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A Seneta’s Conjecture and the Williamson Transform

Edward Omey' and Meitner Cadena®*

ABSTRACT. Considering slowly varying functions (SVF), Seneta in
2019 conjectured the following implication, for o > 1,

/ y*'(1 = F(y))dy is SVF = / y“dF(y) is SVF, as x — oo,
0 0

where F'(x) is a cumulative distribution function on [0,00). By
applying the Williamson transform, an extension of this conjecture
is proved. Complementary results related to this transform and
particular cases of this extended conjecture are discussed.

1. INTRODUCTION

A function f(z) is slowly varying (SVF) if for any ¢ > 0, f(tz)/ f(z) —
1 as z — oo. If F(x) is a distribution function and F(z) = 1 — F(x) is
its tail, recently Seneta [J] conjectured the following. Given a > 1,

(1.1) / y* VF(y)dy is SVF = / y*dF (y) is SVF, as  — oo.
0 0

Nowadays, Kevei in [5] presented an extension of this conjecture and its
proof. In this paper, we also prove an extension of such a conjecture,
but unlike Kevei’s proofs, ours are based on mainly the Williamson
transform. Moreover, the application of this transform to F' allows the
formulation of another conjecture. Finally, such extended conjecture
includes the generalized gamma class.

In the following section, we present our main results. The proofs of
these results are presented in Section . Complementary results related
to the Williamson transform of F' and analysis of particular cases of «
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are discussed in Section @ The last section presents concluding remarks
and next steps for research on extensions of the findings shown in this

paper.

2. MAIN RESULTS

2.1. Some Notation and Transforms. In what follows, F'(z) denotes
a distribution function (d.f.) defined on [0,00) with F(0) = 0, and
F(x) =1— F(x) denotes its tail. The a-th moment of F(x) is denoted
by m(a). It is said that f(z) ~ g(z) if f(z)/g(z) — 1 as & — co. The
case f(z) ~ 0 will be understood as f( ) = 0 as & — oo. The class of
regularly varying functions with index «, denoted by RV, consists of
functions f(x) satisfying, for any ¢ > 0, f(tx) ~ t*f(x). If the index
a = 0, f(z) is said slowly varying. If L € RVj, then the de Haan
class, denoted by Hg( ), consists of functions f(z) satisfying, for any
t>1, /L — Plogt as x — co. The generalized gamma
class, denoted by EF)\(g, a) where g is self-neglecting, i.e., for any ¢ € R,
gz +tg(x )) ~ g( ) consists of functions f(x) satisfying, for any ¢ € R,
(f(x+tg(x z))/a(z) = At as © — oo,

In this paper we assume that a > 0.

We define the following transformations:

H(x) = /0 "yPdF(y) and Wa(z) = /0 "y F (y)dy.

Note that Lebesgue’s theorem on dominated convergence shows that
lim, 0o 7 *Hy(z) = 0. Hence, we have

(2.1) Hy(z) =« /033 Yy YF(y)dy — z°F ().

Among the main results proved by Kevei in [5], we have that, for any
0 € [0,a), Hy(x) € RVy if and only if W, (z) € RVy. The proof for the
converse of this result mainly lies in Theorem 8.1.2 in [[], see also VIII.9

by [B].
From the definitions given above, we get the following result.

Proposition 2.1. For x > 0, we have
o0
(2.2) F(z) = a/ 2 H o (2)dz — 27 Hy ().
x

Proof. Let us consider the integral f; z_o‘_lHa(z)dz fora>z>0. We
have

/: 2 H (2)dz = /: zmol <Ha(x) +/: yo‘dF(y)> dz
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1 a a
= (27— a MHy(x 2y 2dzdF

~ ) ()+LLA y (y)
= é(w““ —a”%)Ha(z) + ;/ (y=* —a ")y dF(y)
= é(x_a —a ) Hu(x) + l(F(Cl) — F(x))

" (Hala) ~ Halr)

= ix*aHa(az) + é(F(a) — F(x)) — éa*O‘Ha(a).

Taking limits as a — 0o, we obtain a~*H,(a) — 0 and hence

[e%S) 1 1
—a—1 —a

Ha d — Ha F .

/x z (2)dz - (x)—l—a ()

This proves the result. O

Now, we recall the Williamson transform which is defined by [10],

Golz) = /0 <1 - <i)a> dF(L).

Gol) = /OOO P <Z > i) dF ()

Note that

where Z is independent of X and P(Z < z) = z%,0 < z < 1. This
shows that G,(z) is also a d.f. with G4(0) = 0. Also, we have the
following result.

Proposition 2.2. For x > 0, we have
(i) Galz) = az™ [ t* 1 F(t)dt.
F(z) = Ga(z) + 3G, (2).
F(x) = Go(x) — 27%Hy ().
Go(z) = az™ W, (z).

Proof. (i) By using partial integration, we have
Gola) = Fla) — 5~ / a0
0

:afﬂ/‘WAF@Mt
0
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(ii) Writing the previous result as 2*Gq(z) = o [y t* L F(t)dt, de-
riving this relation, and dividing it by zo 1 / a give the result
claimed.

(iii) Using Hy(z) and (i), we have Go(x) = F(x) — 27 *Hy(x) and
Go(r) = F(x) + 27 *Hy(z).
(iv) Using the tail of G, (z), Wu(x), and (i), we find
Gu(2) = az—® / 1=1F (1) dt
0

= azx” “Wy(x).

2.2. Main Relations. Our the first main as follows.

Theorem 2.3. Let o« > 0 and 0 < 0 < o. We have:
(i) If O < 0 < a, then the following statements are equivalent:

(b) Gal(w )ERVe o

(c) Wa(x) ERVe,

(d) F(z)/Gal(z) = 0/a as z — oo;

(e) Ho(z )GRVe,

() xo‘ /H —>9/(a—6) as r — 0o;

(g) = /H ) = a/(a—0) as x — oo; and,
(h)x /W ) — 6 as r — oo.

(ii) If 6 = 0, then the statements (b), (¢), (d), (e), (f), (g) and (h)
are equivalent.
(iii) If @ = «, then the statements (a), (b) and (c) are equivalent.
Remarks 2.4.

1) Taking 8 = 0, Theorem @ , (f) and (h) correspond to (17),
(18) and (19) in Theorem 3 by 9 ] respectively.

2) Theorem R.3(a), (e) and (f) are proved in VIIL.9 by [3], see e.g.
Theorem 8.1.2 in [1].

3) The conjecture indicated in (EI) is contained and extended in
the implication, for 0 < 6§ < «, Theorem R.3(c) = Theorem
Z0)

4) Theorem @ ), (e), (h) and a combination of (f) and (h)
correspond to (1 6) (1.4), (1.5), (1.7) and (1.8) in Theorem 1.1
by [5], respectively.

We continue with results when some moments are finite. They are
proved with similar arguments used when proving the results presented
in the previous theorem. Therefore, proofs for this theorem are not
presented.
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Theorem 2.5. Let a > 0 and § > . Assume m(a) < oco. Set W (z) =
W (00) — We(x). The following statements are equivalent:

(3) Fla) € RV.;

(b) Wa(ﬂﬁ) € RVy;

(¢) 27*m(a) — Gu(z) € RV_p;

(d) Wa(w)/(x“FLx)) — 17/(0 — ) as x — 005

(e) (z7*m(a) — Ga(z))/F(z) - a/(0 — ) as & — oo;
(f) m(a) — Ho(x) € RVy_p; and,

(g) (m(a) — Ha(w))/(xaf(ac)) — 9/(9 —a) as x — 0.
Next, results involving the de Haan class follow.

Theorem 2.6. Let a, 3 > 0. Let L(x) € RVy. The following statements
are equivalent:

(a) 2%Ga(z) € lg(L);

(b) 2*F(z)/L(z) = B/a as & — oo; and,

(¢) Wa(z) € llg/q (L)
Remark 2.7. The relation (b) < (c) was identified in Theorem 1.1 by
[B1-

Next, results involving the extended gamma class follow.

Theorem 2.8. Let A, > 0. The following statements are equivalent:
(a) 2%Go(x) € ETA(g,1);
(b) g(z)z*tF(z) = A/ as © — oo; and,
(c) Wa(z) € ET/a(g,1).-
3. PrROOFS

To prove the theorems indicated in the previous section, the following
well-known result is used, see [4] and e.g. [2, Theorem 1.2.1]:

Proposition 3.1. Suppose U : RT — RT is Lebesgue-summable on
finite intervals. Then

(3.1) U(z) € RV, a> -1 iff z2U(z)~ (a+1) /I U(t)dt;
0

(3.2) U(z) € RV,, a< -1 iff 2U(z)~ —(a+1) /OO U(t)dt.

The following lemmas are also used to prove those theorems.
Lemma 3.2. Let o > 0. Assume that there exist A(xz) (> 0), B(x),
and C(x) satisfying, for any z > 1,

Wa(zx) — Wy (x)
A(x)

Wo(zx) — Wy (x)
A(zx)

— B(z), and

— C(2),
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as * — oo, such that, for some & > 0, B(z)/(za -1) — E/a and
C(2)/(1—2"*) = &/a as z | 1. Then, we have
F(z)z®
A(x)

Proof. For z > 1, we have Wy (22) — Wo(z) = [7y* 1 F(y)dy. Since
F(z) is nonincreasing, we find

— &, asxT — 0.

éF(q:z)xa(zo‘ — 1) < Wa(zx) — Wy(z)

1
< 7F (0% (o 1
< TPyt - 1),
then,
Wa(zx) — Wa<1') xaf(x) l(za o 1)

A(z) - Alr) « ’

and
o 1 _
@ F@)1 0oy o Waleo) = Walo)
A(zz) « A(zz)
Taking limits, we obtain
B(z) .. F(z)z® _ (v2)YF(12) C(z)
<1 f 1 <
Y1 e A(z) and lffﬁp Alxz)  — 1—z7

or

B(z) . [sup\ F(z)z®

<1
Y1 = (inf) A(x)
a C) :
- 1l—z@

Now, let z | 1 to find, by hypothesis, that a:"‘F(:z:)/A(x) — fasx —
Q. U

Lemma 3.3. Let o > 0. If F(2)/Ga(z) = X asz — 00, 0 < A < 1,
then G, € RVon-1)-

Proof. Assume that F(z)/Ga(z) = XA asz — o0, 0 < A < 1. By
Proposition P.9 (ii), we have that F(z) = Go(z) — Gl (z) /a. Then, we
get

2Gy(x) _ Galz) ~Flx)
Ga(x) Ga(x)



A SENETA’S CONJECTURE AND THE WILLIAMSON TRANSFORM 233

Hence, by applying L’Hopital rule, we have

= Gf‘ix) a(l—X), asz — oco.
[y Galy)dy
Then, noting that —a(l — \) — 1 < —1, by applying (@), we have
1G () € RV_g(1-x)—1- Thisresult is equlvalent to Go(x) € RV, (a_1).-

O
Lemma 3.4. Let a > 0. If W, € ET'x(g, 1), then we have
g(x)F(z)z® L = X\, asz — .

Proof. Let y € R\{0}. We have W, (z+yg(z)) —Wy(z) = ffryg(z) o1
F(t)dt. Since F(z) is nonincreasing, we find

af($+y9($)) (L +yg(x)/z)* — 1) < Walz +yg(a)) — Wa(z)

< ST (@)a (1 + ygo) /) 1),

then, using the binomial expansion formulae,

Wl + yala)) = Wale) < o Fa) - (") 10 (422)))

= yg(x)z* "' F(z) (1+0(1)),

and

Wal(@ + yg(x)) = Walz) > éﬂx +yg(z))2" (ayg? "o <yg(x))>

> yg(z +yg(2))(z + yg(2)* ' Flz + yg(x))

x b g(a)
. <x+yg<x>) g+ oty LW

Taking limits, we obtain
Ay < liminf yg(z)z® ' F(x)
T—>00
and

limsup yg(z + yg())(z + yg())* ' F(z + yg(z)) < Ny,

T—r00

or

. (sup a1
<1 F
Ay < lim <inf>yg(:v)1‘ (r)
< A\y.
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This implies that B
lim yg(z)z®""F(z) = Ay,

T—r00
ie. B
le g(x)z* T F(z) = \. O
Proof of Theorem @ Let a > 0.
Let us prove (b) < (c) in Theorem @ ), (ii), and (iii) when 0 < 4 <

a. From Proposition (iv) we have Gy (z ) € RVg,a ifft W (z) € RVj
because.

Let us prove (a) < (b) in Theorem @ (i) and (iii) when 0 < 0 <
a. If F(z) € RVy_o, noting that « —1+60 —a =60 —1 > —1, by
applying Proposition @ iv and (@), Golz) = az™® [§y* 1 F(y)dy ~

F x)/@ Hence, Go(z) € RVy_,. Conversely, if G, (1) € RVy_q, from
Proposition (iv), we have W, (33) € RVy. Hence, by applying Lemma
withA( ) = Wa(x),B(a:)—:U —1,Cx)=1—2"% and £ = 0, we
find that #°F(z)/Wa(z) — 6 as & — oo and, hence, F(z) € RVy_,.

Let us prove (e) < (f) in Theorem @ and (ii) when 0 < 6 < o If
H,(z) € RVp, we have = 1 H(z) € RVy_,_1 and, since § —a—1 < —1,
@ ) gives

x"Ha ()
Sy yme Ha(y)dy
On the other hand, from @ ), it follows that, as x — oo,

—a—0, aszx — .

f.‘!
5?,
S

x®Hy(z)  a—10

a—0
Conversely, if 2*F(z)/Ha(z) — /(o — 0) as z — oo, from (@) we
have as © — oo,
x _—a—1
af”z Hu(2)dz . 9 1
x~*Hy(x) a—0
o«
a—0

Noting that § —a — 1 < —1, we have, by applying (@), v H,(7) €
RVy_q—1. This leads to H,(x) € RVp.

Let us prove (¢) < (h) in Theoremg (i) and (ii) when 0 < 0 < a.
If W,(x) € RVj, by applying Lemma with A(x) = Wa(x), B(x) =
zf — 1, C()—1—x_9,and£—9wehavea:°‘F /W ) — B as
T — 00. Conversely, assume that z%F(x / Wy(z) — p as ¢ — oo. By
Proposition @ (iv), we have F(x éG o) = B/Oz as x — oo. Hence,

taking 0 < \:= ,B/a < 1, Lemma implies that G, (z) € RVy(8/a-1)-
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Then, by the equivalence (b) < (c) proved above and from o(8/a—1) =
B — a, we have Wy (x) € RVj.

Let us prove (d) < (h) in Theorem @ and (ii) when 0 < 6 < a.
This result holds from Proposition (iv)

Let us prove (b) < (e) < (g) in Theorem @ and (ii) when 0 < 6 <
a. Assume that H,(z) € RVp, 0 < 0 < a. By Proposition (iii), we
have 1G4 (z) = 2*F(z) + Hy(z). Hence and using of the equivalence
(e) < (f) proved above, we find that, as @ — oo,

1°Go(x)  a*F(x)

Ho(z) — Halo)
—>a_0+1
. (63
T a—0

This fact implies that G, (z) € RVy_,. Thus, it is proved that (e) =
(b). Now, suppose that G4 (z) € RVp_,. Using (2.2) gives
s Hy(x)z™ 1
[ ity = B L,
. e a
and, by Proposition @ (iv), we have Gqo(z) = a [ "y * THa(y)dy.
Hence, we get
Hy(z)z™ 1 F(x)
Go(2) B Ga(z)
Further, the equivalences (b) < (c), (¢) < (h), and (d) < (h) proved
above imply that (b) < (d). Then, we deduce that, as z — oo,

Hy(x)z~ 1 9

Ga(z)
_a—0
=
This proves that (b) = (g). Now, assume that z® / alz) —
a/(a— ) as  — oo. Using again Proposition @ (iii) 129Gy (x) =
xaf(x) —|— H,(x), we have, as © — o0,
x*F(x) a
H,(x) a6 !
0

6

a—
Hence, we use the equivalence (e) < (f) proved above for concluding
that Hy(z) € RVp. This proves that (g) = (e). O
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Proof of Theorem @ Let o, 8 > 0, and L(z) € RV.

Let us prove (a) < (c). The reason for this is (22)*Gq (22) —2%G o (z) =
a(Wa(zx) — Wa(x)).

Let us prove (a) = (b). Assume that xaé ( ) € HB(L) Noting that,
for any 2z > 0, (22)*Ga(22) — 29Ga( ) and
L(zz)/L(z) — 1 as z — oo, by applymg Lemma @ Wlth A ( ),
B(:U):C(x)—ﬁloga: and £ = /a, we find that 2%F (z /L —>ﬁ/a
as & — 00.

Let us prove (b) = (a). Assume that 2*F(z)/L(z) — 8/ as © —
oo. This means that F(z) € RV_,. Usmg Wa(z), because F(z) is
decreasing, for z > 1, we have

Walet) — Wala) = [ e F () dy.

Then, by using L(zz)/L(z) — 1 as ¢ — oo and the dominated conver-
gence theorem, as r — oo, we obtain

Wa(zz) — Wa(x) :/” 1Y F(y)

L(x) L(x)
7y (zy)*F(zy) L(zy)
|y
—>§logz.

It follows that We(x) € Ig/o(L). Hence, we deduce that %Gy (z) €
IIg(L) by applying the equivalence (a) < (c) proved above. O

Proof of Theorem |2.§: Let us prove (a) < (c). This follows immediately
from Proposition g(iv).

Let us prove (a) = (b). Assume that 2°G,(z) € ET(g,1). Not-
ing that, for any y € R, (z + yg(2))*Galz + yg(x)) — 2%Ga(z) =
a(Wa(z +yg(r)) — Wa(z)), we have aW, € ET)/q(g,1). Next, by
applying Lemma @, we find g(2)z* 'F(z) = Mo as ¢ — .

Let us prove (b) = (a). Assume that g(z)z* ' F(z) = A/aasz — cc.
Note that, for y € R,

Wale+po(a)) = Waw) = [ e @

Then, by using the change of variable t = z + ug(z) and the dominated
convergence theorem, as x — 0o, we obtain

Wa(z +yg(x)) — Wa(z) = /Oy(w +ug () F(z + ug(x))g(z)du
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- /0 " g(& + ugl@)) (@ + uglz)* !

Flo+ugla)) 2

A Y
—>/du
@ Jo

_A

= —.
(6

du

It follows that W, (x) € ET'y/4(g,1). Hence, we deduce that 2%Ga(z) €
ET,(g,1) by applying the equivalence (a) < (c) proved above. O

4. SOME COMPLEMENTS

4.1. Derivatives. We briefly discuss statements about the derivatives
Gl (z) and GZ(z). To this end, we consider the inversion formula, see
Proposition (ii),

F(z) = Golz) + EG;@;).

If F' has a probability density function (p.d.f.) f, we also have
1 T
=11 _ / hal )
@)= (14 1) Galo) + 2620a)

Now, suppose that H,(z) € RVp, 0 <0 < . By Theorem @ (i) and
(ii), we proved that

7°Go(z) N and 7°F () R 0
H.(z) a—0’ H,(x) a—0’
as x — 00, and it follows, by using the previous inversion formula,
ml—i—aGix(:ﬁ)
H,(x)
so that G (z) € RVp_n—1.
Also, if F(z) has a p.d.f. f(z), we find
22T G (2) = ax' T f () — (o + 1)z TG (2).
Moreover, if zf(z)/F(z) — o — 6 as  — oo, we have z' T f(z) ~
(o — 0)z*F(x) ~ 0H,(x), and it follows that, as x — oo,
TGl (z) ot f(a) _a+l riteq (x)
Hyo(z) — Hga(x) ! H,(x)
—0—a—1

— o, as T — 00,

In the special case that m(«a) < oo, we have the following corollary.
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Corollary 4.1. Let o > 0. Suppose that m(a) < oo. We have

2*F(x) = 0, 2°Go(z) — m(a), and 211G (x) — am(a) as * — .
If F has a p.d.f. f(z), and also, for some § € R, z'0f(x) = o(1) or
zf(x) = O(F(x)), then 2*M°G" (z) — —a(a + 1)m(a) as T — 0.

4.2. The Case a = 2. If a = 2, we have Hy(z fx 2dF (y) which is
the truncated second moment functlon. Note that regular Varlation of
Hj(x) appears when we discuss domains of attraction. As an example:
F(z) is in the domain of attraction of a normal law if and only if Ha(x) €
RVy. Then, we have the following obtained result when it is fixed a = 2
in Theorems and

Theorem 4.2.

(i) Suppose that 0 < 6 < 2. We have Hy(x) € RVy & Ga(z) €
RVy_ 5 & F(x) € RVy_9 & Wa(x ) € RVy. FEach of these state-
ments implies that z*F (x) /Ha(z) — 0/(2—0), 2°G2(z) / Ha ()
—>2/2— ), and Wy(x /HQ —>1/2— as T — 0.

(ii) Suppose that0 < 6 < 2. We have Ha(z) € RVb & 2?F(z) /Ha( )
— 0/(2—-10) as © = 0o & 2?Gay(x)/Ha(z) — 2/(2—0) a
T — OQ.

(iii) Suppose that L(x) € RVh and 6 = 2\ for X\,0 > 0. We have
Hy(z) € II\(L) & Wa(z) € I5(L) & 2*F(z)/L(z) — X as
T — O0.

Furthermore, if Hy(0o) = m(2) <_ oo, we have the following result.
It is obtained by applying Theorem when taking a = 2. Note that

Ha(z) = m(2) — Ha(z).

Lemma 4.3. Suppose that 6§ > 2 and m(2) < co. The following are
equivalent:

(yY)ERVm
( ) Ha(x) = [° y2dF( ) € RVa_g; and,
(iii) f;OdeF( )/ (@?F(x)) = 0/(6 — 2) as z — oo.

Also, we have the following result. It is obtained by applying Theorem
when taking o = 2.

Lemma 4.4. Suppose that 6 > 2 and m(2) < oco. The following are
equivalent:

(YY)GRVm
= [ yF(y)dy € RVa_g;
” U Gﬂ)eR%m

— g=3 a8 T — 00; and,

x)—>9Ta3$—>OO.
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4.3. The Case a = 1. Now we have H(x fo ydF(y), the truncated
first moment.

Fixing o = 1 in Theorems @ and @, we have the following results.
Theorem 4.5.

(i) Suppose that 0 < § < 1. We have Hyi(z) € RVy & Gi(x) €
RVy_ 1 & F(x) € RV 1 & Wl( ) € RVy. Each of these state-
ments implies that v F(x /H1 — 0/(1—9), 2G1(z)/Hy(z) —
1/1— ), and W1 (x /H1 —>1/(1— as T — oo.

(ii) Suppose that0 < 6 < 1. We have Hy(z) € RVp < xF (z)/H: ()
—0/(1-0) asz — 0o < 2G1(z) /Hi(z) = 1/(1-0) as z — oo.

(iii) Suppose that L(x) € RVy. Then Hl(m) € II (L) & Wi(x) €
Is(L) < xF(z)/L(x) — § as x — oo. The relation between \
and § is given by A = 0.

Furthermore, if m(1) < oo, we have the following result. It is obtained
by applying Theorem @ when taking o = 1. Note that Hi(x) =
m(1l) — Hy(z).

Lemma 4.6. Suppose that 6 > 1 and m(1) < co. The following are
equivalent:

(i) F(x) € RV_g;
( )H1 = [ ydF( )GRV1 0; and
(iii) [° de y)/(zF(z)) — 6/(0 as & — 0.

Moreover, we have that the followmg result, which is obtained by
applying Theorem when taking a = 1.

Lemma 4.7. Suppose that 6 > 1 and m(1) < co. The following are
equivalent:

(i) Wi(z) = ;of(y)dyGRVi 0;
(iii) :1:_1171(1 — Gi(z) € RV_yp,

(iv) fng((i;))dy — 747 as ¥ — oo; and
(v) flm%()x) 1(@) % as x — 00

Remark 4.8. The equivalence between Hi(z) ~ li(z) and Wi(z) ~
lo(x) for some l;(x),la(x) € RVp, was proved by [8], see e.g. (i) and (ii)
in Theorem 8.8.1 in [1].

5. CONCLUDING REMARKS

We have extended and proved the conjecture formulated by [9] on
distribution functions (d.f.s) by applying the Williamson transform to
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such a d.f.. Interestingly, that application became a new function as
part of that conjecture.

This novel application and the procedures used for proving the ex-
tended conjecture have motivated us to explore asymptotic behaviors
when considering other functions than regularly varying functions. For
instance, long tailed functions and functions belonging to the class I')(g),
See e.g. [ ] This clabs consists of functions [ satisfying, for all y € R,

flz+ yg(x / f(x) — exp(ay) as * — oo. These studies may involve
convergence rates as the ones presented in [[7]. In a forthcoming paper,
we will present the findings of this analysis.

Acknowledgment. The authors are indebted to the anonymous referee
for his/her helpful comments which improved the manuscript.

REFERENCES

1. N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation,
Cambridge University Press, 1987.

2. L. de Haan, On reqular variation and its applications to the weak
convergence of sample extremes, Mathematical Centre Tracts, 32,
1970.

3. W. Feller, An Introduction to Probability Theory and its Applica-
tions, John Wiley and Sons, Volume 2, 2nd Edition, 1971.

4. J. Karamata, Sur un mode de croissance réguliere des fonctions,
Mathematica (Cluj), 4 (1930), pp. 38-53.

5. P. Kevei, On a conjecture of Seneta on reqular variation of truncated
moments, Publ. Inst. Math., 109 (2021), pp. 77-82.

6. E. Omey, On the class gamma and related classes of functions,
Publ. Inst. Math., 93 (2013), pp. 1-18.

7. E. Omey and M. Cadena, New results on slowly varying functions
in the Zygmund sense, Proc. Japan Acad., Ser. A, 96 (2020), pp
45-49.

8. B.A. Rogozin, The Distribution of the First Ladder Moment and
Height and Fluctuation of a Random Walk, Theory Probab. Appl.,
16 (1971), pp. 575-595.

9. E. Seneta, Slowly varying functions in the Zygmund sense and
generalized regular variation, J. Math. Anal. Appl., 475 (2019), pp
1647-1657.

10. R. Williamson, Multiply monotone functions and their Laplace
transforms, Duke Math. J., 23 (1956), pp. 189-207.

! DEpT. MEES, CAMPUS BRUSSELS, KU LEUVEN, WARMOESBERG 26, BRUSSELS,
BELGIUM.
Email address: edward.omey@kuleuven.be



A SENETA’S CONJECTURE AND THE WILLIAMSON TRANSFORM 241

2 DECE, UNIVERSIDAD DE LAS FUERZAS ARMADAS, SANGOLQUI, ECUADOR.
Email address: meitner.cadena@gmail.com



