}_{1}\left[\right.$, where $\tilde{\varepsilon}_{1}=\min \left\{\hat{\varepsilon}_{1}, \varepsilon_{1}(\delta / 2,1 ; \sigma, k)\right\}$.
a) $\mathrm{By}(4.12)$ we have, for $v \in A_{\sigma}(\varepsilon)$, that

$$
\begin{aligned}
1 & \geq\left\|v \phi_{\delta}\right\|_{\mathrm{L}^{q+1}\left(\Omega^{\delta}\right)}^{q+1} \\
& =\int_{\Omega^{\delta / 2}}|v(x)|^{q+1} d x+\int_{\Lambda^{\delta}}\left|\phi_{\delta}(x) v(x)\right|^{q+1} d x \\
& \geq \int_{\Omega^{\delta / 2}}|v(x)|^{q+1} d x \\
& \geq(1-\delta / 2)^{q+1} \\
& >(1-\delta)^{q+1}
\end{aligned}
$$

so that Γ_{δ} is well defined.
b) Let $u, v \in A_{\sigma}(\varepsilon) \subseteq \mathcal{M}_{\varepsilon}$. Then, by (4.13),

$$
\begin{aligned}
\| \Gamma_{\delta}[u] & -\Gamma_{\delta}[v] \|_{\mathrm{W}_{0}^{1}\left(\Omega^{\delta}\right)} \\
& =\left\|\frac{\nabla\left(u \phi_{\delta}\right)}{\left\|u \phi_{\delta}\right\|_{\mathrm{L}^{q+1}\left(\Omega^{\delta}\right)}}-\frac{\nabla\left(v \phi_{\delta}\right)}{\left\|v \phi_{\delta}\right\|_{\mathrm{L}^{q+1}\left(\Omega^{\delta}\right)}}\right\|_{\mathrm{L}^{p}\left(\Omega^{\delta}\right)} \\
& \leq \frac{1}{1-\delta}\left\|\nabla\left(\phi_{\delta}(u-v)\right)\right\|_{\mathrm{L}^{p}\left(\Omega^{\delta}\right)} \\
& \leq \frac{1}{1-\delta}\left[\left\|\phi_{\delta} \nabla(u-v)\right\|_{\mathrm{L}^{p}\left(\Omega^{\delta}\right)}+\left\|(u-v) \nabla \phi_{\delta}\right\|_{\mathrm{L}^{p}\left(\Omega^{\delta}\right)}\right]
\end{aligned}
$$

By Remark 2.14 with $U=\Omega^{\delta}$, we get

$$
\begin{align*}
\left\|\phi_{\delta} \nabla(u-v)\right\|_{\mathrm{L}^{p}\left(\Omega^{\delta}\right)} & =\left(\int_{\Omega^{\delta}} \phi_{\delta}^{p}(x)|\nabla(u-v)(x)|^{p} d x\right)^{1 / p} \tag{4.15}\\
& \leq\|u-v\|_{\mathrm{W}_{0}^{1}\left(\Omega^{\delta}\right)} \leq\|u-v\|_{\varepsilon}
\end{align*}
$$

On the other hand, by the defining properties of ϕ_{δ}, we have that

$$
\begin{aligned}
\left\|(u-v) \nabla \phi_{\delta}\right\|_{L^{p}\left(\Omega^{\delta}\right)} & =\left(\int_{G^{\delta}}|u(x)-v(x)|^{p}\left|\nabla \phi_{\delta}(x)\right|^{p} d x\right)^{1 / p} \\
& \leq \frac{1}{\delta^{r} \inf _{y \in G^{\delta}} V_{\varepsilon}(y)}\left(\int_{G^{\delta}} V_{\varepsilon}(x)|u(x)-v(x)|^{p} d x\right)^{1 / p} \\
& \leq \frac{\|u-v\|_{\varepsilon}}{\delta^{r} V_{\delta / p, \varepsilon}}
\end{aligned}
$$

which, together with (4.14) and (4.15), imply that

$$
\left\|\Gamma_{\delta}[u]-\Gamma_{\delta}[v]\right\|_{\mathrm{W}_{0}^{1}\left(\Omega^{\delta}\right)} \leq \frac{1}{1-\delta}\left(1+\frac{1}{\delta^{r} V_{\delta / 2, \varepsilon}}\right)\|u-v\|_{\varepsilon} .
$$

Since u and v were chosen arbitrarily, we have proved that Γ_{δ} is Lipschitz continuous.
iv) Since the operator Γ_{δ} is odd and continuous, point i) in Proposition 2.6 implies that

$$
\Gamma_{\delta}\left[A_{\sigma}(\varepsilon)\right] \in \mathcal{A}_{k}^{\delta}, c_{k}^{\delta} \leq \max _{v \in \Gamma_{\delta}\left[A_{\sigma}(\varepsilon)\right]} J^{\delta}(v)
$$

We choose $u \in A_{\sigma}(\varepsilon)$ such that $\bar{v}=\Gamma_{\delta}[u]$ verifies

$$
c_{k}^{\delta} \leq \max _{v \in \Gamma_{\delta}\left[A_{\sigma}(\varepsilon)\right]} J^{\delta}(v) \leq J^{\delta}(\bar{v})+\frac{\sigma}{4} .
$$

Now we claim that there exists some $w \in A_{\sigma}(\varepsilon)$ such that

$$
\begin{equation*}
J^{\delta}(\bar{v}) \leq\left[\frac{1}{1-\delta}\left(1+\frac{1}{\delta^{r} V_{\delta / 2, \varepsilon}}\right)\right]^{p} J_{\varepsilon}(w) . \tag{4.17}
\end{equation*}
$$

Then, points (4.4), (4.16) and (4.17) allow us to conclude:

$$
\begin{aligned}
c_{k}^{\delta} & \leq J^{\delta}(\bar{v})+\frac{\sigma}{4} \\
& \leq \frac{\sigma}{4}+\left[\frac{1}{1-\delta}\left(1+\frac{1}{\delta^{r} V_{\delta / 2, \varepsilon}}\right)\right]^{p} \max _{u \in A_{\sigma}(\varepsilon)} J_{\varepsilon}(u) \\
& \leq \frac{\sigma}{4}+\left[\frac{1}{1-\delta}\left(1+\frac{1}{\delta^{r} V_{\delta / 2, \varepsilon}}\right)\right]^{p}\left(c_{k, \varepsilon}+\frac{\sigma}{4}\right) .
\end{aligned}
$$

v) To finish, let us prove the claim (4.17). We shall prove that the choice $w=u$ works well. Working as in points iii)-b), we prove that, for every $\tilde{u} \in A_{\sigma}(\varepsilon)$,

$$
\left\|\Gamma_{\delta}[\tilde{u}]\right\|_{\mathrm{W}_{0}^{1}\left(\Omega^{\delta}\right)} \leq \frac{1}{1-\delta}\left(1+\frac{1}{\delta^{r} V_{\delta / 2, \varepsilon}}\right)\|\tilde{u}\|_{\varepsilon} .
$$

By choosing $\tilde{u}=u$ in the last inequality, we get

$$
\begin{aligned}
\|\bar{v}\|_{\mathrm{W}_{0}^{1, p}\left(\Omega^{\delta}\right)} & =\left\|\Gamma_{\delta}[u]\right\|_{\mathrm{W}_{0}^{1, p}\left(\Omega^{\delta}\right)} \\
& \leq \frac{1}{1-\delta}\left(1+\frac{1}{\delta^{r} V_{\delta / 2, \varepsilon}}\right)\|u\|_{\varepsilon}
\end{aligned}
$$

whence the estimate (4.17) follows.
Before proving Theorem 2.8, let's observe that, choosing $\delta>0$ small enough and using (4.9), we get

$$
\begin{equation*}
\left[\frac{1}{1-\delta}\left(1+\frac{1}{\delta^{r} V_{\delta / 2, \varepsilon}}\right)\right]^{p} \rightarrow(1-\delta)^{-p} \approx 1, \quad \text { as } \varepsilon \rightarrow 0 \tag{4.18}
\end{equation*}
$$

Proof of Theorem 2.8. By adapting Lemmas 3.3 and 3.4 of [9], we get, for $k \in \mathbb{N}$, that

$$
\begin{gather*}
\forall \delta>0: \quad c_{k}^{\delta} \leq c_{k} \\
\left.\forall \sigma>0, \exists \delta_{\sigma}>0, \forall \delta \in\right] 0, \delta_{\sigma}\left[: \quad c_{k} \leq c_{k}^{\delta}+\sigma\right. \tag{4.19}
\end{gather*}
$$

Let $\sigma>0$ such that $\sigma \ll 1$ and take δ_{σ} from (4.19). We take $\delta_{0}=\delta_{0}(\sigma)$ and $\varepsilon_{2}=\varepsilon_{2}(\sigma)$ from Proposition 4.2. We also choose $\delta_{*}>0$ such that

$$
\begin{equation*}
\forall \delta \in] 0, \delta_{*}\left[: \quad(1-\delta)^{p}<1+\sigma\right. \tag{4.20}
\end{equation*}
$$

Let's take $\tilde{\delta}_{\sigma}=\left\{\delta_{\sigma}, \delta_{0}, \delta_{*}\right\}$. Then, by (4.19), (4.20) and Proposition 4.1, we have that

$$
\begin{aligned}
c_{k} & \leq c_{k}^{\delta}+\sigma \\
& \leq \frac{5}{4} \sigma+\left[\frac{1}{1-\delta}\left(1+\frac{1}{\delta^{r} V_{\delta / 2, \varepsilon}}\right)\right]^{p}\left(c_{k, \varepsilon}+\frac{\sigma}{4}\right) \\
& \leq\left(5+[\ldots]^{p}\right) \frac{\sigma}{4}+[\ldots]^{p} c_{k} \cdot C_{\Omega, \varepsilon} .
\end{aligned}
$$

The last inequality, together with (4.20), (4.18), (2.15), Proposition 2.10 and the arbitrariness of σ, proves that $c_{k, \varepsilon} \rightarrow c_{k}, \varepsilon \rightarrow 0$.

5. Asymptotic Profiles

In this section, we prove Theorem 2.9. Given $k \in \mathbb{N}$, it states that, as $\varepsilon \rightarrow 0$, the family $\left(u_{k, \varepsilon}\right)_{\varepsilon>0}$ sub converges in $\mathrm{W}^{1, p}\left(\mathbb{R}^{N}\right)$ to some $\phi_{k} \in$ $\mathrm{W}^{1, p}\left(\mathbb{R}^{N}\right)$ such that its restriction to Ω is a solution of (1.6) and verifies $J\left(\left.\hat{\phi}_{k}\right|_{\Omega}\right)=c_{k}$, where $\hat{\phi}_{k}(x)=\left[p c_{k}\right]^{1 /(q+1-p)} \phi_{k}(x), x \in \mathbb{R}^{N}$.

Lemma 5.1. Let $k \in \mathbb{N}$. Then, there exists $\hat{\phi}_{k} \in \mathrm{E}_{\varepsilon}^{p}$ such that $\left(w_{k, \varepsilon}\right)_{\varepsilon>0}$ subconverges to $\hat{\phi}_{k}$ pointwise and weakly both in $\mathrm{E}_{\varepsilon}^{p}$ and $\mathrm{W}^{1, p}\left(\mathbb{R}^{N}\right)$, as $\varepsilon \rightarrow 0$.

Proof. By Theorem 2.8 and point (2.5), given $\sigma>0$, there exists $\varepsilon_{\sigma, 1}>0$ such that, for every $\varepsilon \in] 0, \varepsilon_{\sigma, 1}[$,

$$
\begin{gather*}
p c_{k, \varepsilon} \leq p c_{k}+\sigma \equiv B_{k, \sigma} \\
\left(1+c_{p}^{p}\right)^{-1 / p}\left\|w_{k, \varepsilon}\right\|_{\mathrm{W}^{1, p}\left(\mathbb{R}^{N}\right)} \leq\left\|w_{k, \varepsilon}\right\|_{\varepsilon}^{p} \leq B_{k, \sigma} . \tag{5.1}
\end{gather*}
$$

Therefore, by [5, Th.3.18\&4.9] and Theorem 2.1, there exists $\hat{\phi}_{k} \in \mathrm{E}_{\varepsilon}^{p} \subseteq$ $\mathrm{W}^{1, p}\left(\mathbb{R}^{N}\right)$ toward which $\left(w_{k, \varepsilon}\right)_{\varepsilon>0}$ subconverges pointwise and weakly both in $\mathrm{E}_{\varepsilon}^{p}$ and $\mathrm{W}^{1, p}\left(\mathbb{R}^{N}\right)$.

Lemma 5.2. Let $k \in \mathbb{N}$. The function ϕ_{k} is a weak solution of the limit problem (1.6) and $J\left(\left.\hat{\phi}_{k}\right|_{\Omega}\right)=c_{k}$.

Proof. i) Let $\sigma>0$ and $\varepsilon_{\sigma, 1}>0$ as in Lemma 5.1, and let $\varepsilon \in$ $] 0, \varepsilon_{\sigma 1}\left[\right.$. Since $w_{k, \varepsilon} \in \mathcal{M}_{\varepsilon}$ is a critical point of J_{ε} we have, by (2.11), that, for every $\eta \in \mathrm{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)$,

$$
\begin{array}{r}
\int_{\mathbb{R}^{N}}\left[\left|\nabla w_{k, \varepsilon}\right|^{p-2} \nabla w_{k, \varepsilon} \nabla \eta+V_{\varepsilon}\left|w_{k, \varepsilon}\right|^{p-2} w_{k, \varepsilon} \eta\right] d x \\
=p c_{k, \varepsilon} \int_{\mathbb{R}^{N}}\left|w_{k, \varepsilon}\right|^{q-1} w_{k, \varepsilon} \eta d x
\end{array}
$$

ii) By [5, Th.9.9], we have that

$$
\begin{equation*}
\left\|w_{k, \varepsilon}\right\|_{L^{p^{*}}\left(\mathbb{R}^{N}\right)}^{p} \leq c_{p}^{p} \int_{\mathbb{R}^{N}}\left|\nabla w_{k, \varepsilon}(x)\right|^{p} d x \leq c_{p}^{p} B_{k, \sigma} . \tag{5.3}
\end{equation*}
$$

Let $0<\delta<1$. By Hölder's inequality and (5.3), we get

$$
\begin{align*}
\left\|w_{k, \varepsilon}\right\|_{\mathrm{L}^{p}\left(\Omega^{\delta}\right)}^{p} & \leq\left|\Omega^{\delta}\right|^{p / N}\left\|w_{k, \varepsilon}\right\|_{\mathrm{L}^{p^{*}}\left(\Omega^{\delta}\right)}^{p} \tag{5.4}\\
& \leq\left|\Omega^{\delta}\right|^{p / N}\left\|w_{k, \varepsilon}\right\|_{\mathrm{L}^{p^{*}}\left(\mathbb{R}^{N}\right)}^{p} \\
& \leq c_{p}^{p}\left|\Omega^{\delta}\right|^{p / N} B_{k, \sigma} .
\end{align*}
$$

By (4.9), there exists $\left.\varepsilon_{\sigma, 2} \in\right] 0, \varepsilon_{\sigma, 1}[$ such that, for all $\varepsilon \in] 0, \varepsilon_{\sigma, 2}[$, it holds $V_{\delta, \varepsilon}^{-1}<1$ and, thanks to (5.1),

$$
\begin{equation*}
\left\|\hat{w}_{k, \varepsilon}\right\|_{\mathrm{L}^{p}\left(\mathbb{R}^{N} \backslash \Omega^{\delta}\right)}^{p} \leq \int_{\mathbb{R}^{N} \backslash \Omega^{\delta}} \frac{V_{\varepsilon}(x)}{V_{\delta, \varepsilon}}\left|\hat{w}_{k, \varepsilon}(x)\right|^{p} d x \leq B_{k, \sigma} . \tag{5.5}
\end{equation*}
$$

iii) Let $\eta \in \mathrm{C}_{0}^{\infty}(\Omega)$ and $\left.\varepsilon \in\right] 0, \varepsilon_{\sigma, 2}[$. By (5.4), (5.5) and Proposition 2.10, we get

$$
\left|\int_{\Omega} V_{\varepsilon}(x) \hat{w}_{k, \varepsilon} \eta(x) d x\right| \leq\left\|w_{k, \varepsilon}\right\|_{\mathrm{L}^{p}(\Omega)}\|\eta\|_{\mathrm{L}^{p^{\prime}}(\Omega)}\left\|V_{\varepsilon}\right\|_{\mathrm{L}^{\infty}(\Omega)}
$$

$$
\leq\left[B_{k, \sigma}\left(1+C_{N}^{p}\left|\Omega^{\delta}\right|^{p / N}\right)\right]^{1 / p}\|\eta\|_{\mathrm{L}^{p^{\prime}}(\Omega)}\left\|V_{\varepsilon}\right\|_{\mathrm{L}^{\infty}(\Omega)}
$$

and

$$
\int_{\Omega} V_{\varepsilon}(x) w_{k, \varepsilon} \eta(x) d x \rightarrow 0, \quad \text { as } \varepsilon \rightarrow 0
$$

iv) By (2.6), ($\left.w_{k} \varepsilon\right)_{\varepsilon>0}$ subconverges in $\mathrm{L}^{q+1}\left(\mathbb{R}^{N}\right)$ to $\hat{\phi}_{k}$. Therefore, by (5.2), (5.6), Theorem 2.8 and the arbitrariness of η, we get, for every $\eta \in \mathrm{C}_{0}^{\infty}(\Omega)$, that

$$
\int_{\Omega} \nabla \hat{\phi}_{k} \nabla \eta d x=p c_{k} \int_{\Omega}\left|\hat{\phi}_{k}\right|^{q-1} \hat{\phi}_{k} \eta d x
$$

Now let us pick $\left(\psi_{n}\right)_{n \in \mathbb{N}} \subseteq \mathrm{C}_{0}^{\infty}(\Omega)$ converging in $\mathrm{L}^{q+1}(\Omega)$ to $\left.\hat{\phi}_{k}\right|_{\Omega}$. Then, by replacing $\eta=\psi_{n}$ in (5.7) and letting $n \rightarrow+\infty$, we get, by Lemma 5.1, that $c_{k}=J\left(\left.\hat{\phi}_{k}\right|_{\Omega}\right)$.
v) Given any $\delta, \beta>0$, we put $\Gamma_{\delta, \beta}=\left\{x \in \mathbb{R}^{N} / \Omega^{\delta}:\left|\hat{u}_{k}(x)\right| \geq \beta\right\}$. By Reduction to Absurdity, we prove that $\left|\Gamma_{\delta, \beta}\right|=0$. Therefore,

$$
\hat{u}_{k}(x)=0 \text { for a.e. } x \in \mathbb{R}^{N} \backslash \Omega
$$

which, by Proposition 9.18 in [5], implies that $\left.\hat{u}_{k}\right|_{\Omega} \in \mathrm{W}_{0}^{1}(\Omega)$. We conclude by this and (5.7).

Proof of Theorem 2.9. By (2.6), Lemma 5.1 and point (5.8), it follows that

$$
\begin{equation*}
\left\|w_{k, \varepsilon}\right\|_{\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)} \rightarrow\left\|\hat{\phi}_{k}\right\|_{\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)}, \quad \text { as } \varepsilon \rightarrow 0 \tag{5.9}
\end{equation*}
$$

By (4.1) and (5.9), we have that

$$
\begin{align*}
\limsup _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{N}}\left|\nabla w_{k, \varepsilon}\right|^{p} d x & \leq p \limsup _{\varepsilon \rightarrow 0} c_{k, \varepsilon} \tag{5.10}\\
& \leq p c_{k} \\
& =\int_{\mathbb{R}^{N}}\left|\nabla \hat{\phi}_{k}\right|^{p} d x
\end{align*}
$$

From (5.9) and (5.10) it follows that

$$
\limsup _{\varepsilon \rightarrow 0}\left\|\hat{w}_{k, \varepsilon}\right\|_{\mathrm{W}^{1, p}\left(\mathbb{R}^{N}\right)} \leq\left\|\hat{u}_{k}\right\|_{\mathrm{W}^{1, p}\left(\mathbb{R}^{N}\right)}
$$

so that, by [5, Prop.3.32], we have that $\left(w_{k, \varepsilon}\right)_{\varepsilon>0}$ subconverges in $\mathrm{W}^{1, p}\left(\mathbb{R}^{N}\right)$ to $\hat{\phi}_{k}$, as $\varepsilon \rightarrow 0$. We conclude by Lemma 5.2.

To finish, let us mention that, working like in this paper, the asymptotic results on energy and profiles obtained, respectively, in [9] and [11] for the flat case and finite case (cases also introduced in [6]) should also hold for the p-version we dealt with.

Acknowledgment. The authors thank the Yachay Tech community for its support during the whole project.

Funding. This research did not receive any specific grant from the funding agencies in the public, commercial, or not-for-profit sectors.

References

1. A. Aguas-Barreno, J. Cevallos-Chávez, J. Mayorga-Zambrano and L. Medina-Espinosa, Semiclassical asymptotics of infinitely many solutions for the infinite case of a nonlinear Schrödinger equation with critical frequency, Bull. Korean Math. Soc., 59 (2022), pp. 241-263.
2. A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2007.
3. T. Bartsch, A. Pankov and Z.Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), pp. 549-569.
4. V.I. Bogachev, Measure Theory (Vol.1), Springer-Verlag, Berlin Heidelberg, 2007.
5. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, Berlin Heidelberg, 2011.
6. J. Byeon and Z. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Rational Mech. Anal., 165 (2002), pp. 295-316.
7. P. Drummond and M. Hillery, The Quantum Theory of Nonlinear Optics, Cambridge University Press, Cambridge, 2014.
8. I. Ekeland, On the Variational Principle, J. Math. Anal. Appl., 47 (2002), pp. 324-353.
9. P. Felmer and J. Mayorga-Zambrano, Multiplicity and concentration for the nonlinear Schrödinger equation with critical frequency, Nonlinear Anal., 66 (2007), pp. 151-169.
10. P. Lindqvist, Notes on the Stationary p-Laplace Equation, Springer, Berlin, 2017.
11. J. Mayorga-Zambrano, L. Medina-Espinosa and C. MuñozMoncayo, Asymptotic behaviour of infinitely many solutions for the Finite Case of a nonlinear Schrödinger equation with critical frequency, Differ. Equ. Dyn. Syst., (2023).
12. P. Meystre, Atom Optics, Springer Series on Atomic, Optical and Plasma Physics, Springer-Verlag, New York, 2001.
13. P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Conference Board of the Mathematical Sciences by the American Mathematical Society, 65 (1986),
14. P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. angew. Math. Phys., 43 (1992), pp. 270-291.
15. W. Smith and D. Stegenga, Hölder Domains and Poincaré Domains, Trans. Amer. Math. Soc., 319 (1990), pp. 67-100.
16. K.R. Stromberg and E. Hewitt, Real and Abstract Analysis: a modern treatment of the theory of functions of a real variable, Springer, Berlin, 1975.
[^2]
[^0]: SCMA, P. O. Box 55181-83111, Maragheh, Iran

[^1]: 2020 Mathematics Subject Classification. 35Q55, 35J92, 35J20.
 Key words and phrases. Quasilinear Schrödinger equation, ground state, p-Laplace operator, Multiplicty, Asymptotic properties.

 Received: 30 December 2022, Accepted: 11 April 2023.

 * Corresponding author.

[^2]: ${ }^{1}$ Department of Mathematics, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador.

 Email address: jmayorga@yachaytech.edu.ec
 ${ }^{2}$ Technische Universität Wien, Wiedner Hauptstr. 8, 1040 Wien, AusTRIA

 Email address: juan.burbano.gallegos@student.tuwien.ac.at
 ${ }^{3}$ Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador.

 Email address: bryan.perez@yachaytech.edu.ec
 ${ }^{4}$ Eötvös University, Pázmány Péter sétány 1/C, 1117 Budapest, HunGARY.

 Email address: jnemesist@student.elte.hu

