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Quaternion Hankel Transform and its Generalization

Khinal Parmar1∗ and V. R. Lakshmi Gorty2

Abstract. In this study, the quaternion Hankel transform is de-
veloped. Basic operational properties and inversion formula of
quaternion Hankel transform are derived. Parseval’s relation for
this transform is also established. The generalized quaternion Han-
kel transform is presented. In the concluding section, we demon-
strate the application of the quaternion Hankel transform to Cauchy’s
problem.

1. Introduction

The Hankel transform was developed by the mathematician Herman
Hankel. The classical Hankel transform and its extensions were studied
in [9, 10, 16, 25]. The Hankel transform of distributions and generalized
functions were developed in [4, 6]. Sneddon introduced the finite Hankel
transform in a finite interval, satisfying Dirichlet’s conditions [24] and
its extensions were studied in [14, 15]. The fractional Hankel transform
was introduced in [17]. The fundamental properties of Fourier-Bessel
coefficients and various examples of different boundary conditions are
discussed in [7].

In 1853, quaternions were developed by W. R. Hamilton [12]. The
operations on three-dimensional vectors include multiplication and di-
vision, which necessitates enlarging the operations and leads to the in-
troduction of the four-dimensional algebra of quaternions. Therefore,
studying the quaternion Hankel transform becomes important. The
quaternion Hankel transform is derived in this study to transfer signals
from the real-valued time domain to the quaternion-valued frequency
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domain efficiently. The quaternion Hankel transform is applicable in
solving boundary value problems and Euler-Cauchy differential equa-
tions of quaternion-valued functions. Authors in [5] investigated the
quaternionic extension of the fractional Fourier transform on the real
half-line, leading to the fractional Hankel transform. In recent develop-
ments, the authors in [18–21] have extended various integral transforms
to quaternion-valued functions.

In this study, the authors introduce the quaternion Hankel transform.
The authors have analyzed the operational properties of the transform.
Parseval’s relation and inversion formula are developed for the quater-
nion Hankel transform. The generalized quaternion Hankel transform
is established. In the concluding section, application in Mathematical
Physics is demonstrated.

The organization of the paper is as follows. In Section 2, some basic
facts of quaternions and quaternion-valued functions are illustrated. In
Section 3, we define and develop the quaternion Hankel transform, in-
cluding its inversion formula and operational properties. In Section 4,
the generalization of the quaternion Hankel transform is studied. In Sec-
tion 5, a demonstration of the quaternion Hankel transform to Cauchy’s
problem is shown.

2. Preliminary Results

In this section, some basic facts of the quaternion and quaternion-
valued functions are illustrated. We will also review the quaternion
Fourier transform as defined in [2].

In quaternions, every element is a linear combination of a real scalar
and three imaginary units i, j and k with real coefficients. Let
(2.1) H = {q = x0 + ix1 + jx2 + kx3 : x0, x1, x2, x3 ∈ R} ,
be the division ring of quaternion, where i, j,k satisfy Hamilton’s mul-
tiplication rules (see, e.g. [8])
(2.2)
ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = ijk = −1.

The quaternion conjugate of q is defined by
(2.3) q̄ = x0 − ix1 − jx2 − kx3; x0, x1, x2, x3 ∈ R.
The norm of q ∈ H is defined as

(2.4) |q| =
√
qq̄ =

√
x20 + x21 + x22 + x23.

We can also write quaternion as
(2.5) q = Re(q) + Im(q),

where Re(q) = x0 and Im(q) = ix1 + jx2 + kx3.
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For h ∈ L2(R;H) from [23], the function is expressed as
(2.6) h(x) = h0(x) + ih1(x) + jh2(x) + kh3(x).
Alternatively, Quaternions and Matrices of Quaternions by Fuzhen Zhang
has mentioned this earlier (1997) in [23] the quaternion is defined as
(2.7) H = {q = q1 + jq2 : q1, q2 ∈ C} ,
where j is the imaginary number satisfying the following conditions:
j2 = −1, jr = rj, ∀ r ∈ R, ji = −ij, where i is the imaginary number.

Every quaternion number can be uniquely expressed as
(2.8) q = q1 + jq2 = (q1 − iq2) e1 + (q1 + iq2) e2,

where e1 =
1 + k

2
, e2 =

1− k

2
, e1+ e2 = 1, e1e2 = 1/2 and e2e1 = −1/2.

The auxiliary complex spaces B1 and B2 are defined as follows:
B1 = {w1 = q1 − iq2, ∀ q1, q2 ∈ C} ;(2.9)
B2 = {w2 = q1 + iq2, ∀ q1, q2 ∈ C} .

A cartesian set X1 ×q X2 determined by X1 ⊆ B1 and X2 ⊆ B2 and is
defined as:
(2.10)
X1×qX2 = {q1 + jq2 ∈ H : q1 + jq2 = w1e1 + w2e2, w1 ∈ X1, w2 ∈ X2} .
The projection mappings (2.10) are represented by P1 : H → B1 ⊆
C,P2 : H → B2 ⊆ C as follows:

P1(q1 + jq2) = P1[(q1 − iq2) e1 + (q1 + iq2) e2]

= (q1 − iq2) ∈ B1, ∀q1 + jq2 ∈ H,
P2(q1 + jq2) = P2[(q1 − iq2) e1 + (q1 + iq2) e2]

= (q1 + iq2) ∈ B2, ∀q1 + jq2 ∈ H.

Analogous to [1, Theorem 1, p. 2], the convergence of quaternion func-
tion for its quaternion component functions can be represented by the
following theorem:

Theorem 2.1. F (ξ) = Fe1(ξ1)e1 + Fe2(ξ2)e2 is convergent in domain
D ⊆ C iff Fe1(ξ1) and Fe2(ξ2), the projections under the functions P1 :
D → D1 ⊆ C and P2 : D → D2 ⊆ C, are convergent in domains D1 and
D2 respectively.

Definition 2.2. Let h ∈ L2(R2,H), for
(2.11) x = x1e1 + x2e2, w = w1e1 + w2e2.

The quaternion Fourier transform of h is defined in [2] as:

Fq {h} (w) = ĥ (w)(2.12)
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=

∫
R2

h (x) e
− i+j+k√

3
w.x
d2x,

where e−((i+j+k)/
√
3 )w.x is called the quaternion Fourier kernel. Here

{e1, e2} denote the standard bases of R2.

The inversion formula of the quaternion Fourier transform is defined
in [2] as

F−1
q [Fq {h}](x) = h(x)

=
1

(2π)2

∫
R2

Fq {h} (w) e
i+j+k√

3
w.x
d2w.

3. Quaternion Hankel Transform

In this section, the quaternion Hankel transform is defined and devel-
oped its inversion formula and operational properties.

Let h be the quaternion-valued function with quaternion Fourier trans-
form as defined in (2.12). In R2, let x = (x1, x2) and w = (w1, w2).

Substituting − i+j+k√
3

= µ, x1 = r cos θ, x2 = r sin θ, w1 = p cosα and
w2 = p sinα in (2.12) gives the following:

(3.1) ĥ (p, α) =

∫ ∞

0
rdr

∫ 2π

0
h(r, θ)eµrp cos(θ−α)dθ.

Assuming
(3.2) h(r, θ) = h(r)e−µnθ,

further (3.1) can be represented as

(3.3) ĥ (p, α) =

∫ ∞

0
rh(r)dr

∫ 2π

0
eµ(−nθ+rp cos(θ−α))dθ.

Put θ − α = −ϕ− π
2 in (3.3). Then we get

ĥ (p, α) =

∫ ∞

0
rh(r)dr

∫ 2π

0
eµ[n(ϕ−α+

π
2 )+rp cos(ϕ+

π
2 )]dϕ

=

∫ ∞

0
rh(r)dreµn(

π
2
−α)

∫ 2π

0
eµ(nϕ−rp sinϕ)dϕ.

Using integral representation of the Bessel function of order n as given
in [22], we get

ĥ (p, α) = 2πeµn(
π
2
−α)

∫ ∞

0
rh(r)Jn(pr)dr

= 2πeµn(
π
2
−α)h̃(p),

where h̃(p) is quaternion Hankel transform of h(x).
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Definition 3.1. The quaternion Hankel transform of the function h(x) ∈
L2(R,H) is defined as

Hn{h(x)}(p) = h̃(p)(3.4)

=

∫ ∞

0
xh(x)Jn(px)dx,

where Jn(px) is the Bessel function of the first kind of order n.

Existence conditions:
1. The quaternion-valued function h(x) must be locally and abso-

lutely integrable on 0 < x <∞.
2. Since xJn(x) is bounded on the positive real axis, it follows

that the Hankel transform exists only if h(x) is defined on the
positive real axis.

3. If h0(x), h1(x), h2(x) and h3(x) are Hankel transformable func-
tions, then every quaternion-valued function can be represented
in the form of (2.6).

Convergence: Suppose h̃(p) = h̃0(p) + ih̃1(p) + jh̃2(p) + kh̃3(p), since
h̃0(p), h̃1(p), h̃2(p) and h̃3(p) are convergent and analytic respectively.
Therefore, by theorem 2.1, the quaternion-valued function h̃(p) is con-
vergent and analytic.

3.1. Inversion Formula. Substituting − i+j+k√
3

= µ, x1 = r cos θ, x2 =

r sin θ, w1 = p cosα and w2 = p sinα in (2.11) yields:

(3.5) h(r, θ) =
1

(2π)2

∫ ∞

0
pdp

∫ 2π

0
ĥ (p, α) e−µrp cos(θ−α)dα.

Considering (3.2) and ĥ (p, α) = 2πeµn(
π
2
−α)h̃(p) in (3.5), we obtain:

h(r)e−µnθ =
1

(2π)2

∫ ∞

0
pdp

∫ 2π

0
2πeµn(

π
2
−α)h̃(p)e−µrp cos(θ−α)dα

=
1

2π

∫ ∞

0
ph̃(p)dp

∫ 2π

0
eµ[n(

π
2
−α)−rp cos(θ−α)]dα.

By substituting θ − α = ψ − π
2 , we have

h(r)e−µnθ =
1

2π

∫ ∞

0
ph̃(p)dp

∫ 2π

0
eµ[n(ψ−θ)−rp cos(

π
2
−ψ)]dψ.

Thus implies

(3.6) h(r)e−µnθ =
1

2π

∫ ∞

0
ph̃(p)dpe−µnθ

∫ 2π

0
eµ[nψ−rp sinψ]dψ.
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Using integral representation of Bessel function of order n [22] in (3.6),
we get

(3.7) h(r)e−µnθ = e−µnθ
∫ ∞

0
ph̃(p)Jn(pr)dp,

further representing (3.7) by

(3.8) h(r) =

∫ ∞

0
ph̃(p)Jn(pr)dp,

which is the inversion formula for the quaternion Hankel transform.

Property 3.2 (Linearity property). Let g, h ∈ L2(R,H) and l1, l2 ∈ R.
Then
(3.9) Hn [l1g(x) + l2h(x)] = l1Hn[g(x)] + l2Hn[h(x)].

Proof. For g, h ∈ L2(R,H) and l1, l2 ∈ R, we have

Hn [l1g(x) + l2h(x)] =

∫ ∞

0
(l1g(x) + l2h(x))xJn(px)dx

= l1

∫ ∞

0
g(x)xJn(px)dx+ l2

∫ ∞

0
h(x)xJn(px)dx

= l1Hn[g(x)] + l2Hn[h(x)].

Hence the proof. □
Property 3.3 (Scaling Property). Let h(x) ∈ L2(R,H). If Hn{h(x)} =

h̃(p), then

(3.10) Hn{h(ax)} =
1

a2
h̃
(p
a

)
, a ∈ R.

Proof. For h(x) ∈ L2(R,H),

Hn{h(ax)} =

∫ ∞

0
xh(ax)Jn(px)dx.

By substituting ax = t, we have

Hn{h(ax)} =

∫ ∞

0

t

a
h(t)Jn

(p
a
t
) dt
a

=
1

a2

∫ ∞

0
t h(t)Jn

(p
a
t
)
dt

=
1

a2
h̃
(p
a

)
.

Hence the proof. □
Example 3.4. Find quaternion Hankel transform for the quaternion-
valued function h(x) = 1 + ie−x + jx+ ke

−x

x
of order zero.
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Solution:

Hn{h(x)} =

∫ ∞

0

(
1 + ie−x + jx+ ke

−x

x

)
xJ0(px)dx

=

∫ ∞

0
xJ0(px)dx+ i

∫ ∞

0
xe−xJ0(px)dx

+ j
∫ ∞

0
x2J0(px)dx+ k

∫ ∞

0
e−xJ0(px)dx

=
2

p2
+ i 1

(1 + p2)3/2
− j 1

p3
+ k 1

(1 + p2)1/2
.

Theorem 3.5. Let Hn {h(x)} be the quaternion Hankel transform of
order n for a quaternion-valued function h(x). Then

(3.11) Hn

{
dh(x)

dx

}
=
p

2
Hn+1 {h(x)} −

p

2
Hn−1 {h(x)} −Hn

{
h(x)

x

}
.

Proof. The quaternion Hankel transform of order n for a quaternion-
valued function h(x) is given by

Hn {h(x)} =

∫ ∞

0
xh(x)Jn(px)dx.

The quaternion Hankel transform of dh
dx

is

Hn

{
dh(x)

dx

}
=

∫ ∞

0
x
dh

dx
Jn(px)dx.

Integrating by parts and assuming xh(x) → 0 as x→ 0 and x→ ∞, we
get

Hn

{
dh(x)

dx

}
= −

∫ ∞

0
h(x)

d

dx
{xJn(px)} dx

= −
∫ ∞

0
h(x)

{
Jn(px) + pxJ ′

n(px)
}
dx

= −
∫ ∞

0
h(x)

{
Jn(px) +

px

2
Jn−1(px)−

px

2
Jn+1(px)

}
dx

= −
∫ ∞

0
h(x)Jn(px)dx− p

2

∫ ∞

0
xf(x)Jn−1(px)dx

+
p

2

∫ ∞

0
xh(x)Jn+1(px)dx

= −Hn

{
h(x)

x

}
− p

2
Hn−1 {h(x)}+

p

2
Hn+1 {h(x)} .

Hence the proof. □
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Theorem 3.6. Let Hn {h(x)} be the quaternion Hankel transform of
order n for a quaternion-valued function h(x). Then

Hn

{
d2h(x)

dx2

}
= pHn−1

{
h(x)

x

}
− pHn+1

{
h(x)

x

}
− p2

2
Hn {h(x)}

+
p2

4
Hn+2 {h(x)}+

p2

4
Hn−2 {h(x)} .

Proof. From theorem 3.5, we have

(3.12) Hn

{
dh(x)

dx

}
=
p

2
Hn+1 {h(x)} −

p

2
Hn−1 {h(x)} −Hn

{
h(x)

x

}
.

By substituting dh

dx
in place of h(x) in (3.12), we get

Hn

{
d2h(x)

dx2

}
= −Hn

{
1

x

dh(x)

dx

}
−p
2
Hn−1

{
dh(x)

dx

}
+
p

2
Hn+1

{
dh(x)

dx

}
.

Further implies

Hn

{
d2h(x)

dx2

}
= −Hn

{
1

x

dh(x)

dx

}(3.13)

− p

2

(
−Hn−1

{
h(x)

x

}
− p

2
Hn−2 {h(x)}+

p

2
Hn {h(x)}

)
+
p

2

(
−Hn+1

{
h(x)

x

}
− p

2
Hn {h(x)}+

p

2
Hn+2 {h(x)}

)
.

Now

Hn

{
1

x

dh(x)

dx

}
= −

∫ ∞

0
h(x)

(
pJ ′

n(px)
)
dx

= −
∫ ∞

0
h(x)

(p
2
Jn−1(px)−

p

2
Jn+1(px)

)
dx

= −p
2

∫ ∞

0
h(x)Jn−1(px) +

p

2

∫ ∞

0
h(x)Jn+1(px)dx.

Thus can be represented as

(3.14) Hn

{
1

x

dh(x)

dx

}
= −p

2
Hn−1

{
h(x)

x

}
+
p

2
Hn+1

{
h(x)

x

}
.

By substituting (3.14) in (3.13), we get

Hn

{
d2h(x)

dx2

}
= −

(
−p
2
Hn−1

{
h(x)

x

}
+
p

2
Hn+1

{
h(x)

x

})
+
p

2
Hn−1

{
h(x)

x

}
+
p2

4
Hn−2 {h(x)} −

p2

4
Hn {h(x)}
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− p

2
Hn+1

{
h(x)

x

}
− p2

4
Hn {h(x)}+

p2

4
Hn+2 {h(x)}

= pHn−1

{
h(x)

x

}
− pHn+1

{
h(x)

x

}
− p2

2
Hn {h(x)}

+
p2

4
Hn+2 {h(x)}+

p2

4
Hn−2 {h(x)} .

Hence the proof. □

Property 3.7. (Parseval’s Relation) If g̃(p) = Hn {g(x)} and
h̃(p) = Hn {h(x)}, then

(3.15)
∫ ∞

0
pg̃(p)h̃(p)dp =

∫ ∞

0
xg(x)h(x)dx.

Proof. For g̃(p) = Hn {g(x)} and h̃(p) = Hn {h(x)},∫ ∞

0
pg̃(p)h̃(p)dp =

∫ ∞

0
pg̃(p)dp

∫ ∞

0
xJn(px)h(x)dx

=

∫ ∞

0
xh(x)dx

∫ ∞

0
pJn(px)g̃(p)dp

=

∫ ∞

0
xg(x)h(x)dx.

Thus Parseval’s relation holds. □

3.2. Operational Calculus. Let △nh =
1

x

d

dx

(
x
dh

dx

)
− n2

x2
h. Consider

quaternion Hankel transform of △nh using (3.4) is stated as

Hn {△nh} =

∫ ∞

0
x△n hJn(px)dx(3.16)

=

∫ ∞

0

(
d

dx

(
x
dh

dx

)
− n2

x
h

)
Jn(px)dx.

Using integration by parts in (3.16) as in [3], we obtain

Hn {△nh} =

[(
x
dh

dx

)
Jn(px)

]∞
0

−
∫ ∞

0

(
x
dh

dx
pJ ′

n(px) +
n2

x
hJn(px)

)
dx

= −
[
pxhJ ′

n(px)
]∞
0

+

∫ ∞

0

d

dx

[
pxJ ′

n(px)
]
hdx

−
∫ ∞

0

n2

x
hJn(px)dx

= −
∫ ∞

0

(
p2 − n2

x2

)
xhJn(px)dx−

∫ ∞

0

n2

x
hJn(px)dx
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= −p2
∫ ∞

0
xhJn(px)dx

= −p2Hn {h} .

Thus
(3.17) Hn {△nh} = −p2Hn {h(x)} .

A similar argument can be used to prove the general result
(3.18) Hn {△m

n h} = (−1)mp2mHn {h(x)} .

4. Generalization

In this section, the generalization of the quaternion Hankel transform
is studied.

4.1. Testing Function Space. Let a be a positive real number and
n ∈ R. For each pair of a and n as given in [11], we define Tn, a as a
space of testing functions ϕ(x), well-defined and smooth on 0 < x < ∞
and satisfy

τn, ak (ϕ) = sup
0<x<∞

∣∣∣e−axx−n−1/2ξkn, xϕ(x)
∣∣∣ <∞,

where ξkn, x =
(
x−n−1/2Dx2n+1Dx−n−1/2

)k.
Tn, a is a linear space and each τn, ak is a seminorm on Tn, a. The

collection {τn, ak } is a multinorm. The topology of Tn, a is generated

by {τn, ak }. Let Tn(σ) =
∞⋃
i=1

Tn, ai denote the countable-union space

generated by {Tn, ai}, where σ is the limit of monotonically increasing
sequence {ai}. Tn, a is complete and therefore, a Fréchet space. T ′

n, a

and T ′
n(σ) denote the dual of Tn, a and Tn(σ) respectively. T ′

n, a is also
complete. The members of Tn, a are the generalized functions on which
the quaternion Hankel transform is defined.

Let the quaternion-valued fuction h(x) be locally integrable on 0 <

x < ∞ such that
∫∞
0

∣∣∣h(x)eaxxn+ 1
2

∣∣∣ dx < ∞. Then h(x) generates a
regular generalized function in T ′

n, a if n ≥ −1
2 and is defined as

(4.1) ⟨h, ϕ⟩ =
∫ ∞

0
h(x)ϕ(x)dx, ϕ ∈ Tn, a.

Definition 4.1. Let n be restricted to n ≥ −1
2 and for every h(x) ∈

T ′
n, a, there exists a unique real number σh such that the generalized

quaternion Hankel transform of h is defined as
(4.2) H(p) = Hn {h(x)} (p) = ⟨h(x), xJn(px)⟩ ,
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where p is a quaternion parameter belonging to the strip Ωh = {p :
|Im(p)| < σh; p ̸= 0 or a negative number}.

Theorem 4.2 (Analyticity theorem). For p > 0, let H(p) be the gen-
eralized quaternion Hankel transform of h. Then H(p) is differentiable
and is denoted by

(4.3) DpH =

〈
h(x),

∂

∂p
xJn(px)

〉
.

Proof. Let p be an arbitrary fixed point. Construct two concentric circles
of radii r and r1 with p as the center such that r < r1. Let q be denoted
as a small increment in p such that |q| < r.

Consider

(4.4) H(p+ q)−H(p)

q
−
〈
h(x),

∂

∂p
xJn(px)

〉
= ⟨h(x), θq(x)⟩

where

(4.5) θq(x) =
xJn(x(p+ q))− xJn(px)

q
− ∂

∂p
xJn(px).

For any non-negative integer k, we have

(4.6) ξkn, x(xJn(px)) = (−1)kp2kxJn(px).

Using (4.5), further (4.6) can be represented as

ξkn, xθq(x) =
(−1)k

2πi

∫
C

q

(η − p)2(η − p− q)
η2kxJn(ηx)dη,

where ξkn, x =
(
x−n−1/2Dx2n+1Dx−n−1/2

)kand C is the circle of radius
r1. Analogous to [11, lemma 4], let A be a boundary of e−axx−n+ 1

2Jn(ηx)
for 0 < x <∞ and all η ∈ C.

Then, we have∣∣∣e−axx−n− 1
2 ξkn, xθq(x)

∣∣∣ ≤ |q|
2π

∫
C

|η|2k|e−axx−n+
1
2Jn(ηx)|

(η − p)2(η − p− q)
dη

≤ |q|A
r21(r1 − r)

sup
η∈C

|η|2k.

Thus, as q → 0, τn, ak (θq(x)) → 0 . Hence we conclude that (4.4) also
tends to zero.

The proof is complete. □

Theorem 4.3 (Boundedness theorem). Let H(p) be the generalized
quaternion Hankel transform of h ∈ T ′

n, a. Then H(p) is bounded on
any strip {p : |Im(p)| ≤ a < σh; p ̸= 0 or a negative number}.
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Proof. Let h ∈ T ′
n, a where 0 < a < σ. By the boundedness property

of generalized functions [11, note viii], there exists a constant T and a
non-negative integer s such that

|H(p)| ≤ T max
0≤k≤s

sup
0<x<∞

∣∣∣e−axx−n− 1
2 ξkn, xxJn(px)

∣∣∣
≤ T max

0≤k≤s
sup

0<x<∞

∣∣∣e−axx−n+ 1
2 p2kJn(px)

∣∣∣ .
According to [11, lemma 4], e−axx−n+ 1

2Jn(px) is bounded by an arbi-
trary constant and hence the proof. □

Theorem 4.4 (Inversion theorem). Let h ∈ T ′
n, a and H(p) be the

generalized quaternion Hankel transform of h. Then

(4.7) h(x) = lim
r→∞

∫ r

0
pH(p)Jn(px)dp.

Proof. We will show that for any function ϕ(x) ∈ Tn, a, the expression〈∫ r
0 H(p)pJn(px)dp, ϕ(x)

〉
tends to ⟨h(x), ϕ(x)⟩ as r tends to ∞.

By the definition of the inner product, we have〈∫ r

0
H(p)pJn(px)dp, ϕ(x)

〉
=

∫ ∞

0
ϕ(x)

∫ r

0
H(p)pJn(px)dpdx

=

∫ r

0
⟨h(t), tJn(pt)⟩

∫ ∞

0
ϕ(x)pJn(px)dxdp

=

〈
h(t),

∫ r

0
tJn(pt)

∫ ∞

0
ϕ(x)pJn(px)dxdp

〉
.

By using the formula from [11],
(4.8)∫ r

0
pJn(pt)Jn(px)dp =

r

x2 − t2
{xJn+1(xr)Jn(tr)− tJn(xr)Jn+1(tr)} ,

and the asymptotic representation of Bessel function, it can be shown
that

∫ r
0 tJn(pt)

∫∞
0 ϕ(x)pJn(px)dxdp converges to ϕ(t) as r → ∞.

Thus follows

(4.9)
〈∫ r

0
H(p)pJn(px)dp, ϕ(x)

〉
→ ⟨h(x), ϕ(x)⟩ ,

as r tends to ∞. Hence the proof. □

Theorem 4.5 (Uniqueness theorem). Let H(p) = Hn {h(x)} for p ∈ Ωh
and G(p) = Hn {g(x)} for p ∈ Ωg. If H(p) = G(p) on Ωh ∩ Ωg = {p :
|Im(p)| < min(σh, σg); p ̸= 0 or a negative number}, then h = g in the
sense of equality in T ′

n, a.
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Proof. By the inversion theorem, we get

(4.10) h− g = lim
r→∞

∫ r

0
p [H(p)−G(p)] Jn(px)dp = 0.

Thus, h = g. Hence the proof. □

5. Application

In [13], the generalized Hankel transform is used to solve the Cauchy
problem

(5.1) ∂2u

∂x2
+

2µ+ 1

x

∂u

∂x
− ν2 − µ2

x2
u = λ

∂u

∂t
,

with initial condition u(x, t) → f(x) in D′(I), where f ∈ H′
µ, ν(σ) for

some σ > 0 as t → 0+. The notations and terminologies used in the
(5.1) are as defined in [26].
Analogous to [1], Cauchy problem of quaternion-valued function can be
represented as

(5.2) ∂2u

∂x2
+

1

x

∂u

∂x
− n2

x2
u = λ

∂u

∂t
,

with the initial conditions mentioned in (5.1).
Applying quaternion Hankel transform to (5.2) and using (3.17), we

get

− p2Hn {u(x, t)} = λ
∂

∂t
Hn {u(x, t)} ,

∂

∂t
Hn {u(x, t)}+

p2

λ
Hn {u(x, t)} = 0.

Further solving, we have

(5.3) Hn {u(x, t)} = Hn {f(x)} e
−p2

λ
t
.

Using the inversion formula of the quaternion Hankel transform of (5.3),
we obtain the required solution:

(5.4) u(x, t) =

∫ ∞

0
Hn {f(x)} e

−p2

λ
t
pJn(pr)dp.

6. Conclusion

In this paper, the authors have presented the quaternion Hankel trans-
form and its inversion. Some basic properties of the quaternion Hankel
transform are derived. Parseval’s relation and operational calculus are
also developed. Generalized quaternion Hankel transform is established
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using testing function space. In the concluding section, the application
of the quaternion Hankel transform is given.
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