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Abstract. In this paper, we aim to extend the Darboux frame
field into 3-dimensional Anti-de Sitter space and obtain two cases
for this extension by considering a parameterized curve on a hyper-
surface; then we carry out the Euler-Lagrange equations and derive
differential equations for non-null elastic curves in AdS3 (i.e. 3-
dimensional Anti-de Sitter space). In this study, we investigate the
elastic curves in AdS3 and obtain equations through which elastic
curves are found out. Therefore, we solve these equations numeri-
cally and finally plot and design some elastic curves.

1. Introduction

One of the most classical themes in the calculus of variations in a
space is elastic curve. Another one is named elastica, which would be
either a surface or a manifold, characterized as the curve fulfilling a
variational condition proper for interpolation problems [11]. Therefore,
it can be considered as a solution of the variational problem introduced
by Daniel Bernoulli and Leonhard Euler in 1744 [7]. The mathematical
idealization of this issue declines the integral of the squared curvature
with determined boundary conditions [14].

The purpose of the current study is to prosper and build up a relating
context for elastic curves in AdS3 which is considered. Einstein used
highly symmetrical solution for calculating the equations with absirptive
cosmological constant. In reality, this highly symmetrical solution is not
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as attractive as it must be; however, it would be considered as a sort of
regularization of long distance actions of gravity.

It is worth mentioning that the conformal boundary of asymptotically
Anti-de Sitter space is impressively different from asymptotically flat
space times. Therefore, this aspect of anti-de Sitter is normally vital in
case of Anti-de Sitter emerges in mathematical physics [2].

If we view a one sheeted hyperboloid
X2

1 +X2
2 + · · ·+X2

n −X2
n+1 = 1.

In Minkowski space, we provide a space with a Lorentzian metric of
constant curvature which is called as dSn (i.e. n-dimensional de Sitter
space).

AdSn (i.e. n-dimensional Anti-de Sitter space) is addressed as the
quadric
(1.1) X2

1 +X2
2 + · · ·+X2

n−1 − U2 − V 2 = −1,

which is deeply put in a flat n+ 1 dimensional space with the metric
ds2 = dX2

1 + · · ·+ dX2
n−1 − dU2 − dV 2.

In general, the topology of adSn is Rn−1⊗S1 and the topology of dSn

is Sn−1 ⊗R [2]. Now, if we put n = 3 in the formula (1.1), then we get
AdS3.

In the present research, we investigate the elastic curves in AdS3 and
propose equations which help us to study the issues in relation to these
subjects. Particularly, our aim is to develop some differential equations
of the non-null elastic curves in AdS3 [14, 1].

Then, a definition of an elastica in AdS3 is proposed as an extremal
point of the functional ∫ l

0
(k2g(s) + σ)ds

where
k2g(s) = k2g1(s) + k2g2(s)

in the space M of non-null curves
γ : [0, l] → AdS3,
γ(0) = P0,
γ′(0) = V0,
γ′′(0) = a0,

∥γ′∥ = 1,
γ(l) = Pl,
γ′(l) = Vl,
γ′′(l) = al,

where kg = kg(s) denotes the geodesic curvature of the curve as a func-
tion of the arc length parameter s and σ is constant.

It is suffice to say that a non-null curve is either timelike or space-
like. Each of these features is put under investigation separately in the
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present paper. However, before illustrating these cases, a definition of
Darboux frame field into 3-dimensional AdS3 space is necessary. In the
area of differential geometry, one of the most important instruments for
studying curves and surfaces is the frame field. The most famous and
reputable frame fields are the Frenet-Serret frame along a space curve
and the Darboux frame along a surface curve.

In Euclidean 3-space, the Darboux frame is developed by the speed
of the curve and the common vector of the surface though the Frenet
serret frame is built from the velocity and the speed of the curve, see
references [3, 8, 9, 10, 13] for further reading.

The estimations of segments 2 and 3 of the article are taken from
reference [4], For additional reading, refer to the reference section.

We dedicate Section 4.1 of the main text to spacelike elastica in case 1
ED-frame field and develop differential equations and afterwards tackle
these equations numerically and plot them. In Section 4.2, we consider
timelike elastica in case 1 from ED-frame field and develop differential
equations and solve them just like previous section. In section 5.1, we
consider spacelike elastica in case 2 from ED-frame field and develop dif-
ferential equations with their solutions and then plot them. We allocate
the last section 5.2 to timelike elastica in case from ED-frame field and
after deriving differential equations with the help of Matlab, we solve
and plot them. As a result, in all four modes, we provide equations that
show geodesic curvature of γ must satisfy them.

2. The Construction of the Extended Darboux Frame Field

We can construct the extended Darboux frame field along the Frenet
curve β as follows:

Case 1. If the set {N,T, β′′} is linearly independent, then using the
Gram-Schmidt orthonormalization method gives the orthonormal set
{N,T,E} where

E =
β′′ − ⟨β′′, N⟩N

∥β′′ − ⟨β′′, N⟩N∥
.

Case 2. If the set {N,T, β′′} is linearly dependent, i.e. if β′′ is in the
direction of the normal vector N . Applying the Gram-Schmidt orthonor-
malization method to {N,T, β′′′} yields the orthonormal set {N,T,E},
where

E =
β′′′ − ⟨β′′′, N⟩N − ⟨β′′′, T ⟩T

∥β′′′ − ⟨β′′′, N⟩N − ⟨β′′′, T ⟩T∥
.

in each case, if we define D = N ⊗T ⊗E we have four unit vector fields
T,E,D and N which are mutually orthogonal at each point of β.
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Thus, we have a new orthonormal frame field {T,E,D,N} along the
curve β instead of its Frenet frame field. It is obvious E(s) and D(s)
are also tangent to the hypersurface M for all s.

Thus, the set {T (s), E(s), D(s)} spans the tangent hyperplane of the
hypersurface at the point β(s) [4, 5, 6].

3. The Derivative Equations

Let us now express the derivatives of these vector fields in terms of
themselves in each case. Since {T,E,D,N} is orthonormal, we have

g(T, T ) = 1,
g(D,D) = 3,

g(E,E) = 2,
g(N,N) = 4,

where ϵ1, ϵ2, ϵ3, ϵ4 ∈ {−1, 1}, and
T ′ = ϵ1g(T

′, T )T + ϵ2g(T
′, T )E + ϵ4g(T

′, D)D + ϵ4(T
′N)N,

E′ = ϵ1g(E
′, T )T + ϵ2g(E

′, E)E + ϵ3g(E
′, D)D + ϵ4g(E

′, N)N,

D′ = ϵ1g(D
′, T )T + ϵ2g(D

′, E)E + ϵ3g(D
′, D)D + ϵ4g(D

′, N)N,

N ′ = ϵ1g(N
′, T )T + ϵ2g(N

′, E)E + ϵ3g(N
′, D)D + ϵ4g(N

′, N)N.

In Case 1, ED-frame field is of the first kind. Since we have

E =
β′′ − ⟨β′′, N⟩N
∥β′′ − ⟨β′′, N⟩N∥

=
T ′ − ⟨T ′, N⟩N
∥T ′ − ⟨T ′, N⟩N∥

,

we get
T ′ =

∥∥T ′ −
〈
T ′, N

〉
N
∥∥E +

〈
T ′, N

〉
N.

i.e. ⟨T ′, D⟩ = 0.
In Case 2, ED-frame field is of the second kind. Thus {N,T, β′′} is

linearly dependent and

(3.1) E =
β′′′ − ⟨β′′′, N⟩N − ⟨β′′′, T ⟩T

∥β′′′ − ⟨β′′′, N⟩N − ⟨β′′′, T ⟩T∥
.

The linear dependency of {N,T, β′′} gives β′′ = λN , that is ⟨T ′, E⟩ =
⟨T ′, D⟩ = 0. Moreover, if we substitute β′′′ = λ′N + λN ′ into (3.1), we
obtain ⟨N ′, D⟩ = 0. we denote〈

E′, N
〉
= Tg1 ,

〈
D′, N

〉
= Tg2

and call Tgi the geodesic torsion of order i. similarly, we put〈
T ′, E

〉
= kg1 ,

〈
E′, D

〉
= kg2

and define kgi as the geodesic curvature of order i.
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Lastly, if we use ⟨T ′, N⟩ = kn, we obtain the differential equations of
ED-frame fields in matrix notation

Case 1:


T ′

E′

D′

N ′

 =


0 kg1 0 kn

−kg1 0 kg2 Tg1

0 −kg2 0 Tg2

−kn −Tg1 −Tg2 0



T
E
D
N

(3.2)

Case 2:


T ′

E′

D′

N ′

 =


0 0 0 kn
0 0 kg2 Tg1

0 −kg2 0 0
−kn −Tg1 0 0



T
E
D
N

(3.3)

see reference [4]. Now let us consider four cases as follow.

4. Case 1

4.1. Spacelike Elastica. In this section, we consider spacelike elastica
in Case 1 from ED-frame field (3.2). We will begin this section by
considering Darboux basis. Let us consider an arc length parameterized
spacelike curve in AdS3 described by the embedding γ = γ(s) where
γ = (γ1, γ2, γ3, γ3).

At a point γ(s) of γ, let T = γ′ denote the unit spacelike tangent
vector to γ, let N , E be timelike vectors and D a spacelike vector on
Ads3. The derivatives T ′, E′, D′, N ′ in the Darboux basis T,E,D,N
satisfy

T ′ = −kg1E − 1

r
N,

E′ = −kg1T + kg2D,(4.1)
D′ = kg2E,

N ′ = −1

r
T.

that
T ′ = +

〈
T ′, T

〉
T −

〈
T ′, E

〉
E +

〈
T ′, D

〉
D −

〈
T ′, N

〉
N,

E′ = +
〈
E′, T

〉
T −

〈
E′, E

〉
E +

〈
E′, D

〉
D −

〈
E′, N

〉
N,

D′ = +
〈
D′, T

〉
T −

〈
D′, E

〉
E +

〈
D′, D

〉
D −

〈
D′, N

〉
N,

N ′ = +
〈
N ′, T

〉
T −

〈
N ′, E

〉
E +

〈
N ′, D

〉
D −

〈
N ′, N

〉
N.

where
⟨T ′, E⟩ = kg1 , ⟨T ′, N⟩ = kn,
⟨E′, D⟩ = kg2 , ⟨E′, N⟩ = Tg1 ,
⟨D′, N⟩ = Tg2 ,
Tg1 = Tg2 = 0.
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From (4.1) we obtain the relation〈
E′, E′〉 = k2g1 + k2g2(4.2)

By substituting the quantities (4.1) in relation (4.2) we have〈
E′, E′〉 = ⟨−kg1T + kg2D,−kg1T + kg2D⟩

= k2g1 ⟨T, T ⟩+ k2g2 ⟨D,D⟩
= k2g1 + k2g2 .

We want to minimize the functional∫ 1

0

( 〈
E′, E′〉+ σ

)
ds

under the constraints
⟨E,E⟩ = −1, E = γ′′, ⟨γ, γ⟩ = −r2,

〈
γ′, γ′

〉
= ⟨T, T ⟩ = 1.

Thus, it is possible to apply the Euler-lagrange equations to the func-
tional

F =
〈
E′, E′〉+ λ

(
⟨E,E⟩+ 1

)
+ η

( 〈
γ′, γ′

〉
− 1

)
+ µ

(
⟨γ, γ⟩+ r2

)
+ 2

〈
Λ, γ′′ − E

〉
.

where λ, µ, η are scalars and
Λ = ⟨Λ1,Λ2,Λ3,Λ4⟩

is a vector in E4
2 (for calculus of variations see [11]).

Now, we can carry out the Euler-Lagrange equations

∂F

∂γ
− d

ds

(
∂F

∂γ′

)
= 0,

∂F

∂γ′
− d

ds

(
∂F

∂γ′′

)
= 0,

∂F

∂E
− d

ds

(
∂F

∂E′

)
= 0.

So, we obtain from the Euler-Lagrange equations
∂F

∂γ
= 2µγ

∂F

∂E
= 2λE − 2Λ

d

ds

(
∂F

∂γ′

)
= 2ηγ′′

∂F

∂γ′
= 2ηγ′

∂F

∂E′ = 2E′ d

ds

(
∂F

∂γ′′

)
= 2Λ′

∂F

∂γ′′
= 2Λ

d

ds

(
∂F

∂E′

)
= 2E′′

µγ − ηγ′′ = 0(4.3)
µ · (−γ1,−γ2, γ3, γ4)− η

(
−γ′′1 ,−γ′′2 , γ

′′
3 , γ

′′
4

)
= 0,



NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF ELASTIC 177

ηγ − Λ′ = 0(4.4)
η ·

(
−γ′1,−γ′2, γ

′
3, γ

′
4

)
−
(
−Λ′

1,−Λ′
2,Λ

′
3,Λ

′
4

)
= 0,

λE − E′′ = Λ(4.5)
λ · (−e1,−e2, e3, e4)−

(
−e′′1,−e′′2, e

′′
3, e

′′
4

)
= (−Λ1,−Λ2,−Λ3,Λ4) .

if we take first derivative of (4.5) with respect to s, we have
λ′E + λE′ − E′′′ = Λ′

and combine with (4.4), and then derive the achieved equation (4.4), we
have

η′γ′ + ηγ′′ = λ′′E + 2λ′E′ + λE′′ − E′′′

and combine with (4.3), γ = −rN , γ′ = T , we obtain
λ′′E + 2λ′E′ + λE′′ − E′′′ = η′T − rµN,

and
λ′′ (−e1,−e2, e3, e4) + 2λ′ (−e′1,−e′2, e

′
3, e

′
4

)
(4.6)

+ λ
(
−e′′1,−e′′2, e

′′
3, e

′′
4

)
−
(
−e′′′′1 ,−e′′′′2 , e′′′′3 , e′′′′4

)
= η′ (−t1,−t2, t3, t4)− rµ (−n1,−n2, n3, n4) .

By using the equations (4.1) and considering the relation k2g = k2g1 +k2g2 ,
we have some derivatives of E as following

E′ = −kg1T + kg2D,

E′′ = −k′g1T + k2gE + k′g2D +
1

r
kg1N,

E′′′ =

(
−k′′g1 − kg1k

2
g −

1

r2
kg1

)
T +

(
kg1k

′
g1 + 2kgk

′
g + kg2k

′
g2

)
E

+
(
k2gkg2 + k′′g2

)
D +

(
2

r
k′g1

)
N.

and

E′′′′ = −
(
k′′′g1 + k′g1k

2
g + 2kg1kgk

′
g +

1

r2
k′g1 + k2g1k

′
g1 + 2kg1kgk

′
g

+kg1kg2k
′
g2 −

2

r2
k′g1

)
T

+
(
kg1k

′′
g1 + k2g1k

2
g +

1

r2
k2g1 +

(
k′g1

)2
+ kg1k

′′
g1 + 2

(
k′g
)2

+ 2kgk
′′
g + k′2g2 + kg2k

′′
g2 + k2g2k

2
g + k′′g2kg2

)
E

+
(
kg2kg1k

′
g1 + 4kg2kgk

′
g + k2g2k

′
g2 + k2gk

′
g2 + k′′′g2

)
D
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+

(
1

r
k′′g1 +

1

r
kg1k

2
g +

1

r3
kg1 +

2

r
k′′g1

)
N.

from (4.6), we have
λ′′E + 2λ′E′ + λE′′ − E′′′′ − η′T + µrN = 0,

then

λ′′E+2λ′ (−kg1T+kg2D)+λ

(
−k′g1T+k2gE + k′g2D+

1

r
kg1N

)
+

(
k′′′g1 + k′g1k

2
g + 2kg1kgk

′
g +

1

r2
k′g1 + k2g1k

′
g1 + 2kg1kgk

′
g

+kg1kg2k
′
g2−

2

r2
k′g1

)
T−

(
kg1k

′′
g1 + k2g1k

2
g +

1

r2
k2g1 +

(
k′g1

)2
+kg1k

′′
g1+2

(
k′g
)2
+2kgk

′′
g+

(
k′g2

)2
+kg2k

′′
g2+k2g2k

2
g+k′′g2kg2

)
E

−
(
kg2kg1k

′
g1 + 4kg2kgk

′
g + k2g2k

′
g2 + k2gk

′
g2 + k′′′′g2

)
D

−
(
1

r
k′′g1+

1

r
kg1k

2
g+

1

r3
kg1+

2

r
k′′g1

)
N−η′T+µrN

= 0.

Then(
−2λ′kg1 − λk′g1 − η′ + k′′′g1 + k′g1k

2
g + 4kg1kgk

′
g +

1

r2
k′g1

+k2g1k
′
g1 + kg1kg2k

′
g2 −

2

r2
k′g1

)
T

+

(
λ′′+λk2g−kg1k

′′
g1−k2g1k

2
g−

1

r2
k2g1−(k′g1)

2 − kg1k
′′
g1−2(k′g)

2

−2kgk
′′
g − (k′g2)

2 − 2kg2k
′′
g2 − k2g2k

2
g

)
E +

(
2λ′kg2 + λk′g2

−kg2kg1k
′
g1 − 4kg2kgk

′
g − k2g2k

′
g2 − k2gk

′
g2 − k′′′g2

)
D

+

(
1

r
λkg1 + µr − 1

r
k′′g1 −

1

r
kg1k

2
g −

1

r3
kg1 −

2

r
k′′g1

)
N

= 0.

Considering the linear independence of the vectors T,E,D,N we have
the following theorem:

Theorem 4.1. γ is a spacelike elastica in AdS3 if and only if the geodesic
curvature of γ satisfies in the four below equations:

− 2λ′kg1 − λk′g1 − η′ − k′′′g1 + k′g1k
2
g + 4kg1kgk

′
g

+
1

r2
k′g1 + k2g1k

′
g1 + kg1kg2k

′
g2 −

2

r2
k′g1 = 0,
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λ′′ + λk2g − 2kg1k
′′
g1 − k2g1k

2
g −

1

r2
k2g1 − (k′g1)

2

− 2k′2g − 2kgk
′′
g − k′2g2 − 2kg2k

′′
g2 − k2g2k

2
g = 0,

2λ′kg2 + λk′g2 − kg2kg1k
′
g1 − 4kg2kgk

′
g − k2g2k

′
g2

− k2gk
′
g2 − k′′′g2 = 0,

1

r
λkg1 + µr − 1

r
k′′g1 −

1

r
kg1k

2
g −

1

r3
kg1 −

2

r
k′′g1 = 0.

we solve this equations numerically and plot them at Figure 1.

Figure 1. Spacelike1

4.2. Timelike Elastica. We start with preliminaries on the geometry
of timelike elastica in Case 1 from ED-frame field in AdS3. Let γ be an
arc length parameterized timelike curve in AdS3. At a point γ (s) of γ,
let T = γ′ denote the unit timelike tangent vector to γ.

Let N,E be spacelike vectors and D a timelike vector on AdS3. The
derivatives T ′, E′, D′, N ′ in Extension of the Darboux basis T,E,D,N
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satisfy

T ′ = kg1E +
1

r
N,

E′ = kg1T − kg2D,

D′ = −kg2E,

N ′ =
1

r
T.

We have 〈
E′, E′〉 = −

(
k2g1 + k2g2

)
we want to minimize the functional∫ l

0

(
−
〈
E′, E′〉+ σ

)
ds

under the constraints
⟨E,E⟩ = 1, E = γ′′, ⟨γ, γ⟩ = −r2,

〈
γ′, γ′

〉
= −1.

Thus, it is possible to apply the Euler-Lagrange equations to the func-
tional

F =−
〈
E′, E′〉+ λ (⟨E,E⟩ − 1) + η

(〈
γ′, γ′

〉
+ 1

)
+ µ

(
⟨γ, γ⟩+ r2

)
+ 2

〈
Λ, γ′′ − E

〉
.

To get the differential equations which govern the extremals

∂F

∂γ
− d

ds

(
∂F

∂γ′

)
= 0,

∂F

∂γ′
− d

ds

(
∂F

∂γ′′

)
= 0,

∂F

∂E
− d

ds

(
∂F

∂E′

)
= 0.

To substitution, we have:
µγ − ηγ′′ = 0,

ηγ′ − Λ′ = 0,

λE − Λ + E′′ = 0.

Combining these equations and considering that γ = rN , we yields
λ′′E + 2λ′E′ + λE′′ + E′′′′ = rη′N ′ + µrN,

Substituting E,E′, E′′, E′′′′, N,N ′, we have
λ′′ (−e1,−e2, e3, e4) + 2λ′ (−e′1,−e′2, e

′
3, e

′
4

)
+ λ

(
−e′′1,−e′′2, e

′′
3, e

′′
4

)
(4.7)

+
(
−e′′′′1 ,−e′′′′2 , e′′′′3 , e′′′′4

)
= rη′

(
−n′

1,−n′
2, n

′
3, n

′
4

)
+ µr (−n1,−n2, n3, n4) .
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The derivatives of E expressed in the Darboux basis are given by

E′ = kg1T − kg2D,

E′′ = k′g1T + k2gE +
1

r
kg1N − k′g2D,

E′′′ =

(
k′′g1 + k2gkg1 +

1

r2
kg1

)
T +

(
kg1k

′
g1 + 2kgk

′
g + kg2k

′
g2

)
E

+

(
2

r
k′g1

)
N −

(
kg2k

2
g + k′′g2

)
D,

E′′′′ =

(
k′′′g1 + 2kgk

′
gkg1 + k2gk

′
g1 +

1

r2
k′g1 + k2g1k

′
g1 + 2kgk

′
gkg1

+kg1kg2k
′
g2 +

2

r2
k′g1

)
T +

(
kg1k

′′
g1 + k2gk

2
g1 +

1

r2
k2g1 + k′2g1

+ kg1k
′′
g1 + 2k′2g + 2kgk

′′
g + (k′g2)

2 + kg2k
′′
g2 + k2g2k

2
g + kg2k

′′
g2

)
E

+

(
1

r
k′′g1 +

1

r
k2gkg1 +

1

r3
kg1 +

2

r
k′′g1

)
N

−
(
kg1k

′
g1kg2 + 2kgk

′
gkg2 + k2g2k

′
g2 + k′g2k

2
g + k′′′g2 + 2kg2kgk

′
g

)
D.

From (4.7), we have(
2λ′kg1 + λk′g1 − η′ + k′′′′g1 + 4kgk

′
gkg1 + k2gk

′
g1 +

3

r2
kg1

+k2g1k
′
g1 + kg1kg2k

′
g2

)
T +

(
λ′′ + λk2g + 2kg1k

′′
g1 + k2gk

2
g1

+
1

r2
k2g1 + k′2g1 + 2kgk

′′
g + k′2g2 + 2kg2k

′′
g2 + k2gk

2
g2

)
E

−
(
λ

r
kg1 − µr +

1

r
k′′g1 +

1

r
kg1k

2
g +

1

r3
kg1 +

2

r
k′′g1

)
N

−
(
2λ′kg2 + λk′g2 + kg1k

′
g1kg2 + 4kgkg2k

′
g + k2g2k

′
g2

+ k′g2k
2
g + k′′′g2

)
D

= 0.

From these we have the following theorem:

Theorem 4.2. γ is a timelike elastica in AdS3 if and only if the geodesic
curvature of γ satisfies in the four below equations:

2λ′kg1 + λk′g1 − η′ + k′′′g1 + 4kgk
′
gkg1 +

3

r2
k′g1
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+ k2gk
′
g1 + k2g1k

′
g1 + kg1kg2k

′
g2 = 0,

λ′′ + λk2g + 2kg1k
′′
g1 + k2gk

2
g1 +

1

r2
k2g1 + k′2g1 + 2k′2g

+ 2kgk
′′
g + k′2g2 + 2kg2k

′′
g2 + k2gk

2
g2 = 0,

2λ′kg2 + λk′g2 + kg1k
′
g1kg2 + 4kgkg2k

′
g

+ k′′′g2 + k2g2k
′
g2 + k′g2k

2
g = 0,

1

r
λkg1 − µr +

1

r
k′′g1 +

1

r
kg1k

2
g +

1

r3
kg1 +

2

r
k′′g1 = 0.

We plot them in Figure 2.

Figure 2. Timelike1

5. Case 2

5.1. Spacelike Elastica. In this section, we aim at obtaining spacelike
elastica in Case 2 from ED-frame field (3.3). Assuming the same condi-
tions of the previous case about γ, let T = γ′ denote the unit spacelike
tangent vector to γ, let N,D be timelike vectors and E a spacelike vector
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on AdS3. The derivatives T ′, E′, D′, N ′ in the Darboux basis T,E,D,N
satisfy

T ′ = −1

r
N,

E′ = −kg2D,

D′ = −kg2E,

N ′ = −1

r
T.

where

kg2 = kg.

We obtain that 〈
E′, E′〉 = −k2g .

We want to minimize the functional∫ (
−
〈
E′, E′〉+ σ

)
ds

under the constraints

⟨E,E⟩ = 1, E = γ′′′, ⟨γ, γ⟩ = −r2,
〈
γ′, γ′

〉
= 1,

〈
γ′′, γ′′

〉
= −1.

Then we have

F = −
〈
E′, E′〉+ σ + λ (⟨E,E⟩ − 1) + η

(〈
γ′′, γ′′

〉
+ 1

)
+ µ

(〈
γ′, γ′

〉
− 1

)
+ δ

(
⟨γ, γ⟩+ r2

)
+ 2

〈
Λ, γ′′ − E

〉
.

Now, we can carry out the Euler-Lagrange equations

∂F

∂γ
− d

ds

(
∂F

∂γ′

)
= 0,

∂F

∂γ′
− d

ds

(
∂F

∂γ′′

)
= 0,

∂F

∂γ′′
− d

ds

(
∂F

∂γ′′′

)
= 0,

∂F

∂E
− d

ds

(
∂F

∂E′

)
= 0.
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So, we obtain from the Euler-Lagrange equations
∂F

∂γ
= 2δγ

∂F

∂E
= 2λE − 2Λ

d

ds

(
∂F

∂γ′

)
= 2µγ′′

∂F

∂γ′
= 2µγ′

∂F

∂E′ = −2E′ d

ds

(
∂F

∂γ′′

)
= 2ηγ′′′

∂F

∂γ′′
= 2ηγ′′

d

ds

(
∂F

∂γ′′′

)
= 2Λ′

∂F

∂γ′′′
= 2Λ

d

ds

(
∂F

∂E′

)
= −2E′′

with substitution have
δγ − µγ′′ = 0,(5.1)
µγ′ − ηγ′′′ = 0,(5.2)
ηγ′′ − Λ′ = 0,(5.3)
λE − Λ + E′′ = 0.(5.4)

If we take first derive of (5.4) with respect to s, we have
λ′E + λE′ + E′′′ = Λ′

and combine with (5.3), and then derive the achieved equation (5.3), we
have

λ′′E + 2λ′E′ + λE′′ + E′′′′ = η′γ′′ + ηγ′′′

and combine with (5.2) , and then derive the achieved equation (5.2),
we have

λ′′′E + λ′′E′ + 2λ′′E′ + 2λ′E′′ + λ′E′′ + λE′′′ + E′′′′′

= η′′γ′′ + η′γ′′′ + µ′γ′ + µγ′′.

and with assuming γ′ = T , γ′′′ = E, γ′′ = −rN ′′ and using (5.1), we
obtain (

η′′ + µ
) (

−rN ′′)+ µ′T + η′E(5.5)
= λ′′′E + 3λ′′E′ + 3λ′E′′ + λE′′′ + E′′′′′.

the derivatives of E are
E′ = −kgD,(5.6)
E′′ = −k′gD − kgD

′ = −k′gD + k2gE,

E′′′ = 3kgk
′
gE −

(
k′′g + k3g

)
D,

E′′′′ =
(
3k′2g + 4kgk

′′
g + k4g

)
E −

(
6k2gk

′
g + k′′′g

)
D,

E′′′′′ =
(
6k′gk

′′
g + 4k′gk

′′
g + 4kgk

′′′
g + 4k3gk

′
g

)
E

+
(
3k′2g + 4kgk

′′
g + k4g

)
(−kgD)− (12kgk

′2
g
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+ 6k2gk
′′′′
g )D −

(
6k2gk

′
g + k′′′g

)
(−kgE)

=
(
10k′gk

′′
g + 10k3gk

′
g + 5kgk

′′′
g

)
E −

(
15kgk

′2
g

+10k2gk
′′
g + k5g + k′′′′g

)
D.

From (5.5) and (5.6), we have:

− η′E − µ′T +
(
10k′gk

′′
g + 10k3gk

′
g + 5kgk

′′′
g

)
E

−
(
15kgk

′2
g + 10k2gk

′′
g + k5g + k′′′′g

)
D + 1/r

(
η′′ + µ

)
N

+ λ′′′E − 3λ′′kgD + 3λ′ (−k′gD + k2gE
)
+ λ

(
3kgk

′
gE

− (k′′g + k3g)D
)

= 0,

then

− µ′T +
(
λ′′′ + 3λ′k2g + 3λkgk

′
g

−η′ + 10k′gk
′′
g + 10k3gk

′
g + 5kgk

′′′
g

)
E −

(
3λ′′kg + 3λ′k′g + λk′′g

+λk3g + 15kgk
′2
g + 10k2gk

′′
g + k5g + k′′′′g

)
D + 1/r

(
η′′ + µ

)
N

= 0,

then


µ′ = 0 → µ = constant,
1/r (η′′ + µ) = 0

r ̸=0−−−→ η′′ = −µ,

λ′′′ + 3λ′k2g + 3λkgk
′
g − η′ + 10k′gk

′′
g + 10k3gk

′
g + 5kgk

′′′
g = 0,

3λ′′kg + 3λ′k′g + λk′′g + λk3g + 15kgk
′2
g + 10k2gk

′′
g + k5g + k′′′′g = 0.

Theorem 5.1. γ is a spacelike elastica in AdS3 if and only if the geodesic
curvature of γ satisfies in the two below equations:

λ′′′ + 3λ′k2g + 3λkgk
′
g − η′ + 10k′gk

′′
g + 10k3gk

′
g + 5kgk

′′′
g = 0,

3λ′′kg + 3λ′k′g + λk′′g + λk3g + 15kgk
′2
g + 10k2gk

′′
g + k5g + k′′′′g = 0.

we plot them in Figure 3.
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Figure 3. Spacelike2

5.2. Timelike Elastica. This section is devoted to timelike elastica
in case 2 from ED-frame field. Assuming the same conditions of the
previous case about γ, let T = γ′ denote the unit timelike tangent vector
to γ, let N,D be spacelike vectors and E a timelike vector on AdS3.

The derivatives T ′, E′, D′, N ′ in the Darboux basis T,E,D,N satisfy

T ′ = +
1

r
N,

E′ = kg2D,

D′ = kg2E,

N ′ =
1

r
T,

where
kg2 = kg.

We have 〈
E′, E′〉 = k2g ,

we want to minimize the functional∫ (〈
E′, E′〉+ σ

)
ds,

under the constraints
⟨E,E⟩ = −1, E = γ′′′,

⟨γ, γ⟩ = −r2,
〈
γ′, γ′

〉
= −1,

〈
γ′′, γ′′

〉
= 1.

We have
F =

〈
E′, E′〉+ σ + λ (⟨E,E⟩+ 1) + η

(〈
γ′′, γ′′

〉
− 1

)
+ µ

(〈
γ′, γ′

〉
+ 1

)
+ δ

(
⟨γ, γ⟩+ r2

)
+ 2

〈
Λ, γ′′′ − E

〉
.
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similar to the previous mode, we get the differential equations which
govern the extremals

δγ − µγ′′ = 0,(5.7)
µγ′ − ηγ′′′ = 0,(5.8)
ηγ′′ − Λ′ = 0,(5.9)
λE − Λ− E′′ = 0.(5.10)

If we take first derivative of (5.10) with respect to s, we have
λ′E + λE′ − E′′′ = Λ′

and combine with (5.9), and then derivative the achieved equation (5.9),
we have

η′γ′′ + ηγ′′′ = λ′′E + 2λ′E′ + λE′′ − E′′′′

and combine with (5.8), γ′′ = rN ′′ , γ′ = T , γ′′′ = E, we obtain
λ′′′E + 3λ′′E′ + 3λ′E′′ + λE′′′ − E′′′′′(5.11)

=
(
η′′ + µ

)
rN ′′ + µ′T + η′E.

The derivatives of E are:
E′ = kgD,(5.12)
E′′ = k′gD + k2gE,

E′′′ =
(
k′′g + k3g

)
D +

(
3kgk

′
g

)
E,

E′′′′ =
(
4k′′gkg + 3k′2g + k4g

)
E +

(
6k′gk

2
g + k′′′g

)
D,

E′′′′′ =
(
10k′gk

′′
g + 10k3gk

′
g + 5kgk

′′′
g

)
E +

(
15kgk

′2
g

+10k2gk
′′
g + k5g + k′′′′g

)
D.

From (5.11) and (5.12), we have:
− η′E − µ′T −

(
10k′gk

′′
g + 10k3gk

′
g + 5kgk

′′′
g

)
E −

(
15kgk

′2
g

+10k2gk
′′
g + k5g + k′′′′g

)
D − 1/r

(
η′′ + µ

)
N

+ λ′′′E + 3λ′′kgD + 3λ′ (k′gD + k2gE
)
+ λ

(
3kgk

′
gE

+
(
k′′g + k3g

)
D
)

= 0,

then
− µ′T +

(
λ′′′ + 3λ′k2g + 3λkgk

′
g − η′ − 10k′gk

′′
g − 10k3gk

′
g

−5kgk
′′′
g

)
E +

(
3λ′′kg + 3λ′k′g + λk′′g + λk3g − 15kgk

′2
g

−10k2gk
′′
g − k5g − k′′′′g

)
D − 1/r

(
η′′ + µ

)
N

= 0.
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and
µ′ = 0 → µ = constant,
1/r (η′′ + µ) = 0

r ̸=0−−−→ η′′ = −µ,

λ′′′ + 3λ′k2g + 3λkgk
′
g − η′ − 10k′gk

′′
g − 10k3gk

′
g − 5kgk

′′′
g = 0,

3λ′′kg + 3λ′k′g + λk′′g + λk3g − 15kgk
′2
g − 10k2gk

′′
g − k5g − k′′′′g = 0.

Theorem 5.2. γ is a timelike elastica in AdS3 if and only if the geodesic
curvature of γ satisfies in the two below equations:

λ′′′ + 3λ′k2g + 3λkgk
′
g − η′ − 10k′gk

′′
g − 10k3gk

′
g − 5kgk

′′′
g = 0,

3λ′′kg + 3λ′k′g + λk′′g + λk3g − 15kgk
′2
g − 10k2gk

′′
g − k5g − k′′′′g = 0.

we plot them in Figure 4.

Figure 4. Timelike2

Theorems 4.1 and 5.1 shows spacelike elastica curves in AdS3 space
and theorems 4.2 and 5.2 shows differential equations that geodesic cur-
vature of timelike elastica satisfies in them.
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