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Statistical Deferred Weighted Riemann Summability and
Fuzzy Approximation Theorems

Priyadarsini Parida1, Susanta Kumar Paikray2∗ and Bidu Bhusan Jena3

Abstract. The notion of statistical convergence has fascinated
many researchers due mainly to the fact that it is more general
than the well-established hypothesis of ordinary (classical) conver-
gence. This work aims to investigate and present (presumably new)
the statistical versions of deferred weighted Riemann integrability
and deferred weighted Riemann summability for sequences of fuzzy
functions. We first interrelate these two lovely theoretical notions
by establishing an inclusion theorem. We then state and prove
two fuzzy Korovkin-type theorems based on our proposed helpful
and potential notions. We also demonstrate that our results are
the nontrivial extensions of several known fuzzy Korovkin-type ap-
proximation theorems given in earlier works. Moreover, we esti-
mate the statistically deferred weighted Riemann summability rate
supported by another promising new result. Finally, we consider
several interesting exceptional cases and illustrative examples sup-
porting our definitions and the results presented in this paper.

1. Introduction and Motivation

Let Z = {ϑ : R → [0, 1]} satisfy the following assertions
(i) there exists µ0 ∈ R such that ϑ(µ0) = 1, then ϑ is normal
(ii) ϑ is fuzzy convex
(iii) ϑ is upper semi-continuous
(iv) [ϑ]0 = {µ ∈ R and ϑ(µ) > 0} is compact set.
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Then ϑ ∈ Z is called a fuzzy number, and Z is called as a fuzzy number
space.

If ϑ ∈ Z and let [ϑ]Λ = {µ ∈ R : X(µ) ≧ Λ} be closed and bounded
interval for Λ ∈ [0, 1].

Now, we recall some elementary properties of fuzzy numbers.
Let ϑ, ν ∈ Z, Λ ∈ [0, 1] and λ ∈ R. Then

(i) (ϑ+ ν)(µ) = supµ=t+smin{ϑ(t), ν(s)}
(ii) kϑ(µ) = ϑ(µ/k) (k ̸= 0)
(iii) 0ϑ(x) = 0̄, where

ā(x) =

{
1 (µ = a)

0 (otherwise)

(iv) [ϑ+ ν]Λ = [ϑ]Λ + [ν]r =
[
ϑ−
Λ + ν−Λ , ϑ

+
Λ + ν+Λ

]
(v) [kϑ]Λ = k[u]Λ =

[
kϑ−

Λ , kϑ
+
Λ

]
for (k ≧ 0)

(vi) ϑ ≦ ν ⇔ [ϑ]Λ ≦ [ν]Λ.
Furthermore, the metric D is such that D : Z × Z → R+ be defined

as
D(ϑ, ν) = sup

0≦Λ≦1

max
{∣∣ϑΛ

− − νΛ−
∣∣ , ∣∣ϑΛ

+ − νΛ+
∣∣} ,

where d(Z,D) is a metric space which is complete (see [17]).
Let D∗(g̃, h̃) be the distance between two fuzzy number valued func-

tions g̃ and h̃ such that

D∗(g̃, h̃) = sup
x̄≦µ≦ȳ

sup
0≦Λ≦1

max
{∣∣∣g̃Λ− − h̃Λ−

∣∣∣ , ∣∣∣g̃Λ+ − h̃Λ+

∣∣∣} .

The convergence analysis on sequence space is one of the most impor-
tant and exciting aspects of real and functional analysis. The gradual
enrichment of this study leads to the blooming of statistical convergence,
which is genuinely more general than the traditional convergence. The
glory for independently defining this beautiful notion goes to both Fast
[7] and Steinhaus [15]. Nowadays, this potential notion of statistical con-
vergence has undoubtediy been a field of interest for many researchers
and is becoming an active research area in various fields of pure and
applied Mathematics. In particular, it is instrumental in the study of
Machine Learning, Soft Computing, Number Theory, Measure theory,
Probability theory, etc. For some current works in such direction, one
may refer [2–4, 8–10, 13, 14, 19].

Suppose K∗ ⊆ N, and let K∗
k = {ξ : ξ ≦ k and ξ ∈ K∗}. Then the

natural density d(K∗) of K∗ is defined by

d(K∗) = lim
k→∞

|K∗
k|
k

= ℓ,
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where the number ℓ is real and finite, and |K∗
k| is the cardinality of K∗

k.

Definition 1.1. A given sequence (ηk) is statistically convergent to a
fuzzy number ϑ if, for each ε > 0,

K∗
ε = {ξ : ξ ∈ N and D(ηξ, ϑ) ≧ ε}

has zero natural density (see [12]). Thus, for each ε > 0, we have

d(K∗
ε) = lim

k→∞

|K∗
ε|
k

= 0.

We write
stat lim

k→∞
D(ηξ, ϑ) = 0.

Let [x̄, ȳ] ⊂ E , and for all k ∈ N there is a fuzzy number valued
function h̃k : [x̄, ȳ] → Z and it is called a sequence (h̃k) of fuzzy number
valued functions on [x̄, ȳ].

We now describe the Riemann sum of a sequence (h̃k) of fuzzy number
valued functions allied with a tagged partition Ṗ which is of the following
form

δ
(
h̃k; Ṗ

)
:=

k∑
i=1

h̃(ti)D(zi, zi−1).

Next, we recall the definition for Riemann integrability of a sequence
of fuzzy number valued functions over an interval [x̄, ȳ].

Definition 1.2. A sequence (h̃k)k∈N of fuzzy number valued functions
is Riemann integrable to a fuzzy number valued function h̃ on [x̄, ȳ] if,
for all ε > 0 there exists σε > 0 and let Ṗ be any tagged partition of
[x̄, ȳ] with ∥Ṗ∥ < σε such that

D
(
δ
(
h̃k; Ṗ

)
, h̃
)
< ε.

We now outline the definition of statistical convergence of Riemann
integrable fuzzy number valued functions.

Definition 1.3. A sequence (h̃k)k∈N of fuzzy number valued functions
is statistically Riemann integrable to a fuzzy number valued function h̃
on [x̄, ȳ] if, for all ε > 0 and for each µ ∈ [a, b], there exists σε > 0, and
for Ṗ be any tagged partition of [x̄, ȳ] with ∥Ṗ∥ < σε, the set

K∗
ε =

{
ξ : ξ ∈ N and D

(
δ
(
h̃ξ; Ṗ

)
, h̃
)
≧ ε
}

has natural (asymptotic) density. That is, for every ε > 0,

d(K∗
ε) = lim

k→∞

|K∗
ε|

k
= 0.
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We write
statRie lim

k→∞
D
(
δ
(
h̃k; Ṗ

)
, h̃
)
= 0.

The following example demonstrates that every Riemann integrable
fuzzy number valued function is statistically Riemann integrable, while
the converse is not usually trustworthy.

Example 1.4. Let h̃k : [0, 1] → Z be a sequence of functions defined by

(1.1) h̃k(µ) =


√
2 (µ ∈ Q ∩ [0, 1]; k = m2, m ∈ N)

1
k+1 (otherwise).

It is easy to see that the sequence (h̃k) of fuzzy number valued func-
tions is statistically Riemann integrable to 0 over [0, 1], but not Riemann
integrable over [0, 1].

The investigations mentioned above motivated us to explore the sta-
tistical versions of deferred weighted Riemann integrability and deferred
weighted Riemann summability for sequences of fuzzy functions. We first
connect these two lovely theoretical ideas by proving an inclusion the-
orem. We then demonstrate two fuzzy Korovkin-type theorems based
on our proposed useful and potential conceptions. In addition, we give
an example of sequences of fuzzy positive linear operators employing
the Bernstein polynomials to demonstrate the usefulness of our find-
ings. Finally, we estimate the statistical deferred weighted Riemann
summability rate supported by another exciting result.

2. Deferred Weighted Statistical Riemann Integrability

Let (ϕk) and (φk) ∈ Z0+ be such that ϕk < φk and limk→∞ φk = +∞,
and let (pk) be a sequence of non-negative real numbers with

Pk =

φk∑
v=ϕk+1

pv.

Then, we define the deferred weighted summability mean for the Rie-
mann sum of a sequence of fuzzy number valued functions δ

(
h̃k; Ṗ

)
allied with the tagged partition Ṗ of the form

W
(
δ
(
h̃k; Ṗ

))
=

1

Pk

φk∑
v=ϕk+1

pvδ
(
h̃v; Ṗ

)
.(2.1)

We now present the notions of statistical Riemann integrability and
statistical Riemann summability of a sequence of fuzzy number valued
functions via deferred weighted mean.
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Definition 2.1. Let (ϕk) and (φk) ∈ Z0+, and let (pk) be a sequence
of real numbers (non-negative). A sequence (h̃k)k∈N of fuzzy number
valued functions is deferred weighted statistically Riemann (DWFRstat)
integrable to a fuzzy number valued function h̃ on [x̄, ȳ] if, for all ε > 0

there exists σε > 0 allied with the tagged partition Ṗ (∥Ṗ∥ < σε) of
[x̄, ȳ], the set {

ξ : ξ ≦ Pk and pξD
(
δ
(
h̃ξ; Ṗ

)
, h̃
)
≧ ε
}

has zero natural (asymptotic) density. This implies that for each ε > 0,

lim
k→∞

∣∣∣{ξ : ξ ≦ Pk and pξD
(
δ
(
h̃ξ; Ṗ

)
, h̃
)
≧ ε
}∣∣∣

Pk
= 0.

We write
DWFRstat lim

k→∞
D
(
δ
(
h̃k; Ṗ

)
, h̃
)
= 0.

Definition 2.2. Let (ϕk) and (φk) ∈ Z0+, and let (pk) be a sequence
of non-negative real numbers. A sequence (h̃k)k∈N of fuzzy number
valued functions is statistically deferred weighted Riemann (statDWFR)
summable to a fuzzy number valued function h̃ on [x̄, ȳ] if, for all ε > 0

there exists σε > 0 allied with the tagged partition Ṗ (∥Ṗ∥ < σε) of
[x̄, ȳ], the set {

ξ : ξ ≦ k and |W
(
δ
(
h̃ξ; Ṗ

))
− h̃| ≧ ε

}
has zero natural (asymptotic) density. This implies that for all ε > 0,

lim
k→∞

∣∣∣{ξ : ξ ≦ k and D(W
(
δ
(
h̃ξ; Ṗ

))
, h̃) ≧ ε

}∣∣∣
k

= 0.

We write
statDWFR lim

k→∞
D
(
δ
(
h̃k; Ṗ

)
, h̃
)
= 0.

We now develop an inclusion theorem between the above two potential
and useful notions.

Theorem 2.3. Let (ϕk) and (φk) ∈ Z0+, and let (pk) be a non-negative
real numbers. If (h̃k)k∈N is deferred weighted statistically Riemann
(DWFRstat) integrable to h̃ on [x̄, ȳ], then it is statistically deferred
weighted Riemann (statDWFR) summable to h̃ on [x̄, ȳ], but not con-
versely.
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Proof. Suppose (h̃k)k∈N is deferred weighted statistically Riemann
(DWFRstat) integrable to h̃ on [x̄, ȳ], then by Definition 2.1, we have

lim
k→∞

∣∣∣{ξ : ξ ≦ Pk and pξD
(
δ
(
h̃ξ; Ṗ

)
, h̃
)
≧ ε
}∣∣∣

Pk
= 0.

Now assuming two sets as follows:

Yϵ =
{
ξ : ξ ≦ Pk and pξD

(
δ
(
h̃ξ; Ṗ

)
, h̃
)
≧ ε
}

and
Yc
ϵ =

{
ξ : ξ ≦ Pk and pξD

(
δ
(
h̃ξ; Ṗ

)
, h̃
)
< ε
}
,

we have

D
(
N
(
δ
(
h̃k; Ṗ

))
, h̃
)
=

1

Pk

φk∑
v=ϕk+1

pvD
(
δ
(
h̃v; Ṗ

)
, h̃
)

≦ 1

Pk

φk∑
v=ϕk+1

pvD
(
δ
(
h̃v; Ṗ

)
, h̃
)

+
1

Pk

φk∑
v=ϕk+1

D
(
pvh̃, h̃

)

≦ 1

Pk

φk∑
v=ϕk+1
(ξ∈Yε)

pvD
(
δ
(
h̃v; Ṗ

)
, h̃
)

+
1

Pk

φk∑
v=ϕk+1
(ξ∈Yc

ε )

pvD
(
δ
(
h̃v; Ṗ

)
, h̃
)

+ |h̃|

 1

Pk

φk∑
v=ϕk+1

pv − 1


≦ 1

Pk
|Yε|+

1

Pk
|Yc

ε |

= 0.

This implies that
D(W

(
δ
(
h̃k; Ṗ

))
, h̃) < ε.

Thus, (h̃k) is statistically deferred weighted Riemann (statDWFR) sum-
mable to h̃ on [x̄, ȳ]. □

The next example shows that, a statistically deferred weighted Rie-
mann (statDWFR) summable sequence of fuzzy number valued functions
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is not deferred weighted statistically Riemann (DWFRstat) integrable in
light of the invalidity of the converse statement.

Example 2.4. Let ϕk = 2k + 1, φk = 4k + 1 and pk = 1 and let
h̃k : [0, 1] → Z be a sequence of functions of the form given by

(2.2) h̃k(t) =


0 (t ∈ Q ∩ [0, 1]; k is even)

1 (t ∈ R−Q ∩ [0, 1]; k is odd).

It is obvious from the given sequence (h̃k) of functions that, it is nei-
ther Riemann integrable nor deferred weighted statistically Riemann
(DWFRstat) integrable. Nonetheless, it is clear from our suggested mean
(2.1) that

W
(
δ
(
h̃k; Ṗ

))
=

1

φk − ϕk

φk∑
v=ϕk+1

δ
(
h̃v; Ṗ

)

=
1

2k

4k∑
v=2k+1

δ
(
h̃v; Ṗ

)
=

1

2
.

Thus, (h̃k) has deferred weighted Riemann sum 1
2 allied with the

tagged partition Ṗ. Hence, (h̃k) is statistically deferred weighted Rie-
mann (statDWFR) summable to 1

2 over the interval [0, 1]. However, it is
not deferred weighted statistically Riemann (DWFRstat) integrable.

3. Korovkin-type Theorems via the W
(
δ
(
hk; Ṗ

))
-mean

Many researchers are working to extend (or generalise) the Korovkin-
type approximation theorems in several other mathematical contexts,
including sequence spaces, measurable spaces, Banach spaces, proba-
bility spaces, etc. These ideas are very useful in many related fields,
including functional analysis, harmonic analysis, and real analysis, etc.
For the attention of enthusiastic readers, we choose to [5, 6, 17].

Let h̃ be a fuzzy number valued function such that

h̃ : [x̄, ȳ] → Z.

h̃ is said to be a continuous fuzzy number valued function at a point
µ0 ∈ [x̄, ȳ], if

D(µk, µ0) < ϵ (k → ∞) whenever µk → µ0.
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Moreover, if h̃ is fuzzy continuous at every point µ ∈ [x̄, ȳ], then it is so
also fuzzy continuous in the whole interval [x̄, ȳ].

Let CL[x̄, ȳ] be the set of all fuzzy number valued continuous functions
over [x̄, ȳ].

Suppose that, L : CL[x̄, ȳ] → CL[x̄, ȳ] be a fuzzy linear operator, if for
each λ1, λ2 ∈ R and h̃1, h̃2 ∈ CL[x̄, ȳ],

L
(
λ1 ⊙ h̃1 ⊕ λ2 ⊙ h̃2; t

)
= λ1 ⊙ L(h̃1)⊕ λ2 ⊙ L(h̃2).

Next, a fuzzy linear operator L is said to be a positive fuzzy linear
operator, if
h̃1(µ) ⪯ h̃2(t)) ⇒ L(h̃1;µ) ⪯ L(h̃2;µ) (∵ h̃1, h̃2 ∈ CL[x̄, ȳ];µ ∈ [x̄, ȳ]).

Theorem 3.1. Let (ϕk) and (φk) ∈ Z0+, and let Lk : CL[x̄, ȳ] →
CL[x̄, ȳ] (k ∈ N) be the fuzzy number valued sequence of positive linear
operators. Also, let {L∗

k}k∈N be the analogous sequence of positive linear
operators from C[x̄, ȳ] into C[x̄, ȳ] such that{

Lk

(
h̃;µ

)}Λ

±
= L∗

k

(
h̃Λ±;µ

)
(3.1)

for all µ ∈ [x̄, ȳ], Λ ∈ [0, 1], k ∈ N. Then, for h̃ ∈ CL[x̄, ȳ]

DWFRstat lim
k→∞

D∗
(
Lk

(
h̃;µ

)
, h̃(µ)

)
= 0(3.2)

if and only if
DWFRstat lim

k→∞
D (L∗

k(1;µ), 1) = 0,(3.3)

DWFRstat lim
k→∞

D (L∗
k(µ;µ), µ) = 0(3.4)

and
DWFRstat lim

k→∞
D
(
L∗
k(µ

2;µ), µ2
)
= 0.(3.5)

Proof. Let h̃ ∈ CL[x̄, ȳ], µ ∈ [x̄, ȳ] and Λ ∈ [0, 1]. Since hΛ±(µ) ∈ C[x̄, ȳ],
so for each ε > 0, there exists δ > 0, such that∣∣∣h̃Λ±(κ)− h̃Λ±(µ)

∣∣∣ < ε(3.6)

whenever |κ− µ| < δ, (∀ µ, κ ∈ [x̄, ȳ]).

Next, for h̃ is fuzzy bounded,
∣∣∣h̃Λ±(µ)∣∣∣ ≤ MΛ

± (x̄ < µ < ȳ). Clearly, we
have ∣∣∣h̃Λ±(κ)− ˜̃

hΛ±(µ)
∣∣∣ ≦ 2MΛ

±, (x̄ < µ, κ < ȳ).

Let us choose θ(κ, µ) = (κ− µ)2. Then,∣∣∣h̃Λ±(κ)− h̃Λ±(µ)
∣∣∣ < ε+

2MΛ
±

δ2
θ(κ, µ)
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which yields

(3.7) − ε−
2MΛ

±
δ2

θ(κ, µ) <
(
h̃Λ±(κ)− h̃Λ±(µ)

)
< ε+

2MΛ
±

δ2
θ(κ, µ).

Now the operator L∗
k is linear and monotone, by applying the operator

L∗
k(1, µ) in (3.7), we get

L∗
k(1, µ)

(
−ε−

2MΛ
±

δ2
θ(κ, µ)

)
< L∗

k(1, µ)
(
h̃Λ±(κ)− h̃Λ±(µ)

)
< L∗

k(1, µ)

(
ε+

2MΛ
±

δ2
θ(κ, µ)

)
.

We note that µ is fixed and h̃Λ±(µ) is a constant number, we get

−εL∗
k(1, µ)−

2MΛ
±

δ2
L∗
k(θ, µ) < εL∗

k

(
h̃Λ±, µ

)
− h̃Λ±(µ)L

∗
k(1, µ)(3.8)

< εL∗
k(1, µ) +

2MΛ
±

δ2
L∗
k(θ, µ).

Also, we know that
(3.9)
L∗
k

(
h̃Λ±, µ

)
−h̃Λ±(µ) =

[
L∗
k

(
h̃Λ±, µ

)
− h̃Λ±(µ)L

∗
k(1, µ)

]
+h̃Λ±(µ)[L

∗
k(1, µ)−1].

Using (3.8) and (3.9), we get
(3.10)

L∗
k

(
h̃Λ±, µ

)
− h̃Λ±(µ) < εL∗

k(1, µ)+
2MΛ

±
δ2

L∗
k(θ, µ)+ h̃Λ±(µ)

[
LΛ
k (1, µ)− 1

]
.

We now, compute L∗
k(θ, µ) as follows:

L∗
k(θ, µ) = L∗

k

(
κ2 − 2µκ+ µ2, µ

)
= L∗

k

(
κ2, µ

)
− 2µL∗

k(κ, µ) + µ2L∗
k(1, µ)

=
[
L∗
k

(
κ2, µ

)
− µ2

]
− 2µ[L∗

k(κ, µ)− µ] + µ2[L∗
k(1, µ)− 1].

Using (3.10), we get

L∗
k

(
h̃Λ±, µ

)
− h̃Λ±(µ) < εL∗

k(1, µ) +
2MΛ

±
δ2

{ [
L∗
k

(
κ2, µ

)
− µ2

]
− 2µ[L∗

k(κ, µ)− µ] + µ2[L∗
k(1, µ)− 1]

}
+ h̃Λ±(µ)[L

∗
k(1, µ)− 1]

= ε[L∗
k(1, µ)− 1] + ε+

2MΛ
±

δ2

{ [
L∗
k

(
κ2, µ

)
− µ2

]
− 2µ

[
LΛ
k (κ, µ)− µ

]
+ µ2[L∗

k(1, µ)− 1]
}

+ h̃Λ±(µ)[L
∗
k(1, µ)− 1].
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Since ε > 0 is arbitrary, we can write∣∣∣L∗
k

(
h̃Λ±, µ

)
− h̃Λ±(µ)

∣∣∣ ≦ ε+
(
ε+

2MΛ
±c

2

δ2
+MΛ

±

)
× |L∗

k(1, µ)− 1|+
4MΛ

±c

δ2
|LΛ

k (κ, µ)− µ|

+
2MΛ

±
δ2

∣∣LΛ
k

(
κ2, µ

)
− µ2

∣∣ ,
where c = max{|x̄|, |ȳ|}.

Consequently, we get

|L∗
k

(
h̃Λ±, µ

)
− h̃Λ±(µ)| ≦ ϵ+HΛ

±(ϵ)
(
|L∗

k(1, µ)− 1|(3.11)

+ |L∗
k(κ, µ)− µ|+ |L∗

k

(
κ2, µ

)
− µ2|

)
,

where

Hκ
±(ϵ) = max

(
ϵ+

2MΛ
±c

2

δ2
+MΛ

±,
4MΛ

±c

δ2
,
2MΛ

±
δ2

)
.

Now it clearly follows from (3.1) that,

D∗
(
Lk(h̃), h̃

)
= sup

µ∈[x̄,ȳ]
D
(
Lk

(
h̃;µ

)
, h̃
)

= sup
µ∈[x̄,ȳ]

sup
Λ∈[0,1]

max
{∣∣∣L∗

k(h̃
Λ
−;µ)− h̃Λ−

∣∣∣ , ∣∣∣L∗
k(h̃

Λ
+;µ)− h̃Λ+(µ)

∣∣∣} .

Considering (3.11) with the last equality, one can easily write

D∗
(
Lk(h̃), h̃

)
≦ sup

µ∈[x̄,ȳ]
ε+M(ε)

(
sup

µ∈[x̄,ȳ]
|L∗

k(1, µ)− 1|

+ sup
µ∈[x̄,ȳ]

|L∗
k(κ, µ)− µ|+ sup

µ∈[x̄,ȳ]

∣∣L∗
k

(
κ2, µ

)
− µ2

∣∣),
where

M(ϵ) = sup
Λ∈[0,1]

max
{
MΛ

−(ϵ),MΛ
+(ϵ)

}
.

Therefore,

pvD∗
(
Lk(h̃), h̃

)
≦ pv sup

µ∈[x̄,ȳ]
ε+H(ε)

(
pv sup

µ∈[x̄,ȳ]
|L∗

k(1, µ)− 1|

(3.12)
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+ pv sup
µ∈[x̄,ȳ]

|L∗
k(κ, µ)− µ|+ pv sup

µ∈[x̄,ȳ]

∣∣L∗
k

(
κ2, µ

)
− µ2

∣∣).
Next, for given κ > 0, choose ε > 0 such that pv supµ∈[x̄,ȳ] ε < ω.

Then, we can write

Θk(µ; ε) =
∣∣∣{k : k ≦ Pk and pvD∗

(
Lk(h̃), h̃

)
≧ ε′

}∣∣∣
and

Θj,k(µ, ε) =

∣∣∣∣∣
{
k : k ≦ Pk and pvD

(
L∗
kh̃j(µ), h̃j(µ)

)
≧ ε′ − ε

3HΛ
±

}∣∣∣∣∣,
we easily obtain from (3.12) that

Θk(µ, ε) ≦
2∑

j=0

Θj,k(µ, ε).

Thus, we fairly have

(3.13) ∥Θk(µ, ε)∥
Pk

≦
2∑

j=0

∥Θj,k(µ, ε)∥
Pk

.

Consequently, by Definition 2.1 and under the above assumption for the
implications in (3.3) to (3.5), the right-hand side of (3.13) are zero as
k → ∞. We, thus get

lim
k→∞

∥Θk(µ, ε)∥
Pk

= 0, (ε > 0).

Hence, the implication in (3.2) is fairly true. □

Theorem 3.2. Let (ϕk) and (φk) ∈ Z0+, and let Lk : CL[x̄, ȳ] →
CL[x̄, ȳ] (k ∈ N) be the fuzzy number valued sequence of positive linear
operators. Also, let {L∗

k}k∈N be the analogous sequence of positive linear
operators from C[x̄, ȳ] into C[x̄, ȳ] such that

(3.14)
{
Lk

(
h̃;µ

)}Λ

±
= L∗

k

(
h̃Λ±;µ

)
for all µ ∈ [x̄, ȳ], Λ ∈ [0, 1], k ∈ N. Then, for h̃ ∈ CL[x̄, ȳ]

(3.15) statDWFR lim
k→∞

D∗
(
Lk

(
h̃;µ

)
, h̃(µ)

)
= 0

if and only if
statDWFR lim

k→∞
D (L∗

k(1;µ), 1) = 0,(3.16)

statDWFR lim
k→∞

D (L∗
k(µ;µ), µ) = 0(3.17)
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and

statDWFR lim
k→∞

D
(
L∗
k(µ

2;µ), µ2
)
= 0.(3.18)

Proof. Here we skip the details proof of Theorem 3.2 as it can be proved
in the similar lines of the proof of Theorem 3.1. □

Given the applicability of Theorem 3.2 over Theorem 3.1, here we
consider a numerical example and analyze a sequence of positive lin-
ear operators that does not escalate the functioning of Theorem 3.1.
However, it does well work on Theorem 3.2. In this sense, we call that
Theorem 3.2 is a non-trivial generalization of Theorem 3.1.

We now consider the operator that was used by Al-Salam [1] and,
more recently by Viskov and Srivastava [16] as follows:

χ(1 + χD),

(
D =

d

dχ

)
.(3.19)

Example 3.3. Consider the Bernstein polynomial Bk

(
h̃;α

)
on C[0, 1]

given by

Bk

(
h̃;α

)
=

k∑
ρ=0

h̃
(ρ
k

)(k
ρ

)
αρ(1− b)k−ρ, (α ∈ [0, 1]; k = 0, 1, . . .).

(3.20)

We now propose the following positive linear operators on C[0, 1] under
the composition of Bernstein polynomial and the operators given by
(3.19)

Lρ

(
h̃;α

)
=
[
1 + h̃ρ

]
α(1 + αD)Bρ

(
h̃;α

)
,
(
∀ h̃ ∈ C[0, 1]

)
,(3.21)

where (h̃ρ) is the same as intimated in Example 2.4.
We now apprise the values of the individual testing functions 1, α and

α2 by using our designated operators (3.21) as follows:

Lρ(1;α) =
[
1 + h̃ρ

]
α(1 + αD)1 =

[
1 + h̃ρ

]
α,

Lρ(µ;α) =
[
1 + h̃ρ

]
α(1 + αD)α =

[
1 + h̃ρ

]
α(1 + α)

and

Lρ

(
µ2;α

)
=
[
1 + h̃ρ

]
α(1 + αD)

{
α2 +

α(1− α)

ρ

}
=
[
1 + h̃ρ

]{
α2

(
2− 3α

ρ

)}
.
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Consequently, we have
statDWFR lim

ρ→∞
D(L∗

ρ(1;α), 1) = 0,(3.22)

statDWFR lim
ρ→∞

D(L∗
ρ(α;α), α) = 0(3.23)

and
statDWFR lim

ρ→∞
D
(
L∗
ρ

(
α2;α

)
, α2
)
= 0,(3.24)

that is, the sequence L∗
ρ

(
h̃;α

)
satisfies the conditions (3.16) to (3.18).

Hence, by Theorem 3.2, we fairly have

statDWFR lim
ρ→∞

D∗
(
Lρ

(
h̃;α

)
, h̃
)
= 0.

Clearly, (h̃k), as specified in Example 2.4 is statistically deferred weighted
Riemann (statDWFR) summable. However, it does not fairly deferred
weighted statistically Riemann (DWFRstat) integrable. Thus, our rec-
ommended operators in (3.21) satisfy Theorem 3.2. But the same is not
true for the Theorem 3.1. Thus, unquestionably, we can say that the
statistical versions of deferred weighted Riemann summability is well
behave over the deferred weighted Riemann integrability for sequences
of fuzzy number valued functions.

4. Fuzzy Rate of Deferred Weighted Riemann Summable

In this section, we wish to study the fuzzy rate of statistically deferred
weighted Riemann summability of sequences of fuzzy number valued
positive linear operators CL(Z) into itself.

Definition 4.1. Let (ϕk) and (φk) ∈ Z0+, and let (ζn) be a non-
increasing positive sequence. A fuzzy sequence of functions (h̃k) is sta-
tistically deferred weighted Riemann (statDWFR) summable to a fuzzy
number h̃ on Z with rate o(ζk), if for each ε > 0,

lim
k→∞

Ωk(µ; ε)

ζkPk
= 0

uniformly with regards to µ ∈ Z or, otherwise if

lim
k→∞

∥Ωk(µ; ε)∥CL[0,1]
ζkPk

= 0,

where
Ωk(µ, ε) =

∣∣∣{ξ : ξ ≦ k and D(W
(
δ
(
h̃ξ; Ṗ

))
, h̃) ≧ ε

}∣∣∣ = 0.

We write
statRDWFRD∗

(
h̃k(µ), h̃(µ)

)
= o(ζk) on Z.
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We next wish to prove the following Lemma.

Lemma 4.2. Let (a′k) and (b′k) be two non-increasing positive sequences,
and let (h̃k) and (g̃k) ∈ CF (Z) satisfy the conditions:

statRDWFRD∗
(
h̃k(µ), h(µ)

)
= o(a′k) on Z.

and
statRDWFRD∗ (g̃k(µ), g̃(µ)) = o(b′k) on Z,

then all the following assertions are true:
(i) statRDWFRD∗

(
h̃k(µ) + g̃k(µ), h̃(µ) + g̃(µ)

)
= o(c′k) on Z;

(ii) statRDWFRD∗
(
h̃k(µ), h̃(µ)

)
D∗ (g̃k(µ), g̃(µ)) = o(a′kb

′
k) on Z;

(iii) statRDWFRKD∗
(
h̃k(µ), h̃(µ)

)
= o(a′k) on Z, for any scalar K;

(iv) statRDWFR

{
D∗
(
h̃k(µ), h̃(µ)

)} 1
2
= o(a′k) on Z,

where c′k = max{a′k, b′k}.

Proof. For the assertion (i) of Lemma 4.2, we consider the following sets
for which ϵ > 0 and µ ∈ Z:

Gk(µ, ε) =
∣∣∣{ξ : ξ ≦ k and D

[
W
(
δ
(
h̃ξ + g̃ξ; Ṗ

))
,
(
h̃+ g̃

)]
≧ ε
}∣∣∣ ,

G0,k(µ, ε) =
∣∣∣{ξ : ξ ≦ k and D(W

(
δ
(
h̃ξ; Ṗ

))
, h̃) ≧ ε

2

}∣∣∣
and

G1,k(µ, ε) =
∣∣∣{ξ : ξ ≦ k and D(W

(
δ
(
h̃ξ; Ṗ

))
, h̃) ≧ ε

2

}∣∣∣ .
Clearly, we have

Gk(µ, ε) ⊆ G0,k(µ, ϵ) ∪G1,k(µ, ε).

Moreover, since
(4.1) c′k = max{a′k, b′k},
by using the assertion (i) of Theorem 3.2, we obtain

(4.2)
∥Gk(µ, ε)∥CL(Z)

c′kPv
≦

∥G0,k(µ, ε)∥CL(Z)

a′kPv
+

∥G1,k(µ, ε)∥CL(Z)

b′kPv
.

Also, by using the assertion (i) of Theorem 3.2, we obtain

(4.3)
∥Gk(µ, ε)∥CL(Z)

c′kPv
= 0.

Thus, assertion (i) of this Lemma is proved.
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Furthermore, the remaining assertions (ii) to (iv) of Lemma 4.2 are
resembling the assertion (i), so these can be proved in a similar manner
to establish the proof of the Lemma 4.2. □

Next, for h̃ : [x̄, ȳ] → Z, the fuzzy modulus of continuity is defined by
(4.4)
ω
(
h̃, δ̃
)
= sup

x,y∈[x̄,ȳ]

{
D∗
(
h̃(y), h̃(x)

)
: |y − x| ≦ δ̃ (0 < δ̃ ≤ x̄− ȳ)

}
.

We now establish a theorem on fuzzy rates of statistically deferred
weighted Riemann (statDWFR) summable sequences of fuzzy number-
valued positive linear operators via the fuzzy modulus of continuity.

Theorem 4.3. Let (ϕk) and (φk) ∈ Z0+, and let Lk : CL[x̄, ȳ] →
CF [x̄, ȳ] (k ∈ N) be a sequence of fuzzy positive linear operators. Also,
suppose that {L∗

k}k∈N be the analogous sequence of positive linear oper-
ators from C[x̄, ȳ] into C[x̄, ȳ] such that (3.1) holds. Further assume that
(a′k) and (b′k) be two non-increasing positive sequences and the operators
{L∗

k}k∈N such that
(i) statRDWFRL

∗
k(1, µ)− 1 = o(a′n) on Z,

(ii) statRDWFRω
(
h̃, δ̃k

)
= o(b′k) on Z,

where
δ̃k(µ) =

{
L∗
k

(
θ2;µ

)} 1
2 and θ(κ) = (κ− µ),

then for each h̃ ∈ CL(Z), the assertion as below holds true:

(4.5) statRDWFRD∗
(
Lk(h̃), h̃

)
= o(c′k) on Z,

where (c′k) defined by (4.1).

Proof. Suppose Z ⊂ R be compact, and let h̃ ∈ CL(Z), µ ∈ Z. Then,

D∗
(
Lk(h̃, µ); h̃

)
≦ Q|L∗

k(1;µ)− 1|+
(
L∗
k(1;µ) +

√
L∗
k(1;µ)ω

(
h̃, δ̃k

))
,

where
Q = ∥h̃∥CL(Z).

Which yields

D∗
(
Lk(h̃), h̃

)
≦ QL∗

k(1;µ)− 1 + 2ω
(
h̃, δ̃k

)
+ ω

(
h̃, δ̃k

)
(L∗

k(1;µ)− 1)

(4.6)

+ ω
(
h̃, δ̃k

)√(
L∗
k(1;µ)− 1

)
.

Thus, for the conditions (i) and (ii) (of Theorem 4.3) inclusive of Lemma
4.2, the last inequality (4.6) assists us to settle the assertion (4.5). Hence,
the proof of Theorem 4.3 is completed. □
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5. Remarkable Conclusion

In this conclusive section of our investigation, we further recognize
some special remarks on Theorem 3.2 and Theorem 3.1 and of specific
earlier published classical versions of the Korovkin-type theorems.

Remark 5.1. Considering the sequence (h̃ρ)ρ∈N of functions in our Ex-
ample 2.4, it is statistically deferred weighted Riemann (statDWFR) sum-
mable, and that

statDWFR lim
ρ→∞

D
(
δ(h̃ρ; Ṗ),

1

2

)
on [0, 1].

Then, we have
(5.1) statDWFR lim

ρ→∞
D(L∗

ρ(h̃ν ;χ), h̃ν(χ)) = 0, (ν = 0, 1, 2).

Thus, by virtue of Theorem 3.2, we immediately obtain
(5.2) statDWFR lim

ρ→∞
D∗(Lρ(h̃;χ), h̃(χ)) = 0,

where
h̃0(χ) = 1, h̃1(χ) = χ and h̃2(χ) = χ2.

Clearly, (h̃k) is statistically deferred weighted Riemann (statDWFR) sum-
mable, but neither deferred weighted statistically Riemann (DWFRstat)
integrable nor classically Riemann integrable. Thus, our proposed The-
orem 3.2 appropritaly works over the operators specified in equation
(3.21). But, neither the traditional nor the statistical versions of de-
ferred weighted Riemann (DWFRstat) integrable sequence of fuzzy num-
ber valued functions work on (3.21). In this context, we claim that our
Theorem 3.2 is a non-trivial generalization of Theorem 3.1 as well as the
previously published classical Korovkin-type theorem [11].

Remark 5.2. We suppose replace the conditions (i) and (ii) of our
Theorem 4.3 by the following condition:

(5.3) D∗
(
Lk(h̃ν ;µ), h̃ν(µ)

)
CL(Z)

= statRDWFRo(ζkν ), (ν = 0, 1, 2).

Then, since
L∗
k(θ, µ) =

[
L∗
k

(
κ2, µ

)
− µ2

]
− 2µ[L∗

k(κ, µ)− µ] + µ2[L∗
k(1, µ)− 1].

We can write

(5.4) L∗
k(θ, µ) ≦ G

2∑
i=0

∣∣∣Lm(h̃i;x)− h̃i(x)
∣∣∣
2π

,

where
G = 1 + ∥h̃1∥CL(Z) + ∥h̃2∥CL(Z).
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It clearly follows from (5.3), (5.4) and Lemma 4.2 that

(5.5) δ̃k(µ) =
√

L∗
k(θ

2) = statRDWFRo(d
′
k),

where
o(d′k) = max{ζk0 , ζk1 , ζk2}.

This implies that
ω
(
h̃, δ̃
)
= statRDWFRo(d

′
k).

Now, by using (5.3) in Theorem 4.3, we immediately see for h̃ ∈ CL(Z)
that

L∗
k

(
h̃;µ

)
, h̃(µ) = statRDWFRo(d

′
k).

Hence, if we use condition (5.3) in Theorem 4.3 instead of the conditions
(i) and (ii), then we easily obtain the rates of the statistically deferred
weighted Riemann (statDWFR) summablity of the sequence of fuzzy val-
ued positive linear operators in Theorem 3.2.

Remark 5.3. If we substitute (ϕk) = 0 and (φk) = k into our main
Theorem 3.2, then the earlier-published results by Yavuz [18] and by
Das et al. [5] are deduced. In this sense, we say that Theorem 3.2 is a
non-trivial unification and generalization of the earlier-published results
(see [5, 18]).

Remark 5.4. Through this study, we have precluded the notion of
statistical convergence in the sense of the deferred weighted Riemann
summability technique and presented some new definitions. We have
after that established some new theorems. Furthermore, by considering
the modulus of continuity, we have estimated the fuzzy rate of statis-
tically deferred weighted Riemann summability of sequences of fuzzy
number valued positive linear operators.

Many researchers have considered various summability means on a
various fuzzy sequence spaces to prove several fuzzy approximation re-
sults. A list of some articles has been mentioned in the references. Thus,
by combining the existing concepts and directions of the fuzzy sequence
spaces associated with our proposed mean, many new fuzzy Korvokin-
type approximation theorems can be proved under different settings of
algebraic and trigonometric functions.
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