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Some Results on Non-Archimedean Operators Theory

Jawad Ettayb

Abstract. In this paper, we define the notions of semi-regular
operator, analytical core, surjectivity modulus and the injectivity
modulus of bounded linear operators on non-Archimedean Banach
spaces over K. We give a necessary and sufficient condition on the
range of bounded linear operators to be closed. Moreover, many
results are proved.

1. Introduction

In the classical setting, Saphar [14] has introduced the concept of
algebraic core and the analytic core has been introduced by Vrbová [1]
these notions palyed an important role in spectral theory of bounded
linear operators on complex Banach spaces. Another important notions
in perturbation theory and spectral theory are the reduced minimum
modulus, surjectivity modulus and the injectivity modulus of bounded
linear operators on classical Banach spaces. The perturbation theory has
been used in a large number of different settings in physics and applied
mathematics such as the perturbation method for sound radiation by a
vibrating plate in a light fluid and quantum mechanics, for more details,
we refer to [5] and [8].

In non-Archimedean operators theory, the problem of perturbations
of bounded linear operators studied firstly by Serre [16] who dealt with
a compact perturbations of the identity on non-Archimedean Banach
spaces having an orthogonal base. Gurson [6] lifted this restriction by
working on perturbations of the identity on general non-Archimedean
Banach spaces. Moreover a complete study of perturbations of the iden-
tity was finally achieved by Schikhof [15]. This perturbations had a
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useful tool to study the theory of non-Archimedean differential oper-
ators, for more details, we refer to [11] and [12]. Recently, Araujo,
Perez and Vega [2] aimed at a general theory of the perturbations of
continuous linear operators between non-Archimedean Banach spaces
by compact operators. This work is motivated by the pioneer work of
Kiyosawa [9] who studied the perturbations of bounded linear operators
on non-Archimedean Banach spaces.

Throughout this paper, X and Y are non-Archimedean (n.a) Banach
spaces over a non trivially complete valued field K with valuation | · |,
B(X,Y ) denotes the set of all bounded linear operators from X into Y.
If X = Y, we write B(X,X) = B(X). If A ∈ B(X), N(A) and R(A)
denote the kernel and the range of A respectively. A non-Archimedean
Banach space X over K is said to be a free non-Archimedean Banach
space if there exists a family (xi)i∈I of elements of X indexed by a set I
such that each x ∈ X can be written uniquely like a pointwise convergent
series defined by x =

∑
i∈I

λixi and ‖x‖ = sup
i∈I

|λi|‖xi‖. The family (xi)i∈I

is then called an orthogonal basis for X. If, for all i ∈ I, ‖xi‖ = 1, then
(xi)i∈I is called an orthonormal basis of X. Recall that every bounded
linear operator A on a free non-Archimedean Banach space X can be
written in a unique fashion as a pointwise convergent series, that is,
there exists an infinite matrix (ai,j)(i,j)∈I×I with coefficients in K such
that

A =
∑
i,j∈I

aije
′
j ⊗ ei and ∀j ∈ I, lim

i∈I
|aij |‖ei‖ = 0,

where (∀i ∈ I) e′i(u) = ui (e
′
i is the linear form associated with ei).

Moreover, for each j ∈ I, Aej =
∑
i∈I

aijei and its norm is defined by

‖ A ‖= sup
i,j∈I

|aij |‖ei‖
‖ej‖

.

2. Basic Definitions and Needed Results

We continue by recalling some preliminaries.

Definition 2.1 ([3]). Let ω = (ωi)i be a sequence of non-zero elements
of K. We define Eω by

Eω =

{
x = (xi)i : ∀i ∈ N, xi ∈ K and lim

i→∞
|ωi|

1
2 |xi| = 0

}
,

and it is equipped with the norm

(∀x ∈ Eω) : x = (xi)i ⊂ Eω, ‖x‖ = sup
i∈N

(
|ωi|

1
2 |xi|

)
.
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Remark 2.2 ([3]). (i) The space (Eω, ‖ · ‖) is a non-Archimedean
Banach space.

(ii) For x = (xi)i and y = (yi)i, the inner product is defined by
〈·, ·〉 : Eω × Eω −→ K

(x, y) 7→
∞∑
i=0

xiyiωi.

Hence, the space (Eω, ‖ · ‖, 〈·, ·〉) is called a p-adic (or non-Archimedean)
Hilbert space.

(iii) The orthogonal basis {ei, i ∈ N} is called the canonical basis of
Eω.

For X = Eω, we have the following proposition.

Proposition 2.3 ([4]). Let A =
∑
i,j∈N

aije
′
j ⊗ ei ∈ B(Eω). Then A has

an adjoint A∗ ∈ B(Eω) if and only if for all i ∈ N, lim
j→∞

|ωj |
−1
2 |aij | = 0.

We denote by B0(X) the set of all bounded linear operators on X
having an adjoint.
Remark 2.4 ([13]). Let X be a non-Archimedean Banach space over
K. If A ∈ B(X), we define two norms of A by

(2.1) ‖A‖ = sup
x∈X\{0}

‖Ax‖
‖x‖

and ‖A‖0 = sup
x∈X, ∥x∥=1

‖Ax‖
‖x‖

.

These two norms are always equivalent and are equal if ‖X‖ ⊆ |K| or if
the valuation of K is dense.

For more details on non-Archimedean operators theory, we refer to
[3] and [13].
Definition 2.5 ([10]). A non-Archimedean normed space X is of count-
able type if it contains a countable set whose linear hull is dense in X.

A subspace D of X is called complemented if there exists a continuous
projection P ∈ B(X) (not necessarily an orthoprojection) with R(P ) =
D. Then D = R(P ) and D1 = N(P ) are closed subspaces (such a D1 is
called a complement of D) and X is the algebraic direct sum of D and
D1. Conversely, if X is a non-Archimedean Banach space and D, D1 are
closed subspaces such that the algebraic direct sum of them is X, then
D is complemented and D1 is a complement of D, for more details, we
refer to [10]. We have the following theorem.
Theorem 2.6 ([10]). Let X be a Banach space of countable type over
K. Then each closed subspace D of X is complemented. In fact, for



142 J. ETTAYB

every ε > 0 there exists a continuous projection P ∈ B(X) onto D with
‖P‖ ≤ 1 + ε.

We have the following definition.
Definition 2.7 ([10]). A non-Archimedean field K is called spherically
complete if each decreasing sequence of balls in K has a non-empty
intersection.
Theorem 2.8 ([10]). Let K be spherically complete. Then each normed
space of countable type has an orthogonal base.

X ′ = B(X,K) (dual space of X) is the set of all linear functional from
X into K. We have the following theorem.
Theorem 2.9 ([13]). Suppose that K is spherically complete. Let X be
a non-Archimedean Banach space over K. For any non zero x ∈ X\{0},
there exists f ∈ X ′ such that f(x) = 1 and ‖f‖ = ‖x‖−1.

As the classical setting, we define the graph of an unbounded linear
operators on non-Archimedean Banach spaces. The set of all unbounded
linear operators on X is denoted by U(X). We extend the following
results of [3] from Eω to general non-Archimedean Banach spaces as
follows.
Definition 2.10. Let X be a non-Archimedean Banach space over K,
let A ∈ U(X), the graph of A is denoted by G(A) and is given by

G(A) = {(x,Ax) ∈ X ×X : x ∈ D(A)}.

Definition 2.11. Let X be a non-Archimedean Banach space over K,
let A ∈ U(X), A is said to be closed if its graph is a closed subspace
of X ×X and A is said to be closable if it has a closed extention. The
collection of closed linear operators is denoted by C(X).

As in the classical theory of an unbounded linear operators, we char-
acterize the closedness of an operator A ∈ U(X) as follows: for all
(xn)n∈N ⊂ D(A) such that lim

n→∞
‖xn − x‖ = 0 and lim

n→∞
‖Axn − y‖ = 0

for some (x, y ∈ X), then x ∈ D(A) and Ax = y.

Remark 2.12. Note that if A ∈ B(X), then it is closed. In fact: since
A is bounded, then D(A) = X. Moreover, if (xn)n∈N ⊂ X such that
xn → x in X as n → ∞, then by the boundedness of A, it follows that
Axn → Ax as n → ∞, that is, (xn, Axn) → (x,Ax) in X×X as n → ∞,
hence G(A) is closed.

Obviously, B(X) ⊂ C(X).

Remark 2.13. As in the classical setting, it is not difficult to see that
if A ∈ C(X) and B ∈ B(X), then A+B ∈ C(X).



SOME RESULTS ON NON-ARCHIMEDEAN OPERATORS THEORY 143

Let A : D(A) ⊂ X → X be an unbounded linear operator. Note that
D(A) endowed by the non-Archimedean graph norm defined by: for all
x ∈ D(A),

‖x‖D(A) = max{‖x‖, ‖Ax‖}.
We have the following proposition.

Proposition 2.14. Let X be a non-Archimedean Banach space over K,
let A ∈ U(X). Then (D(A), ‖ · ‖D(A)) is non-Archimedean Banach space
if and only if A is closed.

We have the following theorem.

Theorem 2.15 ([1]). Let X be vector space, let A be linear operator on
X. The following statements are equivalent:

(i) For all m ∈ N, N(A) ⊆ R(Am).
(ii) For all n ∈ N, N(An) ⊆ R(A).
(iii) For all n ∈ N and for each m ∈ N, N(An) ⊆ R(Am).
(iv) For all n,m ∈ N, N(An) = Am(N(An+m)).

If ‖X‖ ⊆ |K| and from Definition 2 of section 4 of [9], we have the
following definition.

Definition 2.16 ([9]). Let X be a non-Archimedean Banach space over
K such that ‖X‖ ⊆ |K| and let M,N be two linear subspaces of X.
Define

δ(M,N) =

 sup
x∈M,∥x∥=1

d(x,N), if M 6= {0},

0, otherwise
and g(M,N) = max{δ(M,N), δ(N,M)} where d(x,N) = inf

y∈N
‖x − y‖,

g(M,N) is called the gap between the subspaces M and N.

Definition 2.17 ([1]). Let A be a linear operator on a vector space X.
The algebraic core C(A) is defined to be the greatest subspace M of X
for which A(M) = M.

Remark 2.18 ([1]). (i) If A is surjective, then C(A) = X.
(ii) For all n ∈ N, C(A) = An(C(A)) ⊆ Rn(X), thus C(A) ⊆

R∞(A) where R∞(A) =
⋂
n∈N

R(An).

The next result gives a precise description of the subspace C(A) in
terms of sequences.

Theorem 2.19 ([1]). For a linear operator A on a vector space X, the
following statements are equivalent:

(i) x ∈ C(A).
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(ii) There exists a sequence (un)n∈N ⊆ X such that x = u0 and for
all n ∈ N∗, Aun+1 = un.

As the classical setting, we have.

Definition 2.20 ([9]). Let X be a non-Archimedean Banach space over
K, let A ∈ B(X), the reduced minimum modulus of A is defined by

γ(A) = inf
x ̸∈N(A)

‖Ax‖
d(x,N(A))

.

By convention γ(0) = ∞.

Lemma 2.21 ([9]). Let X be a non-Archimedean Banach space over K,
let A ∈ B(X), we have:

γ(A) > 0 if and only if R(A) is closed.

3. Main Results

We have the following proposition.

Proposition 3.1. Let X be a non-Archimedean Banach space over K,
let A ∈ B(X) be invertible. Then γ(A) = ‖A−1‖−1.

Proof. Since A ∈ B(X) is invertible, then N(A) = {0} and A is surjec-
tive, hence for each x ∈ X\{0}, we have

d(x,N(A)) = d(x, {0}) = ‖x‖.
Set y = Ax, we have

γ(A) = inf
x∈X\{0}

‖Ax‖
‖x‖

= inf
x∈X\{0}

 1
∥x∥
∥Ax∥


=

(
sup

x∈X\{0}

‖x‖
‖Ax‖

)−1

=

(
sup

y∈X\{0}

‖A−1y‖
‖y‖

)−1

=
∥∥A−1

∥∥−1
. □

We have the following theorem.

Theorem 3.2. Let X be a non-Archimedean Banach space over K, let
A,B ∈ B(X), the following statements hold:

(i) If AB = λBA, then γ(AB) = |λ|γ(BA).
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(ii) If A−1 exists, then γ(AB) ≤ ‖A‖γ(B).

Proof. Let A,B ∈ B(X), we have:
(i) If AB = λBA, then N(AB) = N(BA). Hence

γ(AB) = inf
x ̸∈N(AB)

‖ABx‖
‖x‖

= |λ| inf
x ̸∈N(BA)

‖BAx‖
‖x‖

= |λ|γ(BA).

(ii) Since A is injective, then N(AB) = N(B) and

γ(AB) = inf
x ̸∈N(AB)

‖ABx‖
‖x‖

= inf
x ̸∈N(B)

‖ABx‖
‖x‖

≤ ‖A‖ inf
x ̸∈N(B)

‖Bx‖
‖x‖

= ‖A‖γ(B). □

The following statement holds.

Theorem 3.3. Let X be a non-Archimedean Banach space over K, let
A ∈ B(X) and assume that there is a closed subspace M of X such that
R(A) ∩M = {0} and R(A)⊕M is closed. Then R(A) is closed.

Proof. The space X ×M under the norm
(∀(x, y) ∈ X ×M) ‖(x, y)‖ = max{‖x‖, ‖y‖},

is a non-Archimedean Banach space. Consider the map S : X×M → X
defined by for all x ∈ X, y ∈ M, S(x, y) = Ax+ y. Hence S(X ×M) =
R(A) ⊕M which is closed. From Lemma 2.21, γ(S) > 0 if and only if
R(A)⊕M is closed. Since

γ(S) = inf
(x,y) ̸∈N(S)

‖S(x, y)‖
d((x, y), N(S))

> 0.

Clearly, N(S) = N(A)× {0}, if x 6∈ N(A), then (x, 0) 6∈ N(S), thus
d((x, 0), N(S))γ(S) ≤ ‖S(x, 0)‖

= ‖Ax‖.
Hence

γ(A) ≥ γ(S)
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> 0.

By Lemma 2.21, we conclude that R(A) is closed. □
We have the following:

Definition 3.4. Let X be a non-Archimedean Banach space over K, let
A ∈ B(X), A is said to be semi-regular if R(A) is closed and one of the
equivalent conditions of Theorem 2.15 holds.

We give some examples of semi-regular operators.

Example 3.5. (i) Surjective operators are semi-regulars.
(ii) Injective operator with closed range is semi-regular.

The following statements hold.

Theorem 3.6. Let X be a non-Archimedean Banach space over K, let
A be semi-regular operator, then for all n ∈ N, (γ(A))n ≤ γ(An).

Proof. As the classical setting. □
Proposition 3.7. Let X be a non-Archimedean Banach space over K
such that ‖X‖ ⊆ |K|, let A ∈ C(X) and λ, µ ∈ K, we have:

γ(λI −A)δ(N(µI −A), N(λI −A)) ≤ |λ− µ|.

Proof. Let λ, µ ∈ K. If λ = µ, the proof is trivial. Let λ 6= µ, if u ∈
N(µI−A), then u 6∈ N(λI−A) ( because N(λI−A)∩N(µI−A) = {0}).
Since

γ(λI −A)d(u,N(λI −A)) ≤ ‖(A− λI)u− (A− µI)u‖
= |λ− µ|‖u‖.

Thus γ(λI −A)d(N(µI −A), N(λI −A)) ≤ |λ− µ|. □
Definition 3.8. Let X be a non-Archimedean Banach space over K, let
A ∈ B(X). The analytical core of A is the set K(A) of all x ∈ X such
that there exists a sequence (un)n∈N ⊂ X and a constant δ > 0 such
that:

(i) x = u0 and for all n ∈ N∗, Aun+1 = un;
(ii) For all n ∈ N, ‖un‖ ≤ δn‖x‖.

Theorem 3.9. Let X be a non-Archimedean Banach space over K, let
A ∈ B(X). Then:

(i) K(A) is a subspace of X.
(ii) A(K(A)) = K(A).
(iii) K(A) ⊆ C(A).
(iv) For all n ∈ N, K(A) ⊆ R(An).
(v) For all λ ∈ K\{0}, N(λI −A) ⊆ K(A).
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Proof. (i) Let x, y ∈ K(A) and λ ∈ K, we have λx ∈ K(A).
Since x ∈ K(A), then there is a sequence (un)n∈N ⊂ X and a
constant δ1 > 0 such that x = u0 and for all n ∈ N∗, Aun+1 =
un and (∀n ∈ N) ‖un‖ ≤ δn1 ‖x‖.
Since y ∈ K(A), there exists (vn)n∈N ⊂ X and a constant δ2 > 0
such that y = v0 and for all n ∈ N∗, Avn+1 = vn and for all
n ∈ N, ‖vn‖ ≤ δn2 ‖y‖. Set: δ = max{δ1, δ2}. Then

‖un + vn‖ ≤ max{‖un‖, ‖vn‖}
≤ max{δn1 ‖x‖, δn2 ‖y‖}
≤ δnmax{‖x‖, ‖y‖}.

If x+ y = 0, there is nothing to demonstrate since 0 ∈ K(A).
Assume that x+ y 6= 0. Set

µ =
max{‖x‖, ‖y‖}

‖x+ y‖
.

It is easy to see that µ ≥ 1, then µ ≤ µn. Consequently,

(∀n ∈ N) ‖un + vn‖ ≤ δnµ‖x+ y‖
≤ (δµ)n‖x+ y‖.

Hence (ii) of Definition 3.8 holds. Thus x + y ∈ K(A), then
K(A) is a subspace of X.

(ii) As the classical setting.
(iii) By the definition of C(A) and (ii).
(iv) Obvious.
(v) Let x ∈ N(λI − A), put δ = |λ|−1. For all n ∈ N, xn = λ−nx

satisfies the definition of K(A). □

3.1. Question. Are C(A) and K(A) closed?

Theorem 3.10. Let X be a non-Archimedean Banach space over K, let
A ∈ B(X), then

(i) If F is closed subspace of X such that A(F ) = F, then F ⊆
K(A).

(ii) If C(A) is closed, then C(A) = K(A).

Proof. (i) Let A0 : F → F denote the restriction of A on F. By
assumption F is a non-Archimedean Banach space and A(F ) =
F, so, by the open mapping theorem, A0 is open. This means
that there exists a constant δ > 0 such that for all x ∈ F,
there is u ∈ F such that Au = x and ‖u‖ ≤ δ‖x‖. Now, if
x ∈ F , set u0 = x and consider u1 ∈ F such that Au1 = u0 and
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‖u1‖ ≤ δ‖u0‖. By repeating this procedure, for all n ∈ N, we
can find un ∈ F such that

Aun = un−1 and ‖un‖ ≤ δ‖un−1‖.
We conclude that for all n ∈ N, ‖un‖ ≤ δn‖x‖, thus x ∈ K(A).
Consequently F ⊆ K(A).

(ii) Suppose that C(A) is closed. Since A(C(A)) = C(A), from (i),
we have C(A) ⊆ K(A) and by (iii) of Theorem 3.9, we have
K(A) ⊆ C(A), hence C(A) = K(A). □

Set α(A) = dimN(A) (if it exists), we have the following definition.

Lemma 3.11. Let X be a non-Archimedean Banach space over K and
let A,B ∈ B(X) such that ‖B‖ ≤ 1. If α(A) = 0, R(A) = X and
|λ| < γ(A). Then,

(i) α(A− λB) = α(A) = 0.
(ii) γ(A− λB) ≥ γ(A)− |λ|.

Proof. (i) From α(A) = 0 and R(A) is surjective, thus A is invert-
ible and A−1 exists. By Proposition 3.1, γ(A) = ‖A−1‖−1. Since
|λ| < γ(A), then |λ|‖B‖‖A−1‖ < 1, hence C = I − λBA−1 is
invertible, thus CA = A−λB is invertible. Then N(A−λB) =
{0}, hence α(A− λB) = α(A) = 0.

(ii) Since
|‖Ax‖ − |λ|‖Bx‖| ≤ ‖(A− λB)x‖.

Consequently
γ(A)− |λ| ≤ γ(A− λB). □

Let r > 0, put B(0, r) = {λ ∈ K : |λ| < r}, we have the following
theorems.

Theorem 3.12. Suppose that K is spherically complete, let X be a non-
Archimedean Banach space of countable type over K, let A,B ∈ B(X)
such that ‖B‖ ≤ 1 and R(A) = X. Suppose that there is M closed
subspace of X such that X = N(A)⊕M. Then there is ρ > 0 such that
for all λ ∈ B(0, ρ),

(i) R(A− λB) = R(A).
(ii) X = N(A− λB)⊕M.

Proof. Let A0 and B0 be the restrictions of A and B to M. Thus A0 is
a one-to-one bounded linear operator from M into X, then 0 < γ(A0) <
∞. Moreover, B0 is a bounded linear operator from M into X and
‖B0‖ ≤ 1. Consequently for |λ| < γ(A0). By Lemma 3.11, α(A0−λB0) =
α(A0) = 0 and R(A0−λB0) = X. Set ρ = γ(A0), then for all λ ∈ B(0, ρ),
we have:
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(i)

X = R(A0 − λB0)

⊂ R(A− λB)

⊂ X,

thus R(A− λB) = X. Consequently R(A− λB) = R(A).
(ii) Let x ∈ X, (A−λB)x ∈ X = R(A0−λB0), then there is u ∈ M

such that

(A− λB)x = (A0 − λB0)u

= (A− λB)u.

Thus x−u ∈ N(A−λB) and u ∈ M. Hence x = x−u+u, then
X = N(A− λB) +M and

N(A− λB) ∩M = N(A0 − λB0)

= {0}.

We conclude that X = N(A− λB)⊕M. □

Theorem 3.13. Let X,Y be two non-Archimedean Banach spaces over
K, let A ∈ B(X,Y ). If R(A) is closed in Y, then there is a constant
M > 0 such that, for given x ∈ X, there exists y ∈ X such that Ax = Ay
and ‖y‖ ≤ M‖Ax‖.

Proof. Consider the operator Â : X/N(A) → R(A) by for all x ∈ X,

Âx̂ = Ax. It is easy to see that Â is well defined and one-to-one and
continuous linear operator from X̂ into R(A). By the open mapping
theorem, there is a M1 > 0 such that for all x ∈ X,

‖x̂‖ = ‖x+N(A)‖
≤ M1‖Ax‖.

Let x ∈ X, if Ax 6= 0, then there exists u ∈ N(A) such that

‖x+ u‖ ≤ ‖x+N(A)‖+ ‖Ax‖
≤ M1‖Ax‖+ ‖Ax‖
= (M1 + 1)‖Ax‖.

Set M = M1 + 1, in this case, we put y = x + u, then ‖y‖ ≤ M‖Ax‖.
If Ax = 0, hence we take y = 0, therefore ‖y‖ ≤ M‖Ax‖. So for x ∈ X
given there exists y ∈ X such that Ax = Ay and ‖y‖ ≤ M‖Ax‖. □

We have the following definition.
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Definition 3.14. Let X,Y be a non-Archimedean Banach spaces over
K and let A ∈ B(X,Y ). The injectivity modulus of A is defined by

j(A) = inf
x∈X\{0}

‖Ax‖
‖x‖

.

The surjectivity modulus of A is given by

k(A) = sup{r ≥ 0 : rBY ⊂ A(BX)},

where BX = {x ∈ X : ‖x‖ < 1} and BY = {y ∈ Y : ‖y‖ < 1}.

Remark 3.15. Obviously, if A ∈ B(X), then j(A) ≤ ‖A‖.

The following statements hold.

Proposition 3.16. Let X be a non-Archimedean Banach space over K,
let A,B ∈ B(X). We have:

(i) j(AB) ≤ ‖A‖j(B).
(ii) If A is invertible, then γ(A)j(A−1B) ≤ j(B).
(iii) j(A+B) ≤ max{j(A), j(B)}.
(iv) For all n ∈ N, j(nA) ≤ j(A).
(v) For all n ≥ 1, j(An) ≤ ‖An−1‖j(A).

Proof. Since A,B ∈ B(X). Then
(i)

j(AB) = inf
x∈X\{0}

‖ABx‖
‖x‖

≤ ‖A‖ inf
x∈X\{0}

‖Bx‖
‖x‖

= ‖A‖j(B).

(ii) Since A is invertible. Then by Proposition 3.1, γ(A) = ‖A−1‖−1.
Thus

j(A−1B) = inf
x∈X\{0}

‖A−1Bx‖
‖x‖

≤ ‖A−1‖ inf
x∈X\{0}

‖Bx‖
‖x‖

= ‖A−1‖j(B).

Hence

γ(A)j(A−1B) = ‖A−1‖−1j(A−1B)

≤ j(B).
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(iii) We have:

j(A+B) = inf
x∈X\{0}

‖(A+B)x‖
‖x‖

≤ inf
x∈X\{0}

max

{
‖Ax‖
‖x‖

,
‖Bx‖
‖x‖

}
≤ max

{
inf

x∈X\{0}

‖Ax‖
‖x‖

, inf
x∈X\{0}

‖Bx‖
‖x‖

}
= max {j(A), j(B)} .

(iv) Since for all n ∈ N, |n| ≤ 1, then j(nA) = |n|j(A) ≤ j(A).
(v) For all n ≥ 1, we have

j(An) = inf
x∈X\{0}

‖Anx‖
‖x‖

= inf
x∈X\{0}

‖An−1Ax‖
‖x‖

≤ ‖An−1‖ inf
x∈X\{0}

‖Ax‖
‖x‖

= ‖An−1‖j(A). □
Definition 3.17. Let X be a non-Archimedean Banach space over K, let
A ∈ B(X), A is said to be bounded below if for all x ∈ X, M‖x‖ ≤ ‖Ax‖
for some M > 0.

We have the following results.
Lemma 3.18. Let X be a non-Archimedean Banach space over K, let
A ∈ B(X). Then A is bounded below if and only if A is injective and
R(A) is closed.
Proof. Suppose that A is bounded below, then for all x ∈ X, M‖x‖ ≤
‖Ax‖ for some M > 0. If ‖Ax‖ = 0, then x = 0, hence A is injective. Let
(xn)n∈N ⊂ X such that lim

n→∞
Axn = y. Then for each m,n ∈ N, M‖xn−

xm‖ ≤ ‖Axn −Axm‖. Hence (xn)n∈N is Cauchy sequence in X. Since X
is complete, we conclude that there is x ∈ X such that lim

n→∞
xn = x. So

lim
n→∞

Axn = Ax = y i.e., y ∈ R(A). Thus R(A) is closed. The converse
is clear. □
Proposition 3.19. Let X be a non-Archimedean Banach space over K,
let A ∈ B(X) be bijective, then j(A) = ‖A−1‖−1.

Proof. Since A is bijective and set y = Ax, we have

j(A) = inf
x∈X\{0}

‖Ax‖
‖x‖



152 J. ETTAYB

= inf
x∈X\{0}

 1
∥x∥
∥Ax∥


=

(
sup

x∈X\{0}

‖x‖
‖Ax‖

)−1

=

(
sup

y∈X\{0}

‖A−1y‖
‖y‖

)−1

= ‖A−1‖−1. □

Proposition 3.20. Let X be a non-Archimedean Banach space over K
such that ‖X‖ ⊆ |K|. If A,B ∈ B(X), then |j(A)− j(B)| ≤ ‖A−B‖.

Proof. Let x ∈ X such that ‖x‖ = 1, then

|‖Ax‖ − ‖Bx‖| ≤ ‖Ax−Bx‖
≤ ‖A−B‖.

Thus
j(A)− j(B) ≤ ‖A−B‖.

Moreover
j(B)− j(A) ≤ ‖A−B‖.

Consequently |j(A)− j(B)| ≤ ‖A−B‖. □

We finish with the following theorem.

Theorem 3.21. Suppose that K is spherically complete. Let X be a
non-Archimedean Banach space over K such that ‖X‖ ⊆ |K| and let
A ∈ B(X). Then
j(A) = sup{r > 0 : A−B bounded below for all B ∈ B(X), ‖B‖ < r}.

Proof. Let A,B ∈ B(X) such that ‖B‖ < j(A). It is easy to see that

j(A−B) ≥ j(A)− j(B)

≥ j(A)− ‖B‖
> 0.

So, we conclude that A − B is bounded below. Conversely, let ε > 0
there is a x0 ∈ X\{0} such that ‖x0‖ = 1 and ‖Ax0‖ < ε + j(A). By
Theorem 2.9, there is f ∈ X ′ such that f(x0) = 1 and ‖f‖ = 1. Consider
the operator B defined on X by for all x ∈ X, Bx = f(x)Ax0. Then
Bx0 = f(x0)Ax0 = Ax0 i.e., (B −A)x0 = 0. Hence B −A is not one to
one. Thus A−B is not bounded below. □
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