
 

 
 

Some Basic Results on Fuzzy Strong 𝝓-b-
Normed Linear Spaces 

 

 

 

 

 

 

 

 

-

 

 

Sakineh Hajiaghasi and Shahroud Azami 

A Gradient Bound for the Allen-Cahn Equation Under 

Almost Ricci Solitons 

Sahand Communications in 

Mathematical Analysis 

 

Print ISSN: 2322-5807 

Online ISSN: 2423-3900 

Volume: 21 

Number: 1 

Pages: 83-98 

 

Sahand Commun. Math. Anal. 

DOI: 10.22130/scma.2023.1972568.1199 



Sahand Communications in Mathematical Analysis (SCMA) Vol. 21 No. 1 (2024), 83-98

http://scma.maragheh.ac.ir

DOI: 10.22130/scma.2023.1972568.1199

A Gradient Bound for the Allen-Cahn Equation Under
Almost Ricci Solitons

Sakineh Hajiaghasi1 and Shahroud Azami2∗

Abstract. In this paper, we consider positive solutions for the
Allen-Cahn equation

∆u+
(
1− u2)u = 0,

on an almost Ricci soliton without a boundary. Firstly, using vol-
ume comparison Theorem and Sobolev inequality, we estimate the
upper bound of |∇u|2. As one of the applications, we extend this
result to a gradient Ricci almost soliton. Finally, we obtain a
Liouville-type theorem for almost Ricci solitons.

1. Introduction

Gradient estimates for the solutions of the Poisson equation and the
heat equation are very powerful tools in geometry and analysis, as
shown, as instance in [6, 9, 31]. The study of gradient estimates has
a long tradition. First in [30], Yau attempted to generalize the theory
of the classification of open Riemann surfaces for a higher-dimensional
Riemannian manifold and during his studies, he proved a gradient esti-
mate for a C2-function which is bounded from below (See also [12, 17]).
After that, Li [16] obtained a gradient estimate and Harnack inequalities

for positive solutions of the nonlinear parabolic equation
(
∆− ∂

∂t

)
u+

huα = 0, and nonlinear elliptic equation ∆u + b · ∇u + huα = 0 on
Riemannian manifolds. Then as a result, he proved a Liouville-type
theorem for positive solutions of the nonlinear elliptic equation.
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After a while, these works extended for the Schrödinger operator, the
heat equation, and nonlinear heat equation in [10, 18, 20, 26, 28, 29] on
noncompact Riemannian manifolds.

Lately, Zhang et al. [31] stated elliptic and parabolic gradient es-
timates for a Riemannian manifold M with Ricci curvature that is
bounded from below, and therefore they achieved Gaussian upper and
lower bounds for heat kernel and extended the maximum principle,
which was stated by Petersen and Wai in [22]. In addition, Bamler in [7]
developed a new version of these works and obtained bounds for the heat
kernel on a Ricci flow background. In this paper, we consider bounded
positive solutions to the Allen-Cahn equation, which is as follows:

(1.1) ∆u+
(
1− u2

)
u = 0.

The Allen-Cahn equation is a 2nd-order nonlinear parabolic partial dif-
ferential equation representing on natural physical phenomenon and has
its origin in the gradient theory of phase transitions [4]. This equation
has been extensively used to study various physical problems, such as
crystal growth [23], image segmentation [8], and the motion by mean
curvature flows [24]. In particular, it has been employed in material
science [25]. Thus, the solutions of this equation have particular signifi-
cance and have attracted a lot of attention in recent decades.

Recently, Bailesteanu [5] considered Harnack and gradient estimates
for parabolic and elliptic Allen-Cahn equations and obtained interesting
results. Additionally, in [15], Hou, obtained a gradient estimate for
bounded solutions of the Allen-Cahn equation on Riemannian manifolds
with bounded Ricci curvature Ric > −K(2R) for some positive constant
K(2R) > 0. More recently, Abolarinwa et al. [1] proved the gradient
estimate for the bounded positive solutions to a certain semilinear elliptic
Allen-Cahn equation and obtained conditions under which the gradient
estimate gives rise to a Liouville type result with bounded solutions.

In this paper, we will primarily prove the first-order gradient estimate
for bounded solutions of the nonlinear equation (1.1) under an almost
Ricci soliton with the condition that the Ricci soliton has a non-positive
lower bound. Since the present paper is included in Poisson equations,
based on [19] it is known that such a solution u for (1.1) exists.

We will begin by reviewing the Volume comparison for an almost
Ricci soliton. Moreover, we recall local Sobolev constans in Riemannian
manifolds, and we may need another powerful tool named Nash-Morser
iteration. Finally, as an application, we generalize the Liouville theorem.

2. Main Results

Before stating our main results, we want to introduce some notations.
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We say that a Riemannian manifold (Mn, g) is an almost Ricci soliton
if there exist a vector field X and a soliton function λ : Mn −→ R
satisfying

Ric +
1

2
LXg = −λg,

where Ric and L stand, respectively, for the Ricci tensor and the Lie
derivation. It is called expanding, steady or shrinking, if λ < 0, λ = 0
or λ > 0, respectively. When the vector field X is a gradient of a
differentiable function h : Mn −→ R, then the manifold called a gradient
almost Ricci soliton; in this case the preceding equation turns out to be

Ric +∇2h = λg,

where ∇2 denotes the Hessian of h. Moreover, when either the vector
field X is trivial, or the potential h is constant, the almost Ricci soliton
will be called trivial. We notice that when n ≥ 3 and X is a Killing
vector field, an almost Ricci soliton will be simply a Ricci soliton, since
in this case we have an Einstein manifold, which implies that λ is a
constant.

Let Mn be an almost Ricci soliton with following conditions

(2.1) Ric +
1

2
LV g ≥ −λg,

and

(2.2) |V ( y) ≤ K

d (y,O)α
,

for a smooth function λ with an upper bound N , a smooth vector field
V and any y ∈ M . Here d (y,O) denotes the distance from O to y, K is
a positive constant and 0 ≤ α < 1. In particular, we consider one more
condition name the volume non-collapsing condition when α ̸= 0,

(2.3) V ol (B (x, 1)) ≥ ρ,

for all x ∈ M and some constant ρ > 0. More precisely, we have the
following results:

Theorem 2.1. Let Mn be a complete compact almost Ricci soliton
without boundary. Assume that (2.1), (2.2) and (2.3) hold. Let λ ≤ N
and u as any entire positive solution of (1.1).

(1) For |u| ≤ 1on M and any q >
n

2
, we have

sup

B

(
x,
1

2
r

) |∇u|2 ≤ C(n,N,K, α, ρ)r−2.



86 S. HAJIAGHASI AND S. AZAMI

(2) For u > 1 and any q > n/2, we have

sup

B

(
x,
1

2
r

) |∇u|2 ≤ C (n,N,K, α, ρ)

[(
∥u∥∗2,B(x,r)

)4
+ r−2

(
∥u∥∗2,B(x,r)

)2]
,

where

∥u∥∗p,B(x,r) =

(∮
B(x,r)

|u|p
)1/p

.

As a consequence, motivated by applications to gradient Ricci soli-
tons, we obtain:

Corollary 2.2. Let the following condition holds for a gradient Ricci
almost soliton

Ric +Hessh ≥ −λg,

and more over we had two condition for potential function h as follows

|h(y)− h(z)| ≤ K1d(y, z)
α, sup

x∈M,0≤r≤1

(
rβ ∥∇h∥∗q,B(x,r)

)
≤ K2.

Then there is a constant r0 = r0(n,N,K1,K2, α, β), such that by the
same conditions as Theorem 2.1, the solution of (1.1) with u > 1 and
any q >

n

2
, satisfies

sup

B

(
x,
r

2

) |∇u|2 ≤ C(n,N,K1,K2, α, β)

[
r−2

(
∥u∥∗2,B(x,r)

)2

+
(
∥u∥∗2,B(x,r)

)4]
.

Corollary 2.3. Suppose that all conditions in the Theorem 2.1 hold.
Then

(i) If u ≤ m holds, we obtain r0 = r0(n,N,K, α, ρ,m) such that

sup

B

(
x,
1

2
r

) |∇u|2 ≤ C(n,N,K, α, ρ,m)r−2.

(ii) If λ = 0, therefore the constant coefficient changes as
C(n,K, α, ρ).
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3. Basic Theorems and Proofs of Main Results

To prove our main results, first we need to obtain Sobolev inequalities
for almost Ricci solitons and also the volume comparison theorem for an
almost Ricci soliton which we state from [3].

Theorem 3.1 (Volume comparison [3]). Assume that for an n-dimension
almost Ricci soliton (2.1) and (2.2) hold. Moreover consider a positive
constant N as an upper bound for λ. Suppose in addition that the volume
non-collapsing condition (2.3) holds for positive constants ρ > 0, K ≥ 0
and 0 ≤ α < 1, then for any 0 < r1 < r2 ≤ 1, we have the volume ratio
bound as follows

V ol (B (x, r2))

rn2
≤ eC(n,N,K,α,ρ)[N(r22−r21)+K(r2−r1)1−α].

V ol (B (x, r1))

rn1
.

In particular, this result are true by considering the gradient soliton
vector field V = ∇f , where f : M → R.

Now, we will use the volume comparison result and follow the tech-
niques and arguments in [13] to prove the Sobolove inequality on mani-
folds under the almost Ricci soliton condition.

Theorem 3.2 (Sobolev inequality). Under the same conditions as in
the above theorem for an n-dimensional almost Ricci soliton, we have
the following Sobolev inequalities:∮

B(x,r)
|f |

n

n− 1 dg


n− 1

n
≤ C(n)r

∮
B(x,r)

|∇f | dg,

and

(3.1)

∮
B(x,r)

|f |
2n

n− 2 dg


n− 2

n
≤ C(n)r2

∮
B(x,r)

|∇f |2 dg.

Moreover, for the case that X = ∇f for some smooth function f , we get∮
B(x,r)

|f |
n

n− 1 dg


n− 1

n
≤ C(n)r

∮
B(x,r)

|∇f | dg.

Proof. Because of the similarity of the method for proving this theorem
to the case of integral Ricci curvature [13] and also under considering
Bakry-Émery Ricci condition [31], we will only describe the general path
of the proof here.
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First, let (2.1), (2.2) and (2.3) hold for an almost Ricci soliton Mn. It
follows from above volume comparison theorem, that for
r0 = r0(n,N,K, α, ρ) < 1, we have

eC(n,N,K,α,ρ)(Nr20+Kr1−α
0 ) ≤ 3

2
,

so for any x ∈ Mn and 0 < r1 < r2 ≤ r0, one has
V ol (B (x, r1))

V ol (B (x, r2))
≥ 2

3

rn1
rn2

.

It is clear that we could have the following just like in [31, Proposition
3.1],

V ol (B (x, δr))

V ol (B (x, r))
≤ 1

2
,

for δ = δ(n) and r ≤ r0. Now, Let H be any hypersurface dividing M
into two parts M1 and M2, B(x, r) be the geodesic ball which is divided
equally by H, then we infer

V ol (B (x, r)) ≤ 2n+3rV ol (H ∩B (x, 2r)) .

Following the proof of [13, Theorem 1.1], we get isoperimetric inequality
as follows

ID∗
n(B(x, r)) ≤ C(n)r,

for any r ≤ r0. Here r0 = r0(n,N,K, α, ρ). This is equivalent to the
Sobolev inequality stated in theorem. □

Now we prove our main results:

Proof of Theorem 2.1. Let v = |∇u|2 +
∥∥u6∥∥∗

q,B(x,r)
, then the Bochner

formula gives

∆v = 2
∣∣∇2u

∣∣2 + 2 ⟨∇u,∇∆u⟩+ 2Ric(∇u,∇u)

≥ −2
〈
∇
((
1− u2

)
u
)
,∇u

〉
− 2λv − (LV g)ij uiuj

= 6u2v − 2 (1 + λ) v − (LV g)ij uiuj .

For any p > 0, we get

∆vp = pvp−1∆v + p(p− 1)vp−2 |∇v|2
(3.2)

≥ pvp−1
(
6u2v − 2 (1 + λ) v − (LV g)ij uiuj

)
+

p− 1

p
v−p |∇vp|2 .

Let Bx(R) be the geodesic ball with radius R around x ∈ M , then it
follows from (3.2), that∫

B
|∇(ηvp)|2 =

∫
B
|η∇vp + vp∇η|2(3.3)
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=

∫
B
η2 |∇vp|2 + v2p |∇η|2 + 2ηvp ⟨∇vp,∇η⟩

=

∫
B
v2p |∇η|2 − η2vp∆vp

≤
∫
B
v2p |∇η|2

− pη2v2p−1
(
6u2v − 2 (1 + λ) v − (LV g)ij uiuj

)
.

for any η ∈ C∞
0 (Bx(1)) and p ≥ 1. We know that (LV g)ij = ∇iVj+∇jVi

thus we get
1

2

∫
B
η2v2p−1(LV g)ijuiuj(3.4)

= −
∫
B
2ηv2p−1ηjViuiuj + (2p− 1)η2v2p−2vjViuiuj

+ η2v2p−1Viuijuj − η2v2p−1Viui(1− u2)u.

As we know vj = 2ujjuj , using Cauchy-Schwarz inequality, (3.4) be-
comes
1

2

∫
B
η2v2p−1(LV g)ijuiuj

≤
∫
B
v2p |∇η|2 + η2v2p−2 |V |2 |∇u|4

− 2p− 1

p
ηvp−1Viuiuj [(ηv

p)j − vpηj ]

− 1

2
η2v2p−1Vivi +

1

2
η2v2p−2

(
(1− u2)u

)2 |∇u|2 + 1

2
η2v2p |V |2 .

From the definition of v, its obvious that |∇u|4 ≤ v2, therefore
1

2

∫
B
η2v2p−1(LV g)ijuiuj(3.5)

≤
∫
B

8p− 1

4p
v2p |∇η|2 + 2(2p− 1)2 + 5p

2p
η2v2p |V |2

+
1

2p
|∇(ηvp)|2 + 1

2
η2v2p−1

(
(1− u2)u

)2
.

We consider two cases as follows:
(1) For u ≤ 1, since 0 ≤ 1− u2 ≤ 1, it is easy to see that

1

2

∫
B
η2v2p−1(LV g)ijuiuj

≤
∫
B

8p− 1

4p
v2p |∇η|2 + 2(2p− 1)2 + 5p

2p
η2v2p |V |2
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+
1

2p
|∇(ηvp)|2 + 1

2
η2v2p−1.

(2) For u > 1, we know 1−u2 ≤ 0 so (1−u2)2 ≤ u4, then it follows
from (3.5) that

1

2

∫
B
η2v2p−1(LV g)ijuiuj(3.6)

≤
∫
B

8p− 1

4p
v2p |∇η|2 + 2(2p− 1)2 + 5p

2p
η2v2p |V |2

+
1

2p
|∇(ηvp)|2 + 1

2
η2v2p−1u6.

We only prove the second case. The proof of the first case is similar. By
(3.6), (3.3) becomes

2

∫
B
|∇(ηvp)|2 ≤

∫
B
4v2p |∇η|2 + 8(1 + λ)pη2v2p + (8p− 1)v2p |∇η|2

+
(
4(2p− 1)2 + 10p

)
η2v2p |V |2 − 6pη2v2pu2

+ pη2v2p−1u6.

Define cut function φi(s) so that ηi(y) = φi(s), such that for ri =(
1

2
,

1

2i+2

)
, i = 0, 1, 2, . . ., φi(t) ≡ 1 for t ∈ [0, ri+1], suppφi ⊆ [0, ri] and

−52i

r
≤ φ

′
i ≤ 0. so∮

B(x,ri)
|∇(ηiv

p)|2 ≤
∮
B(x,ri)

8(1 + λ)pη2i v
2p + 6pv2p |∇ηi|2(3.7)

− 6pη2i v
2pu2 + 30p2η2i v

2p |V |2 + pη2i v
2p−1u6.

Using Young’s inequality

xy ≤ ϵxγ + ϵ
−
γ∗

γ yγ
∗
, ∀x, y > 0, γ > 1,

1

γ
+

1

γ∗
= 1,

and volume comparison Theorem 3.1, for r

2
≤ ri ≤

3r

4
, we have

p

∮
B(x,ri)

η2i v
2p−1u6

≤ p

∥u6∥∗q,B(x,r)

∮
B(x,ri)

η2i v
2pu6
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≤ C(n,N,K, α, ρ)p

∮
B(x,ri)

(ηiv
p)

2q

q − 1


q − 1

q

≤ C(n,N,K, α, ρ)p2

∮
B(x,ri)

(ηiv
p)

a.
2q

q − 1
.b


q − 1

qb

×

∮
B(x,ri)

(ηiv
p)

(1−a).
2q

q − 1
.

b

b− 1


(q − 1)(b− 1)

qb

≤ ϵ

∮
B(x,ri)

(ηiv
p)

a.
2q

q − 1
.b


q − 1

qba

+ ϵ
−

a

1− aC

1

1− a p

1

1− a

∮
B(x,ri)

(ηiv
p)

(1−a).
2qb

a1


a1

qb(1−a)

where a1 = (q−1)(b−1). Since q >
n

2
, choosing a =

n

2q
and b =

2q − 2

n− 2
,

if follows

p

∮
B(x,ri)

η2i v
2p−1u6 ≤ ϵ

∮
B(x,ri)

(ηiv
p)

2n

n− 2


n− 2

n
(3.8)

+ ϵ
−

a

1− aC

1

1− a p

1

1− a
∮
B(x,ri)

η2i v
2p.

By the same way with
∥∥u2∥∥∗

q,B(x,r)
≤ ∥u6∥∗q,B(x,r), we get

−6p

∮
B(x,ri)

η2i v
2pu2 ≤ −6p

∮
B(x,ri)

η2i v
2p−1u2(3.9)

≤ ϵ

∮
B(x,ri)

(ηiv
p)

2n

n− 2


n− 2

n
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+ ϵ
−

a

1− aC

1

1− a p

1

1− a
∮
B(x,ri)

η2i v
2p.

Again from volume comparison theorems in [3], If q ∈
(n
2
,
n

2α

)
, then

30p2
∮
B(x,ri)

η2i v
2p |V |2(3.10)

≤ 30p2

∮
B(x,ri)

(ηiv
p)

2q

q − 1


q − 1

q

.

(∮
B(x,ri)

|V |2q
)1

q

≤ p2C(n,N,K, α, ρ)r−2α
i

∮
B(x,ri)

(ηiv
p)

2q

q − 1


q − 1

q

≤ ϵr−2α
i

∮
B(x,ri)

(ηiv
p)

2n

n− 2


n− 2

n

+ ϵ
−

a

1− a p

2

1− aC

1

1− a r−2α
i

∮
B(x,ri)

η2i v
2p.

In last three inequalities C = C(n,N,K, α, ρ) denotes constant depend-
ing on parameters n,N,K, α, ρ.

Now for any ϵ > 0 and a =
n

2q
, substituting (3.8), (3.9) and (3.10) in

(3.7), gives∮
B(x,ri)

|∇(ηiv
p)|2

≤
∮
B(x,ri)

(8 + 8λ)pη2i v
2p + 6pv2p |∇ηi|2

+ ϵ

∮
B(x,ri)

(ηiv
p)

2n

n− 2


n− 2

n

+ p

2q

2q − n ϵ
−

n

2q − nC

2q

2q − n
∮
B(x,ri)

η2i v
2p
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+ ϵr−2α
i

∮
B(x,ri)

(ηiv
p)

2n

n− 2


n− 2

n

+ p

4q

2q − n ϵ
−

n

2q − nC

2q

2q − nr−2α
i

∮
B(x,ri)

η2i v
2p.

Since ri ≤ r ≤ 1 and α < 1, using Sobolev inequality (3.1) and choosing
ϵ small enough, the above inequality becomes

∮
B(x,ri)

(ηiv
p)

2n

n− 2


n− 2

n

≤ C(n,N,K, α, ρ)r2i

∮
B(x,ri)

pv2p |∇ηi|2 + p

4q

2q − nη2i v
2p.

From the volume comparison theorem, we infer

∮
B(x,ri+1)

(vp)

2n

n− 2


n− 2

n

≤ C(n,N,K, α, ρ)

∮
B(x,ri)

(ηiv
p)

2n

n− 2


n− 2

n

≤ C(n,N,K, α, ρ)

∮
B(x,ri)

22ipv2p + p

4q

2q − nv2p.

Now, take µ =
n

n− 2
and p =

µi

2
for i = 1, 2, · · · , therefore

(∮
B(x,ri+1)

vµ
i+1

)n− 2

n

=

∮
B(x,ri+1)

(vp)

2n

n− 2


n− 2

n
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≤ C(n,N,K, α, ρ)

22iµi + µ

4qi

2q − n

∮
B(x,ri)

vµ
i

≤ C(n,N,K, α, ρ)42qi/(2q−n)

∮
B(x,ri)

vµ
i
.

Hence

∥V ∥∗µi+1,B(x,ri+1)
≤ Cµ−i

(
42qi/(2q−n)

)µ−i

∥v∥∗µi,B(x,ri)
.

By Morser’s iteration, we get

sup

B

(
x,
1

2
r

) v ≤ CΣiµ
−i
(
42qi/(2q−n)

)Σiµ
−i

∥v∥∗
1,B

(
x,
3

4
r

)(3.11)

≤ C(n,N,K, α, ρ, C) ∥v∥∗
1,B

(
x,
3

4
r

) .

Since∫
B(x,r)

η2 |∇u|2 =
∫
B(x,r)

−η2u2(1− u2)− 2ηu∇iu∇iη

≤
∫
B(x,r)

1

2
u4η2 +

1

2
(1− u2)2η2 +

1

2
η2 |∇u|2 + 2u2 |∇η|2 .

Due to the definition of η and the fact that (1− u2)2 ≤ u4, we infer∫
B(x,r)

η2 |∇u|2 ≤ 4

∫
B(x,r)

u4η2 + u2 |∇η|2

≤ 100r−2
(
∥u∥∗2,B(x,r)

)2
+
(
∥u∥∗2,B(x,r)

)4
.

Subsequently, we have

∥v∥∗
1,B

(
x,
3

4
r

) ≤ V ol(B(x, r))

V ol

(
B

(
x,

3

4
r

)) ∮
B(x,r)

η2 |∇u|2
(3.12)

≤ C(n,N,K, α, ρ)

[
r−2

(
∥u∥∗2,B(x,r)

)2
+
(
∥u∥∗2,B(x,r)

)4]
.

Combining (3.12) and (3.11), we arrive at

sup

B

(
x,
1

2
r

) |∇u|2 ≤ ∥v∥
∞,B

(
x,
1

2
r

)
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≤ C(n,N,K, α, ρ)

[
r−2

(
∥u∥∗2,B(x,r)

)2
+
(
∥u∥∗2,B(x,r)

)4]
.□

In particular, if α = 0, then the conclusions hold without the non-
collapsing condition (2.3).

The classical Liouville theorem states that any bounded harmonic
function is constant. In fact, the operator ∆ enjoys the Liouville prop-
erty if the following holds:

u ∈ L∞(Rn) and ∀ϕ ∈ C∞
c (Rn) : ⟨∆u, ϕ⟩ := ⟨u,∆ϕ⟩ = 0,

then u is a constant. Here ⟨., .⟩ denotes the real dual pairing used in
the theory of distributions. If the Liouville property holds for u ≥ 0, we
speak of the strong Liouville property. For more information and the
importance of Liouville property, see [2].

For an application of Theorem 2.1, we obtain the following Liouville
type theorem for almost Ricci solitons:

Theorem 3.3. Let M be a complete compact n-dimensional almost Ricci
soliton satisfies in (2.1) and (2.2). If |u| ≤ 1 is a positive solution of
(1.1), then u is constant on M .

Proof. The proof is directly based on the statement of theorem the func-
tion u is bounded, fixing a point x ∈ M and using Theorem 2.1 for u on
B

(
x,

1

2
r

)
, we have

|∇u|2 ≤ C(n,N,K, α, ρ)

r2
.

Letting r → ∞, it follows that |∇u| = 0. Since x is arbitrary, one gets
u is a constant. □

4. conclusion

In view of this paper, we observe that our results developed in the
previous sections, are also applicable to expanding and steady Ricci
solitons. It should emphasize that the volume non-collapsing condition
is necessary to guarantee that the solutions of (1.1) decay at infinity.

Our achievement here may generalize to the corresponding heat equa-
tion

∆u(x, t)− ∂tu(x, t) + (1− u2)u = 0.

However, it seems more difficult, one may wonder whether these results
can be extended with other solitons such as hyperbolic Ricci solitons.

Acknowledgment. We thank the anonymous referees for their valu-
able comments, which have improved the paper.
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