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A Seneta’s Conjecture and the Williamson Transform

Edward Omey1 and Meitner Cadena2∗

Abstract. Considering slowly varying functions (SVF), Seneta in
2019 conjectured the following implication, for α ≥ 1,∫ x

0

yα−1(1− F (y))dy is SVF ⇒
∫ x

0

yαdF (y) is SVF, as x → ∞,

where F (x) is a cumulative distribution function on [0,∞). By
applying the Williamson transform, an extension of this conjecture
is proved. Complementary results related to this transform and
particular cases of this extended conjecture are discussed.

1. Introduction

A function f(x) is slowly varying (SVF) if for any t > 0, f(tx)
/
f(x) →

1 as x → ∞. If F (x) is a distribution function and F (x) = 1 − F (x) is
its tail, recently Seneta [9] conjectured the following. Given α ≥ 1,

(1.1)
∫ x

0
yα−1F (y)dy is SVF ⇒

∫ x

0
yαdF (y) is SVF, as x → ∞.

Nowadays, Kevei in [5] presented an extension of this conjecture and its
proof. In this paper, we also prove an extension of such a conjecture,
but unlike Kevei’s proofs, ours are based on mainly the Williamson
transform. Moreover, the application of this transform to F allows the
formulation of another conjecture. Finally, such extended conjecture
includes the generalized gamma class.

In the following section, we present our main results. The proofs of
these results are presented in Section 3. Complementary results related
to the Williamson transform of F and analysis of particular cases of α
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are discussed in Section 4. The last section presents concluding remarks
and next steps for research on extensions of the findings shown in this
paper.

2. Main Results

2.1. Some Notation and Transforms. In what follows, F (x) denotes
a distribution function (d.f.) defined on [0,∞) with F (0) = 0, and
F (x) = 1− F (x) denotes its tail. The α–th moment of F (x) is denoted
by m(α). It is said that f(x) ∼ g(x) if f(x)

/
g(x) → 1 as x → ∞. The

case f(x) ∼ 0 will be understood as f(x) → 0 as x → ∞. The class of
regularly varying functions with index α, denoted by RVα, consists of
functions f(x) satisfying, for any t > 0, f(tx) ∼ tαf(x). If the index
α = 0, f(x) is said slowly varying. If L ∈ RV0, then the de Haan
class, denoted by Πβ(L), consists of functions f(x) satisfying, for any
t > 1, (f(tx)−f(x))

/
L(x) → β log t as x → ∞. The generalized gamma

class, denoted by EΓλ(g, a) where g is self-neglecting, i.e., for any t ∈ R,
g(x+ tg(x)) ∼ g(x), consists of functions f(x) satisfying, for any t ∈ R,
(f(x+ tg(x))− f(x))

/
a(x) → λt as x → ∞.

In this paper, we assume that α > 0.
We define the following transformations:

Hα(x) =

∫ x

0
yαdF (y) and Wα(x) =

∫ x

0
yα−1F (y)dy.

Note that Lebesgue’s theorem on dominated convergence shows that
limx→∞ x−αHα(x) = 0. Hence, we have

(2.1) Hα(x) = α

∫ x

0
yα−1F (y)dy − xαF (x).

Among the main results proved by Kevei in [5], we have that, for any
θ ∈ [0, α), Hα(x) ∈ RVθ if and only if Wα(x) ∈ RVθ. The proof for the
converse of this result mainly lies in Theorem 8.1.2 in [1], see also VIII.9
by [3].

From the definitions given above, we get the following result.

Proposition 2.1. For x ≥ 0, we have

(2.2) F (x) = α

∫ ∞

x
z−α−1Hα(z)dz − x−αHα(x).

Proof. Let us consider the integral
∫ a
x z−α−1Hα(z)dz for a ≥ x ≥ 0. We

have∫ a

x
z−α−1Hα(z)dz =

∫ a

x
z−α−1

(
Hα(x) +

∫ z

x
yαdF (y)

)
dz
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=
1

α
(x−α − a−α)Hα(x) +

∫ a

x

∫ a

y
z−α−1yαdzdF (y)

=
1

α
(x−α − a−α)Hα(x) +

1

α

∫ a

x
(y−α − a−α)yαdF (y)

=
1

α
(x−α − a−α)Hα(x) +

1

α
(F (a)− F (x))

− 1

α
a−α(Hα(a)−Hα(x))

=
1

α
x−αHα(x) +

1

α
(F (a)− F (x))− 1

α
a−αHα(a).

Taking limits as a → ∞, we obtain a−αHα(a) → 0 and hence∫ ∞

x
z−α−1Hα(z)dz =

1

α
x−αHα(x) +

1

α
F (x).

This proves the result. □

Now, we recall the Williamson transform which is defined by [10],

Gα(x) =

∫ x

0

(
1−

(
t

x

)α)
dF (t).

Note that

Gα(x) =

∫ ∞

0
P

(
Z >

t

x

)
dF (t)

= EF (Zx)

= P

(
X

Z
≤ x

)
,

where Z is independent of X and P (Z ≤ x) = xα, 0 ≤ x ≤ 1. This
shows that Gα(x) is also a d.f. with Gα(0) = 0. Also, we have the
following result.

Proposition 2.2. For x ≥ 0, we have
(i) Gα(x) = αx−α

∫ x
0 tα−1F (t)dt.

(ii) F (x) = Gα(x) +
x
αG

′
α(x).

(iii) F (x) = Gα(x)− x−αHα(x).
(iv) Gα(x) = αx−αWα(x).

Proof. (i) By using partial integration, we have

Gα(x) = F (x)− x−α

∫ x

0
tαdF (t)

= αx−α

∫ x

0
tα−1F (t)dt.
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(ii) Writing the previous result as xαGα(x) = α
∫ x
0 tα−1F (t)dt, de-

riving this relation, and dividing it by xα−1
/
α give the result

claimed.
(iii) Using Hα(x) and (i), we have Gα(x) = F (x) − x−αHα(x) and

Gα(x) = F (x) + x−αHα(x).
(iv) Using the tail of Gα(x), Wα(x), and (i), we find

Gα(x) = αx−α

∫ x

0
tα−1F (t)dt

= αx−αWα(x).
□

2.2. Main Relations. Our the first main as follows.

Theorem 2.3. Let α > 0 and 0 ≤ θ ≤ α. We have:
(i) If 0 < θ < α, then the following statements are equivalent:

(a) F (x) ∈ RVθ−α;
(b) Gα(x) ∈ RVθ−α;
(c) Wα(x) ∈ RVθ;
(d) F (x)

/
Gα(x) → θ

/
α as x → ∞;

(e) Hα(x) ∈ RVθ;
(f) xαF (x)

/
Hα(x) → θ

/
(α− θ) as x → ∞;

(g) xαGα(x)
/
Hα(x) → α

/
(α− θ) as x → ∞; and,

(h) xαF (x)
/
Wα(x) → θ as x → ∞.

(ii) If θ = 0, then the statements (b), (c), (d), (e), (f), (g) and (h)
are equivalent.

(iii) If θ = α, then the statements (a), (b) and (c) are equivalent.
Remarks 2.4.

1) Taking θ = 0, Theorem 2.3(e), (f) and (h) correspond to (17),
(18) and (19) in Theorem 3 by [9] , respectively.

2) Theorem 2.3(a), (e) and (f) are proved in VIII.9 by [3], see e.g.
Theorem 8.1.2 in [1].

3) The conjecture indicated in (1.1) is contained and extended in
the implication, for 0 ≤ θ < α, Theorem 2.3(c) ⇒ Theorem
2.3(e).

4) Theorem 2.3(a), (c), (e), (h) and a combination of (f) and (h)
correspond to (1.6), (1.4), (1.5), (1.7) and (1.8) in Theorem 1.1
by [5], respectively.

We continue with results when some moments are finite. They are
proved with similar arguments used when proving the results presented
in the previous theorem. Therefore, proofs for this theorem are not
presented.
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Theorem 2.5. Let α > 0 and θ > α. Assume m(α) < ∞. Set Wα(x) =
Wα(∞)−Wα(x). The following statements are equivalent:

(a) F (x) ∈ RV−θ;
(b) Wα(x) ∈ RVα−θ;
(c) x−αm(α)−Gα(x) ∈ RV−θ;
(d) Wα(x)

/
(xαF (x)) → 1

/
(θ − α) as x → ∞;

(e) (x−αm(α)−Gα(x))
/
F (x) → α

/
(θ − α) as x → ∞;

(f) m(α)−Hα(x) ∈ RVα−θ; and,
(g) (m(α)−Hα(x))

/
(xαF (x)) → θ

/
(θ − α) as x → ∞.

Next, results involving the de Haan class follow.
Theorem 2.6. Let α, β > 0. Let L(x) ∈ RV0. The following statements
are equivalent:

(a) xαGα(x) ∈ Πβ(L);
(b) xαF (x)

/
L(x) → β

/
α as x → ∞; and,

(c) Wα(x) ∈ Πβ/α(L)

Remark 2.7. The relation (b) ⇔ (c) was identified in Theorem 1.1 by
[5].

Next, results involving the extended gamma class follow.
Theorem 2.8. Let λ, α > 0. The following statements are equivalent:

(a) xαGα(x) ∈ EΓλ(g, 1);
(b) g(x)xα−1F (x) → λ

/
α as x → ∞; and,

(c) Wα(x) ∈ EΓλ/α(g, 1).

3. Proofs

To prove the theorems indicated in the previous section, the following
well-known result is used, see [4] and e.g. [2, Theorem 1.2.1]:
Proposition 3.1. Suppose U : R+ → R+ is Lebesgue-summable on
finite intervals. Then

U(x) ∈ RVα, α > −1 iff xU(x) ∼ (α+ 1)

∫ x

0
U(t)dt;(3.1)

U(x) ∈ RVα, α < −1 iff xU(x) ∼ −(α+ 1)

∫ ∞

x
U(t)dt.(3.2)

The following lemmas are also used to prove those theorems.
Lemma 3.2. Let α > 0. Assume that there exist A(x) (> 0), B(x),
and C(x) satisfying, for any z > 1,

Wα(zx)−Wα(x)

A(x)
→ B(z), and Wα(zx)−Wα(x)

A(zx)
→ C(z),
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as x → ∞, such that, for some ξ ≥ 0, B(z)
/
(zα − 1) → ξ

/
α and

C(z)
/
(1− z−α) → ξ

/
α as z ↓ 1. Then, we have

F (x)xα

A(x)
→ ξ, as x → ∞.

Proof. For z > 1, we have Wα(zx) − Wα(x) =
∫ zx
x yα−1F (y)dy. Since

F (x) is nonincreasing, we find
1

α
F (xz)xα(zα − 1) ≤ Wα(zx)−Wα(x)

≤ 1

α
F (x)xα(zα − 1),

then,
Wα(zx)−Wα(x)

A(x)
≤ xαF (x)

A(x)

1

α
(zα − 1),

and
(xz)αF (xz)

A(xz)

1

α
z−α(zα − 1) ≤ Wα(zx)−Wα(x)

A(zx)
.

Taking limits, we obtain

α
B(z)

zα − 1
≤ lim inf

x→∞

F (x)xα

A(x)
, and lim sup

x→∞

(xz)αF (xz)

A(xz)
≤ α

C(z)

1− z−α
,

or

α
B(z)

zα − 1
≤ lim

(
sup

inf

)
F (x)xα

A(x)

≤ α
C(z)

1− z−α
.

Now, let z ↓ 1 to find, by hypothesis, that xαF (x)
/
A(x) → ξ as x →

∞. □

Lemma 3.3. Let α > 0. If F (x)
/
Gα(x) → λ as x → ∞, 0 ≤ λ < 1,

then Gα ∈ RVα(λ−1).

Proof. Assume that F (x)
/
Gα(x) → λ as x → ∞, 0 ≤ λ < 1. By

Proposition 2.2 (ii), we have that F (x) = Gα(x)−xG′
α(x)

/
α. Then, we

get

xG′
α(x)

Gα(x)
= α

Gα(x)− F (x)

Gα(x)

→ α(1− λ), as x → ∞.
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Hence, by applying L’Hopital rule, we have
Gα(x)∫∞

x y−1Gα(y)dy
→ α(1− λ), as x → ∞.

Then, noting that −α(1 − λ) − 1 < −1, by applying (3.2), we have
x−1Gα(x) ∈ RV−α(1−λ)−1. This result is equivalent to Gα(x) ∈ RVα(λ−1).

□

Lemma 3.4. Let α > 0. If Wα ∈ EΓλ(g, 1), then we have

g(x)F (x)xα−1 → λ, as x → ∞.

Proof. Let y ∈ R\{0}. We have Wα(x+yg(x))−Wα(x) =
∫ x+yg(x)
x tα−1

F (t)dt. Since F (x) is nonincreasing, we find
1

α
F (x+ yg(x))xα((1 + yg(x)/x)α − 1) ≤ Wα(x+ yg(x))−Wα(x)

≤ 1

α
F (x)xα((1 + yg(x)/x)α − 1),

then, using the binomial expansion formulae,

Wα(x+ yg(x))−Wα(x) ≤ xαF (x)
1

α

(
αy

g(x)

x
+ o

(
y
g(x)

x

))
= yg(x)xα−1F (x) (1 + o (1)) ,

and

Wα(x+ yg(x))−Wα(x) ≥
1

α
F (x+ yg(x))xα

(
αy

g(x)

x
+ o

(
y
g(x)

x

))
≥ yg(x+ yg(x))(x+ yg(x))α−1F (x+ yg(x))

×
(

x

x+ yg(x)

)α−1 g(x)

g(x+ yg(x))
(1 + o (1)) .

Taking limits, we obtain
λy ≤ lim inf

x→∞
yg(x)xα−1F (x)

and
lim sup
x→∞

yg(x+ yg(x))(x+ yg(x))α−1F (x+ yg(x)) ≤ λy,

or

λy ≤ lim

(
sup

inf

)
yg(x)xα−1F (x)

≤ λy.
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This implies that
lim
x→∞

yg(x)xα−1F (x) = λy,
i.e.

lim
x→∞

g(x)xα−1F (x) = λ. □

Proof of Theorem 2.3: Let α > 0.
Let us prove (b) ⇔ (c) in Theorem 2.3 (i), (ii), and (iii) when 0 ≤ θ ≤

α. From Proposition 2.2 (iv) we have Gα(x) ∈ RVθ−α iff Wα(x) ∈ RVθ

because.
Let us prove (a) ⇔ (b) in Theorem 2.3 (i) and (iii) when 0 < θ ≤

α. If F (x) ∈ RVθ−α, noting that α − 1 + θ − α = θ − 1 > −1, by
applying Proposition 2.2 iv and (3.1), Gα(x) = αx−α

∫ x
0 yα−1F (y)dy ∼

αF (x)
/
θ. Hence, Gα(x) ∈ RVθ−α. Conversely, if Gα(x) ∈ RVθ−α, from

Proposition 2.2 (iv), we have Wα(x) ∈ RVθ. Hence, by applying Lemma
3.2 with A(x) = Wα(x), B(x) = xθ − 1, C(x) = 1− x−θ, and ξ = θ, we
find that xαF (x)

/
Wα(x) → θ as x → ∞ and, hence, F (x) ∈ RVθ−α.

Let us prove (e) ⇔ (f) in Theorem 2.3 (i) and (ii) when 0 ≤ θ < α. If
Hα(x) ∈ RVθ, we have x−α−1H(x) ∈ RVθ−α−1 and, since θ−α−1 < −1,
(3.2) gives

x−αHα(x)∫∞
x y−α−1Hα(y)dy

→ α− θ, as x → ∞.

On the other hand, from (2.2), it follows that, as x → ∞,
F (x)

x−αHα(x)
→ α

α− θ
− 1

=
θ

α− θ
.

Conversely, if xαF (x)
/
Hα(x) → θ

/
(α − θ) as x → ∞, from (2.2) we

have as x → ∞,
α
∫∞
x z−α−1Hα(z)dz

x−αHα(x)
→ θ

α− θ
+ 1

=
α

α− θ
.

Noting that θ− α− 1 < −1, we have, by applying (3.2), x−α−1Hα(x) ∈
RVθ−α−1. This leads to Hα(x) ∈ RVθ.

Let us prove (c) ⇔ (h) in Theorem 2.3 (i) and (ii) when 0 ≤ θ < α.
If Wα(x) ∈ RVθ, by applying Lemma 3.2 with A(x) = Wα(x), B(x) =
xθ − 1, C(x) = 1 − x−θ, and ξ = θ we have xαF (x)

/
Wα(x) → β as

x → ∞. Conversely, assume that xαF (x)
/
Wα(x) → β as x → ∞. By

Proposition 2.2 (iv), we have F (x)
/
Gα(x) → β

/
α as x → ∞. Hence,

taking 0 ≤ λ := β
/
α < 1, Lemma 3.3 implies that Gα(x) ∈ RVα(β/α−1).
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Then, by the equivalence (b) ⇔ (c) proved above and from α(β/α−1) =
β − α, we have Wα(x) ∈ RVθ.

Let us prove (d) ⇔ (h) in Theorem 2.3 (i) and (ii) when 0 ≤ θ < α.
This result holds from Proposition 2.2 (iv).

Let us prove (b) ⇔ (e) ⇔ (g) in Theorem 2.3 (i) and (ii) when 0 ≤ θ <
α. Assume that Hα(x) ∈ RVθ, 0 ≤ θ < α. By Proposition 2.2 (iii), we
have xαGα(x) = xαF (x) +Hα(x). Hence and using of the equivalence
(e) ⇔ (f) proved above, we find that, as x → ∞,

xαGα(x)

Hα(x)
=

xαF (x)

Hα(x)
+ 1

→ θ

α− θ
+ 1

=
α

α− θ
.

This fact implies that Gα(x) ∈ RVθ−α. Thus, it is proved that (e) ⇒
(b). Now, suppose that Gα(x) ∈ RVθ−α. Using (2.2) gives∫ ∞

x
y−α−1Hα(y)dy =

Hα(x)x
−α

α
+

1

α
F (x),

and, by Proposition 2.2 (iv), we have Gα(x) = α
∫∞
x y−α−1Hα(y)dy.

Hence, we get
Hα(x)x

−α

Gα(x)
= 1− F (x)

Gα(x)
.

Further, the equivalences (b) ⇔ (c), (c) ⇔ (h), and (d) ⇔ (h) proved
above imply that (b) ⇔ (d). Then, we deduce that, as x → ∞,

Hα(x)x
−α

Gα(x)
→ 1− θ

α

=
α− θ

α
.

This proves that (b) ⇒ (g). Now, assume that xαGα(x)
/
Hα(x) →

α
/
(α− θ) as x → ∞. Using again Proposition 2.2 (iii), i.e. xαGα(x) =

xαF (x) +Hα(x), we have, as x → ∞,

xαF (x)

Hα(x)
→ α

α− θ
− 1

=
θ

α− θ
.

Hence, we use the equivalence (e) ⇔ (f) proved above for concluding
that Hα(x) ∈ RVθ. This proves that (g) ⇒ (e). □
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Proof of Theorem 2.6: Let α, β > 0, and L(x) ∈ RV0.
Let us prove (a) ⇔ (c). The reason for this is (zx)αGα(zx)−xαGα(x) =

α (Wα(zx)−Wα(x)).
Let us prove (a) ⇒ (b). Assume that xαGα(x) ∈ Πβ(L). Noting that,

for any z > 0, (zx)αGα(zx) − xαGα(x) = α (Wα(zx)−Wα(x)) and
L(zx)

/
L(x) → 1 as x → ∞, by applying Lemma 3.2 with A(x) = L(x),

B(x) = C(x) = β
α log x, and ξ = β

/
α, we find that xαF (x)

/
L(x) → β

/
α

as x → ∞.
Let us prove (b) ⇒ (a). Assume that xαF (x)

/
L(x) → β

/
α as x →

∞. This means that F (x) ∈ RV−α. Using Wα(x), because F (x) is
decreasing, for z > 1, we have

Wα(zx)−Wα(x) =

∫ zx

x
yα−1F (y)dy.

Then, by using L(zx)
/
L(x) → 1 as x → ∞ and the dominated conver-

gence theorem, as x → ∞, we obtain

Wα(zx)−Wα(x)

L(x)
=

∫ zx

x
y−1 y

αF (y)

L(x)
dy

=

∫ z

1
y−1 (xy)

αF (xy)

L(xy)

L(xy)

L(x)
dy

→ β

α
log z.

It follows that Wα(x) ∈ Πβ/α(L). Hence, we deduce that xαGα(x) ∈
Πβ(L) by applying the equivalence (a) ⇔ (c) proved above. □

Proof of Theorem 2.8: Let us prove (a) ⇔ (c). This follows immediately
from Proposition 2.2 (iv).

Let us prove (a) ⇒ (b). Assume that xαGα(x) ∈ EΓλ(g, 1). Not-
ing that, for any y ∈ R, (x + yg(x))αGα(x + yg(x)) − xαGα(x) =
α (Wα(x+ yg(x))−Wα(x)), we have αWα ∈ EΓλ/α(g, 1). Next, by
applying Lemma 3.4, we find g(x)xα−1F (x) → λ

/
α as x → ∞.

Let us prove (b) ⇒ (a). Assume that g(x)xα−1F (x) → λ
/
α as x → ∞.

Note that, for y ∈ R,

Wα(x+ yg(x))−Wα(x) =

∫ x+yg(x)

x
tα−1F (t)dt.

Then, by using the change of variable t = x+ ug(x) and the dominated
convergence theorem, as x → ∞, we obtain

Wα(x+ yg(x))−Wα(x) =

∫ y

0
(x+ ug(x))α−1F (x+ ug(x))g(x)du
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=

∫ y

0
g(x+ ug(x))(x+ ug(x))α−1

F (x+ ug(x))
g(x)

g(x+ ug(x))
du

→ λ

α

∫ y

0
du

=
λ

α
y.

It follows that Wα(x) ∈ EΓλ/α(g, 1). Hence, we deduce that xαGα(x) ∈
EΓα(g, 1) by applying the equivalence (a) ⇔ (c) proved above. □

4. Some Complements

4.1. Derivatives. We briefly discuss statements about the derivatives
G′

α(x) and G′′
α(x). To this end, we consider the inversion formula, see

Proposition 2.2 (ii),

F (x) = Gα(x) +
x

α
G′

α(x).

If F has a probability density function (p.d.f.) f , we also have

f(x) =

(
1 +

1

α

)
G′

α(x) +
x

α
G′′

α(x).

Now, suppose that Hα(x) ∈ RVθ, 0 ≤ θ < α. By Theorem 2.3 (i) and
(ii), we proved that

xαGα(x)

Hα(x)
→ α

α− θ
, and xαF (x)

Hα(x)
→ θ

α− θ
,

as x → ∞, and it follows, by using the previous inversion formula,
x1+αG′

α(x)

Hα(x)
→ α, as x → ∞,

so that G′
α(x) ∈ RVθ−α−1.

Also, if F (x) has a p.d.f. f(x), we find
x2+αG′′

α(x) = αx1+αf(x)− (α+ 1)x1+αG′
α(x).

Moreover, if xf(x)
/
F (x) → α − θ as x → ∞, we have x1+αf(x) ∼

(α− θ)xαF (x) ∼ θHα(x), and it follows that, as x → ∞,
x2+αG′′

α(x)

Hα(x)
=

x1+αf(x)

Hα(x)
− α+ 1

α

x1+αG′
α(x)

Hα(x)

→ θ − α− 1.
In the special case that m(α) < ∞, we have the following corollary.
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Corollary 4.1. Let α > 0. Suppose that m(α) < ∞. We have
xαF (x) → 0, xαGα(x) → m(α), and x1+αG′

α(x) → αm(α) as x → ∞.
If F has a p.d.f. f(x), and also, for some δ ∈ R, x1+δf(x) = o(1) or
xf(x) = O(F (x)), then x2+δG′′

α(x) → −α(α+ 1)m(α) as x → ∞.
4.2. The Case α = 2. If α = 2, we have H2(x) =

∫ x
0 y2dF (y) which is

the truncated second moment function. Note that regular variation of
H2(x) appears when we discuss domains of attraction. As an example:
F (x) is in the domain of attraction of a normal law if and only if H2(x) ∈
RV0. Then, we have the following obtained result when it is fixed α = 2
in Theorems 2.3 and 2.6.
Theorem 4.2.

(i) Suppose that 0 < θ < 2. We have H2(x) ∈ RVθ ⇔ G2(x) ∈
RVθ−2 ⇔ F (x) ∈ RVθ−2 ⇔ W2(x) ∈ RVθ. Each of these state-
ments implies that x2F (x)

/
H2(x) → θ

/
(2− θ), x2G2(x)

/
H2(x)

→ 2
/
(2− θ), and W2(x)

/
H2(x) → 1

/
(2− θ) as x → ∞.

(ii) Suppose that 0 ≤ θ < 2. We have H2(x) ∈ RVθ ⇔ x2F (x)
/
H2(x)

→ θ
/
(2 − θ) as x → ∞ ⇔ x2G2(x)

/
H2(x) → 2/(2 − θ) as

x → ∞.
(iii) Suppose that L(x) ∈ RV0 and δ = 2λ for λ, δ > 0. We have

H2(x) ∈ Πλ(L) ⇔ W2(x) ∈ Πδ(L) ⇔ x2F (x)
/
L(x) → λ as

x → ∞.
Furthermore, if H2(∞) = m(2) < ∞, we have the following result.

It is obtained by applying Theorem 2.5 when taking α = 2. Note that
H2(x) = m(2)−H2(x).
Lemma 4.3. Suppose that θ > 2 and m(2) < ∞. The following are
equivalent:

(i) F (x) ∈ RV−θ;
(ii) H2(x) =

∫∞
x y2dF (y) ∈ RV2−θ; and,

(iii)
∫∞
x y2dF (y)

/
(x2F (x)) → θ

/
(θ − 2) as x → ∞.

Also, we have the following result. It is obtained by applying Theorem
2.5 when taking α = 2.
Lemma 4.4. Suppose that θ > 2 and m(2) < ∞. The following are
equivalent:

(i) F (x) ∈ RV−θ;
(ii) W 2(x) =

∫∞
x yF (y)dy ∈ RV2−θ;

(iii) x−2m(2)−G2(x) ∈ RV−θ;
(iv)

∫∞
x yF (y)dy

x2F (x)
→ 1

θ−2 as x → ∞; and,

(v) x−2m(2)−G2(x)

F (x)
→ 2

θ−2 as x → ∞.
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4.3. The Case α = 1. Now we have H1(x) =
∫ x
0 ydF (y), the truncated

first moment.
Fixing α = 1 in Theorems 2.3 and 2.6, we have the following results.

Theorem 4.5.
(i) Suppose that 0 < θ < 1. We have H1(x) ∈ RVθ ⇔ G1(x) ∈

RVθ−1 ⇔ F (x) ∈ RVθ−1 ⇔ W1(x) ∈ RVθ. Each of these state-
ments implies that xF (x)

/
H1(x) → θ

/
(1−θ), xG1(x)

/
H1(x) →

1
/
(1− θ), and W1(x)

/
H1(x) → 1

/
(1− θ) as x → ∞.

(ii) Suppose that 0 ≤ θ < 1. We have H1(x) ∈ RVθ ⇔ xF (x)
/
H1(x)

→ θ
/
(1−θ) as x → ∞ ⇔ xG1(x)

/
H1(x) → 1

/
(1−θ) as x → ∞.

(iii) Suppose that L(x) ∈ RV0. Then H1(x) ∈ Πλ(L) ⇔ W1(x) ∈
Πδ(L) ⇔ xF (x)/L(x) → δ as x → ∞. The relation between λ
and δ is given by λ = δ.

Furthermore, if m(1) < ∞, we have the following result. It is obtained
by applying Theorem 2.5 when taking α = 1. Note that H1(x) =
m(1)−H1(x).

Lemma 4.6. Suppose that θ > 1 and m(1) < ∞. The following are
equivalent:

(i) F (x) ∈ RV−θ;
(ii) H1(x) =

∫∞
x ydF (y) ∈ RV1−θ; and,

(iii)
∫∞
x ydF (y)

/
(xF (x)) → θ

/
(θ − 1) as x → ∞.

Moreover, we have that the following result, which is obtained by
applying Theorem 2.5 when taking α = 1.

Lemma 4.7. Suppose that θ > 1 and m(1) < ∞. The following are
equivalent:

(i) F (x) ∈ RV−θ;
(ii) W 1(x) =

∫∞
x F (y)dy ∈ RV1−θ;

(iii) x−1m(1)−G1(x) ∈ RV−θ;
(iv)

∫∞
x F (y)dy

xF (x)
→ 1

θ−1 as x → ∞; and,

(v) x−1m(1)−G1(x)

F (x)
→ 1

θ−1 as x → ∞.

Remark 4.8. The equivalence between H1(x) ∼ l1(x) and W1(x) ∼
l2(x) for some l1(x), l2(x) ∈ RV0, was proved by [8], see e.g. (i) and (ii)
in Theorem 8.8.1 in [1].

5. Concluding Remarks

We have extended and proved the conjecture formulated by [9] on
distribution functions (d.f.s) by applying the Williamson transform to
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such a d.f.. Interestingly, that application became a new function as
part of that conjecture.

This novel application and the procedures used for proving the ex-
tended conjecture have motivated us to explore asymptotic behaviors
when considering other functions than regularly varying functions. For
instance, long tailed functions and functions belonging to the class Γλ(g),
see e.g. [6]. This class consists of functions f satisfying, for all y ∈ R,
f(x + yg(x))

/
f(x) → exp(αy) as x → ∞. These studies may involve

convergence rates as the ones presented in [7]. In a forthcoming paper,
we will present the findings of this analysis.

Acknowledgment. The authors are indebted to the anonymous referee
for his/her helpful comments which improved the manuscript.
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