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Some Properties of Close-To-Convex Functions Associated
with A Strip Domain

Kadhavoor Ragavan Karthikeyan1∗, Seetharam Varadharajan2 and Sakkarai
Lakshmi3

Abstract. Using subordination, we introduce a new class of sym-
metric functions associated with a vertical strip domain. We have
provided some interesting deviations or adaptation which are help-
ful in unification and extension of various studies of analytic func-
tions. Inclusion relations, geometrical interpretation, coefficient es-
timates, inverse function coefficient estimates and solution to the
Fekete-Szegő problem of the defined class are our main results. Ap-
plications of our main results are given as corollaries.

1. Introduction

The function Sθ,ϑ(z) which plays a central role in the study of func-
tions associated with the vertical domain, is given by

(1.1) Sθ,ϑ(z) = 1 +
ϑ− θ

π
i log

1− e
2πi(1−θ)

ϑ−θ
z

1− z

 ,

where z ∈ ∆ = {z ∈ C : |z| < 1}, θ and ϑ are real numbers with θ < 1
and ϑ > 1. Note that function Sθ,ϑ(z) is analytic and univalent in ∆
with Sθ,ϑ(0) = 1. Precisely, Sθ,ϑ(z) maps the unit disc on to a vertical
strip domain θ < ℜ{ω} < ϑ (see Figure 1a). Figure 1b is the mapping
of annular region under the transformation Sθ,ϑ(z). Further, we note
that the function Sθ,ϑ(z) defined by (1.1) has a power series of the form
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(see [27])

(1.2) Sθ,ϑ(z) = 1 +

∞∑
n=1

Bnz
n,

where

(1.3) Bn =
ϑ− θ

nπ
i

(
1− e

2nπi(1−θ)
ϑ−θ

)
, n ∈ N = {1, 2, . . .}.

The study by Kuroki and Owa in [27] brought a renewed interest to study
the class of functions associated with vertical domain. Recently several
authors have defined various subclasses of analytic functions related to
a vertical domain, see [12, 18, 22, 28, 30, 32, 40, 41, 43–45].
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Let P denote the family consisting of functions having a series repre-
sentation of the form

p(z) = 1 + p1z + p2z
2 + · · ·

analytic in the unit disc and satisfying the condition Re (p(z)) > 0. Li
et al. [30] introduced and studied a class P (L,M ;V,W ) of functions
unifying the well-known Janowski class and the class associated with
vertical domain, which is defined as follows.

Definition 1.1 ([30]). Let −1 ≤M < L ≤ 1, V ̸=W and −1 ≤W ≤ 1.
Then the analytic function p(z) ∈ P (L,M ;V,W ) if and only if p(z)
satisfies each of the following two subordination relationships:

(1.4) p(z) ≺ h1(z) =
1 + Lz

1 +Mz
,
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and

(1.5) p(z) ≺ h2(z) =
1 + V z

1 +Wz
.

For L = 1 − 2θ, (0 ≤ θ < 1),M = −1, V = 1 − 2ϑ(ϑ > 1) and W = −1
in P (L,M ;V,W ), we obtain the following relationship:
(1.6) p(z) ∈ P (θ, ϑ) = P (1− 2θ,−1; 1− 2ϑ,−1) ⇔ θ < ℜ{p(z)} < ϑ.

From (1.1) and (1.6), we have
(1.7) p(z) ∈ P (θ, ϑ) ⇔ p(z) ≺ Sθ,ϑ(z).

Further from Definition 1.1, Li et al. [30] introduced the following
subclasses of P (L,M ;V,W ).

Definition 1.2 ([30]). Let p(z) = 1 +
∞∑
n=1

cnz
n ∈ P and

P̃ (ρ1) = {p(z) ∈ P : ℜ(p(z)) > ρ1} ,

P̃ (ρ2) = {p(z) ∈ P : ℜ(p(z)) < ρ2} ,

P̃ (ρ1, ρ2) = {p(z) ∈ P : ρ1 < ℜ(p(z)) < ρ2} ,
and

P̃ (ρ3, ρ4) = {p(z) ∈ P : ρ3 < ℜ{p(z)},ℜ{2− p(z)} < 1 + ρ4} ,
where
(1.8)

ρ1 = max
{

1−L
1−M ,

1+V
1+W

}
, −1 < M < L ≤ 1,−1 < V < W < 1,

ρ2 = min
{

1+L
1+M ,

1−V
1−W

}
, −1 < M < L ≤ 1,−1 < V < W < 1,

ρ3 =
{
1−L
2

}
, M = −1,

ρ4 =
{
1−V
2

}
, W = 1.

Here, we let Π to denote the class of functions χ(z) normalized by

(1.9) χ(z) = z +

∞∑
n=2

ℓnz
n

which are analytic in the open unit disc ∆. Also, let S denote the
subclass of Π consisting of all functions which are univalent in ∆ (see
[14]). Also, let S∗(θ) denote the class of starlike functions of order θ,
(0 ≤ θ < 1).

Koebe 1/4 theorem states that every function χ ∈ S of the form (1.9)
has an inverse χ−1, defined by χ−1(χ(z)) = z(z ∈ ∆) and χ−1(χ(ω)) =
ω
(
|ω| < r; r ≥ 1

4

)
, where

(1.10) χ−1(ω) = ω− ℓ2ω2+(2ℓ2 − ℓ3)ω
3−
(
5ℓ22 − 5ℓ2ℓ3 + ℓ4

)
ω4+ · · · .
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Here, we study a new family of analytic function associated with
vertical domain using q-difference operator. Formally, the q-derivative
is defined by

Dqχ(z) =
χ(qz)− χ(z)

(q − 1)z
.

As limq→1− , Dqχ(z) reduces to the classical derivative. We denote

[n]q =

n∑
k=1

qk−1, [0]q = 0, (q ∈ C),

and the q-shifted factorial by

(η; q)n =

{
1, n = 0,

(1− η)(1− ηq) . . .
(
1− ηqn−1

)
, n = 1, 2, . . . .

Using Hadamard product, Reddy et al. [36] defined the following
q-differential operator Jm

λ (η1, ν1; q, z)χ : ∆ → ∆ given by

(1.11) Jm
λ (η1, ν1; q, z)χ = z +

∞∑
n=2

[1− λ+ λ[n]q]
m Γnℓnz

n,

where m ∈ N0 = N ∪ {0} and λ ≥ 0, and

Γn =
(η1; q)n−1(η2; q)n−1 . . . (ηr; q)n−1

(q; q)n−1(ν1; q)n−1 . . . (νs; q)n−1
, (|q| < 1) .

Remark 1.3. For details pertaining with the operator Jm
λ (η1, ν1; q, z)χ,

refer to [21, 24, 34, 36].

Motivated by Breaz et al. [9, 10], Karthikeyan et al. [19, 20], Prajapat
[35] and Wang and Chen [48], we now define the following definition.

Definition 1.4. Let m ∈ N0, 0 ≤ λ,−1 ≤ M < L ≤ 1,−1 < V < W ≤
1, and χ(z) ∈ Π. Then, the function χ(z) ∈ Sλ,tm (η1, ν1, q, L,M ;V,W ) if
and only if χ(z) satisfies the following condition:

(1.12) tz2 [Jm
λ (η1, ν1; q, z)χ(z)]

′[
Jm
λ (η1, ν1; q, z)ψ(z)

] [
Jm
λ (η1, ν1; q, z)ψ(tz)

] ∈ P (L,M ;V,W ),

where Jm
λ (η1, ν1; q, z)ψ(z) = z +

∞∑
n=2

bnz
n ∈ S∗(1/2).

If we let L = 1 − 2θ(0 ≤ θ < 1),M = −1, V = 1 − 2ϑ(ϑ > 1),
W = −1 m = 0, r = 2, s = 1, η1 = ν1, ν2 = q, q → 1− and t = −1

in the Definition 1.4, then the function class Sλ,tm (η1, ν1, q, L,M ;V,W )
reduces to
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Ks(θ, ϑ) =

{
χ ∈ Π, ψ ∈ S∗(1/2); θ <

z2χ′(z)

−ψ(z)ψ(−z)
< ϑ

}
.

Further letting θ = 0 and ϑ > 1, the class Ks(θ, ϑ) will reduce to the
family that would be closely related to class recently studied by Cho et
al. [13].

2. Prelimanries

To prove the main results in the paper, we need the following lemmas.

Lemma 2.1 ([30]). The function p(z) ∈ P (L,M ;V,W ) if and only if
p(z) satisfies each of the following two conditions:
(2.1){

|p(z)− σi| < ri,
ρ3 < ℜ{p(z)},

i = 1, 2, −1 < M < L ≤ 1, −1 < V < W < 1,
M = −1, ℜ{2− p(z)} < 1 + ρ4, W = 1,

where {
σ1 =

1−LM
1−M2 , and r1 =

L−M
1−M2 ,

σ2 =
1−VW
1−W 2 , and r2 =

W−V
1−W 2 ,

(2.2)

and ρ3, ρ4 are given by (1.8).

Lemma 2.2 ([30]). Let j = 1, 2, 3, 4;−1 < M < L ≤ 1 and −1 <
V < W < 1;Sθ,ϑ(z) is defined by (1.1). If p(z) ∈ P (L,M ;V,W ), then
p(z) ≺ pj(z) with

pj(z)

(2.3)

=



p1(z) = S 1−L
1−M

, 1−V
1−W

(z), MV − LW ≥ |L−M + V −W |, j = 1,

p2(z) = S 1+V
1+W

, 1+L
1+M

(z), LW −MV ≥ |L−M + V −W |, j = 2,

p3(z) = S 1−L
1−M

, 1+L
1+M

(z), |LW −MV | ≤M − L+W − V, j = 3,

p4(z) = S 1+V
1+W

, 1−V
1−W

(z), |LW −MV | ≤ L−M + V −W, j = 4,
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where pj(0) = 1 and

pj(z) =



p1(z) = 1 +
∞∑
n=1

Bn,1z
n, j = 1,

p2(z) = 1 +
∞∑
n=1

Bn,2z
n, j = 2,

p3(z) = 1 +
∞∑
n=1

Bn,3z
n, j = 3,

p4(z) = 1 +
∞∑
n=1

Bn,4z
n, j = 4,

(2.4)

for
(2.5)

Bn,j =



Bn,1 =
1−V
1−W

− 1−L
1−M

nπ i
(
1− e2nπi(1−

1−L
1−M )/( 1−V

1−W
− 1−L

1−M )
)
, j = 1,

Bn,2 =
1+L
1+M

− 1+V
1+W

nπ i
(
1− e2nπi(1−

1+V
1+W )/( 1+L

1+M
− 1+V

1+W )
)
, j = 2,

Bn,3 =
1+L
1+M

− 1−L
1−M

nπ i
(
1− e2nπi(1−

1−L
1−M )/( 1+L

1+M
− 1−L

1−M )
)
, j = 3,

Bn,4 =
1−V
1−W

− 1+V
1+W

nπ i
(
1− e2nπi(1−

1+V
1+W )/( 1−V

1−W
− 1+V

1+W )
)
, j = 4.

Lemma 2.3 ([37]). Let p(z) = 1 + c1z + c2z
2 + · · · be analytic and

univalent in ∆, and suppose that p(z) maps ∆ onto a convex domain.
If q(z) = 1+ q1z+ q2z

2+ · · · is analytic in ∆ and satisfies the following
subordination:

q(z) ≺ p(z), z ∈ ∆,

then
|qn| ≤ |c1| , n = 1, 2, . . . .

Using Lemma 2.2 and the definition of subordination, we can obtain
the following lemma.
Lemma 2.4 ([30]). Let −1 ≤ M < L ≤ 1,−1 < V < W ≤ 1, i =

1, 2; j = 1, 2, 3, 4 and P̃ (ρ1) , P̃ (ρ2) , P̃ (ρ1, ρ2) and P̃ (ρ3, ρ4) are given
by Definition 1.2. If p(z) = 1 + c1z + c2z

2 + · · · ∈ P (L,M ;V,W ), then

(2.6) |cn| ≤ ϕ (δi; ρj) =


2δ1, p ∈ P̃ (ρ1) ,

2δ2, p ∈ P̃ (ρ2) ,

2min {δ1, δ2} , p ∈ P̃ (ρ1, ρ2) ,

2min
{
1+L
2 , 1−V2

}
, p ∈ P̃ (ρ3, ρ4) ,

where

(2.7)


δ1 = min

{
L−M

1−M
,
W − V

1 +W

}
,

δ2 = min

{
L−M

1 +M
,
W − V

1−W

}
,
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and ρj are given by (1.8).

Lemma 2.5 ([20, 42]). Let ψ(z) ∈ S∗ (1
2

)
and 0 < |t| ≤ 1, then

ψ(z)ψ(tz)
tz ∈ S∗.

Lemma 2.6 ([20, 42]). Let Jm
λ (η1, ν1; q, z)ψ ∈ S∗ (1

2

)
, then

(2.8)
G(z) =

[Jm
λ (η1, ν1; q, z)ψ(z)] [Jm

λ (η1, ν1; q, z)ψ(tz)]

tz

= z +

∞∑
n=2

dnz
n ∈ S∗, and |dn| ≤ n,

where
dn =

[
Ψnbn +Ψn−1Ψ2bn−1b2t+ · · ·+Ψnbnt

n−1
]
,

Ψn = [1− λ+ [n]qλ]
m Γn.

3. Coefficient Inequality

Theorem 3.1. Let m ∈ N0, λ ≥ 0, |ℓ1| = 1 and the function χ(z) be
given by (1.9). If χ(z) ∈ Sλ,tm (η1, ν1, q, L,M ;V,W ), then

|ℓn| ≤Mn,j(m,λ)(3.1)

=


|B1,j |

2Γ2[1−λ+[2]qλ]
m , n = 2,

|B1,j |
nΓn[1−λ+[n]qλ]

m

∏n
k=2

(
1 +

|B1,j |
kΓk[1−λ+[k]qλ]

m

)
, n ≥ 3,

where |B1,j | (j = 1, 2, 3, 4) are defined by (2.5).

Proof. From the Definition 1.4, we have

(3.2) tz2 [Jm
λ (η1, ν1; q, z)χ(z)]

′[
Jm
λ (η1, ν1; q, z)ψ(z)

] [
Jm
λ (η1, ν1; q, z)ψ(tz)

] ∈ h1 (∆) ,

and

(3.3) tz2 [Jm
λ (η1, ν1; q, z)χ(z)]

′[
Jm
λ (η1, ν1; q, z)ψ(z)

] [
Jm
λ (η1, ν1; q, z)ψ(tz)

] ∈ h2 (∆) ,

where h1 (z) and h2 (z) are given by (1.4) and (1.5), respectively.
Note that (3.2) and (3.3) implies there exist a p(z) = 1+ c1z+ c2z

2+
· · · ∈ P (L,M, V,W ) such that

tz2 [Jm
λ (η1, ν1; q, z)χ(z)]

′[
Jm
λ (η1, ν1; q, z)ψ(z)

] [
Jm
λ (η1, ν1; q, z)ψ(tz)

] = p(z),

or, equivalently,
z [Jm

λ (η1, ν1; q, z)χ(z)]
′ = p(z)G(z),(3.4)
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where G(z) is defined as in (2.8). Using the respective power series
expansion in (3.4) and equating the coefficients of zn on both sides, we
have

nΓn [1− λ+ [n]qλ]
m ℓn = dn + c1dn−1 + c2dn−2 + · · ·+ cn−1.

Using Lemma 2.2 and Lemma 2.3 in the above equation, we obtain

|ℓn| ≤
1

nΓn [1− λ+ [n]qλ]
m (|cn−1|+ |cn−2| |d2|+ · · ·+ |c1| |dn−1|)

≤ |B1,j |
nΓn [1− λ+ [n]qλ]

m

n−1∑
k=1

|dk| , (d1 = 1).

Hence, we have |ℓ2| ≤ M2,j(m,λ). To prove the assertion, we need to
establish

(3.5)
n∑
k=1

|dk| ≤
n∏
k=2

(
1 +

|B1,j |
kΓk [1− λ+ [k]qλ]

m

)
,

for n = 3, 4, 5, . . .. Assume that the inequality (3.5) holds for n = p.
Consider
p+1∑
k=1

|dk|

=

p∑
k=1

|dk|+ |dp+1| ≤
p∑

k=1

|dk|+
|B1,j |

(p+ 1)Γp+1 [1− λ+ [p+ 1]qλ]
m

p∑
k=1

|dk|

=

(
1 +

|B1,j |
(p+ 1)Γp+1 [1− λ+ [p+ 1]qλ]

m

) p∑
k=1

|dk|

≤
(
1 +

|B1,j |
(p+ 1)Γp+1 [1− λ+ [p+ 1]qλ]

m

) p∏
k=2

(
1 +

|B1,j |
kΓk [1− λ+ [k]qλ]

m

)

=

p+1∏
k=2

(
1 +

|B1,j |
kΓk [1− λ+ [k]qλ]

m

)
,

which implies that the inequality (3.5) holds for n = p + 1. Hence by
induction, the desired estimate for |ℓn| ( n ≥ 3 ) follows, as asserted in
(3.1). This completes the proof of Theorem 3.1. □

Letting L = 1− 2θ(0 ≤ θ < 1),M = −1, V = 1− 2ϑ(ϑ > 1), W = −1
m = 0, r = 2, s = 1, η1 = ν1, ν2 = q, q → 1− and t = −1 in Theorem
3.1, we have the following result.

Corollary 3.2 ([11]). Let χ belong to Ks(θ, ϑ), then

|ℓ2n| ≤
(ϑ− θ)

π
sin

π(1− θ)

ϑ− θ
, (n ∈ N),
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and

|ℓ2n+1| ≤
1 + 2(ϑ−θ)n

π sin π(1−θ)
ϑ−θ

(2n+ 1)
, (n ∈ N).

In Corollary 3.2, letting ϑ = ∞ we get
Corollary 3.3. If χ ∈ Ks(θ), then

|ℓ2n| ≤ 1− θ, (n ∈ N)
and

|ℓ2n+1| ≤
1 + 2(1− θ)

2n+ 1
, (n ∈ N).

In Corollary 3.3, letting θ = 0 ϑ = ∞ we have.
Corollary 3.4 ([16]). If χ ∈ Ks, then

|ℓn| ≤ 1, (n = 2, 3, . . .).

4. Fekete-Szegő Inequality of Functions in
Sλ,tm (η1, ν1, q, L,M ;V,W )

We need the following well-known results.
Lemma 4.1 ([23]). If p(z) = 1 + p1z + p2z

2 + · · · is a function with
positive real part, then for each complex number µ
(4.1)

∣∣p2 − µp21
∣∣ ≤ 2max(1, |2µ− 1|),

and the result is sharp for the functions given by p(z) = 1+z2

1−z2 , p(z) =
1+z
1−z .

Lemma 4.2 ([25]). If

G(z) = z +

∞∑
n=2

cnz
n ∈ S∗,

then for each complex number λ we have
∣∣c3 − λc22

∣∣ ≤ max(1, |3 − 4λ|)
and the result is sharp for the Koebe functon

k(z) =
z

(1− z)2
, if

∣∣∣∣λ− 3

4

∣∣∣∣ ≥ 1

4
,

and for
k

1
2
(
z2
)
=

z

1− z2
, if

∣∣∣∣λ− 3

4

∣∣∣∣ ≤ 1

4
.

Lemma 4.3. A function ψ ∈ Π is said to be convex function in ∆ if both
ψ(z) and ψ−1(z) are convex in ∆, Nehari [33], subsequently by Koepf
[26] and Ian Graham and Gabriela Kohr [17], Corollary 2.2.19 gives

(4.2)
∣∣b3 − b22

∣∣ ≤ 1

3
.

This estimate is sharp.
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Theorem 4.4. Let m ∈ N ∪ {0}, λ ≥ 0,−1 < M < L ≤ 1,−1 <

V < W < 1, 0 ≤ µ ≤ 1 and pj(z) = 1 +
∞∑
n=1

Bn,jz
n(j = 1, 2, 3, 4). If

χ(z) ∈ Sλ,tm (η1, ν1, q, L,M ;V,W ), then for each complex number µ we
have

∣∣ℓ3 − µℓ22
∣∣ ≤ |B1,j |

3Γ3(1− λ+ [3]qλ)m
max {1, |2θ − 1|}+ 1

3
max {1, |3− 4ϑ|}

(4.3)

+
2 |B1,j ||

Γ2(1− λ+ [2]qλ)m

∣∣∣∣13 − µ

2

∣∣∣∣ ,
where

θ =
1

2

(
1− B2,j

B1,j
+

3µB1,jΓ3(1− λ+ [3]qλ)
m

4Γ2
2(1− λ+ [2]qλ)2m

)
, ϑ =

3µ

4
,

and |Bi,j | (i = 1, 2; j = 1, 2, 3, 4) are defined by (2.5).

Proof. If χ(z) ∈ Sλ,tm (η1, ν1, q, L,M ;V,W ), then there exists a Schwarz
function ω(z) in ∆ such that
(4.4)

tz2 [Jm
λ (η1, ν1; q, z)χ(z)]

′[
Jm
λ (η1, ν1; q, z)ψ(z)

] [
Jm
λ (η1, ν1; q, z)ψ(tz)

] = pj(ω(z)), z ∈ ∆,

where pj(z)(j = 1, 2, 3, 4) are defined by (2.4).
Let the function p(z) be given by

(4.5) p(z) =
tz2 [Jm

λ (η1, ν1; q, z)χ(z)]
′[

Jm
λ (η1, ν1; q, z)ψ(z)

] [
Jm
λ (η1, ν1; q, z)ψ(tz)

] .
Then, from (4.4) and (4.5) we have p(z) ≺ pj(z). Let

q(z) =
1 + ω(z)

1− ω(z)
(4.6)

= 1 + q1z + q2z
2 + · · · .

Then q(z) is analytic and has positive real part in ∆. From (4.6), we
get

ω(z) =
q(z)− 1

q(z) + 1
(4.7)

=
1

2

[
q1z +

(
q2 −

q21
2

)
z2 + · · ·

]
.

We see from (4.7) that

p(z) = pj

(
q(z)− 1

q(z) + 1

)
(4.8)
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= 1 +
1

2
B1,jq1z +

[
1

2
B1,j

(
q2 −

q21
2

)
+
B2,jq

2
1

4

]
z2 + · · · .

Using (4.5) and (4.8), we obtain

Γ2(1− λ+ [2]qλ)
m(2ℓ2 − c2) =

B1,jq1
2

,

Γ3(1− λ+ [3]qλ)
m(3ℓ3 − 2ℓ2c2 − c3 + c22) =

B1,jq2
2

− q21
4
(B1,j −B2,j) ,

which imply that

ℓ3 − µℓ22 =
B1,j

6Γ3(1− λ+ [3]qλ)m
[
q2 − θq21

]
+

1

3

[
c3 − ϑc22

]
(4.9)

+
B1,jc2q1

2Γ2(1− λ+ [2]qλ)m

(
1

3
− µ

2

)
,

where

θ =
1

2

(
1− B2,j

B1,j
+

3µB1,jΓ3(1− λ+ [3]qλ)
m

4Γ2
2(1− λ+ [2]qλ)2m

)
, ϑ =

3µ

4
.

Therefore, we have∣∣ℓ3 − µℓ22
∣∣ = |B1,j |

6Γ3(1− λ+ [3]qλ)m
∣∣q2 − θq21

∣∣+ 1

3

∣∣c3 − ϑc22
∣∣

+
|B1,j | |c2| |q1|

2Γ2(1− λ+ [2]qλ)m

∣∣∣∣13 − µ

2

∣∣∣∣ .
Using Lemma 4.1 and Lemma 4.2, we complete the proof. □

Corollary 4.5 ([11]). If χ ∈ Ks(θ, ϑ), then for any real number µ,∣∣ℓ3 − µℓ22
∣∣ ≤ 1

3
+

2(ϑ− θ)

3π
sin

π(1− θ)

ϑ− θ

×max

{
1,

∣∣∣∣cos π(1− θ)

ϑ− θ
− µ

3(ϑ− θ)

2π
sin

π(1− θ)

ϑ− θ

∣∣∣∣} .
Letting ϑ→ ∞ in corollary 4.5, we can get the following.

Corollary 4.6. If χ ∈ Ks(θ), then for any real number µ,∣∣ℓ3 − µℓ22
∣∣ ≤ 1

3
+

2(1− θ)

3
max

{
1,

∣∣∣∣1− 3(1− θ)

2
µ

∣∣∣∣} .

Letting θ = 0 and ϑ→ ∞ in Corollary 4.5, we have

Corollary 4.7. If χ ∈ Ks, then for any real number µ,∣∣ℓ3 − µℓ22
∣∣ ≤ 1

3
+

2

3
max

{
1,

∣∣∣∣1− 3

2
µ

∣∣∣∣} .
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5. Coefficient Inequality for a Subclass of Bi-Univalent
Functions

Lewin in [29] introduced the so-called class of bi-univalent functions,
which consists of functions f analytic in unit disc ∆ such that both f
and f−1 are univalent in ∆. Here, we let BS to denote the class of
bi-univalent functions. Examples of functions belonging to the class BS
include

f1(z) =
z

1− z
, f2(z) = − log(1−z), f3(z) =

1

2
log

(
1 + z

1− z

)
, . . . .

Figure 2 is the mapping of f2 and f−1
2 respectively, if the domain is unit

disc.

0

5

10

-1

0

1
0.0

0.5

1.0

-1.5
-1.0

-0.5 0.0 0.5

-1

0

1

0.0

0.5

1.0

Figure 2. Mapping of w = − log(1− z) and its inverse
z = 1− e−w

On the other hand, the function z
1−z2 belongs to class S but does

not belong to BS. Recently, several researchers introduced and studied
various subclasses of bi-univalent functions, see [1–8, 15, 31, 46, 47, 49,
50].

Now, we let SΣλ,tm (η1, ν1, q, L,M ;V,W ) to denote the class of func-
tions Π which satisfies
χ ∈ Sλ,tm (η1, ν1, q, L,M ;V,W ) and χ−1 ∈ Sλ,tm (η1, ν1, q, L,M ;V,W ),

where χ−1 is the inverse function of χ given by (1.10).

Remark 5.1. Now, we present only few special cases of the class
SΣλ,tm (η1, ν1, q, L,M ;V,W ).
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(i) Letting L = 1 − 2θ (0 ≤ θ < 1),M = −1, V = 1 − 2ϑ, (ϑ > 1),
W = −1 m = 0, r = 2, s = 1, η1 = ν1, ν2 = q, q → 1− and t =

−1 in SΣλ,tm (η1, ν1, q, L,M ;V,W ), we get the class KΣs(θ, ϑ)
introduced and studied by Bulut [11, Definition 4.].

(ii) Letting ϑ→ ∞ in the class KΣs(θ, ϑ), we have the class KΣs(θ)
of bi-close-to-convex functions of order θ. The class KΣs(θ) was
recently introduced and studied by Şeker and Eker in[38](also
see [39]).

We now obtain the estimates of the initial coefficients of functions
belonging to SΣλ,tm (η1, ν1, q, L,M ;V,W ).

Theorem 5.2. Let m ∈ N0, λ ≥ 0,−1 < M < L ≤ 1,−1 < V < W < 1.
If χ ∈ SΣλ,tm (η1, ν1, q, L,M ;V,W ), then

|ℓ2| ≤
|B1,j |

Γ2[1− λ+ [2]qλ]m

+

√
1

Γ3[1− λ+ [3]qλ]m

(
|B1,j −B2,j | − |B1,j |+

|B1,j |2
Γ2
2[1− λ+ [2]qλ]2m

)
,

and

|ℓ3| ≤
|B1,j |2

Γ2
2[1− λ+ [2]qλ]2m

(
1

Γ3[1− λ+ [3]qλ]m
+ 1

)
(5.1)

+ |B1,j |
(
1

3
+

1

Γ3[1− λ+ [3]qλ]m

)
+

1

9
,

where |Bi,j | (i = 1, 2; j = 1, 2, 3, 4) are defined by (2.5).

Proof. If χ(z) ∈ SΣλ,tm (η1, ν1, q, L,M ;V,W ), then

χ(z) ∈ Sλ,tm (η1, ν1, q, L,M ;V,W )

and
ψ = χ−1 ∈ Sλ,tm (η, ν, q, L,M ;V,W ).

Hence

I(z) =
z [Jm

λ (η1, ν1; q, z)χ(z)]
′

G(z)
≺ pj(z), z ∈ ∆; j = 1, 2, 3, 4,

H(w) =
w [Jm

λ (η1, ν1; q, z)k(w)]
′

L(w)
≺ pj(w), z ∈ ∆; j = 1, 2, 3, 4,

where the function pj(z) is given by (2.3). Let

ς(z) =
1 + p−1

j (I(z))

1− p−1
j (I(z))

= 1 + ς1z + ς2z
2 + · · · , z ∈ ∆; j = 1, 2, 3, 4,
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and

τ(z) =
1 + p−1

j (H(z))

1− p−1
j (H(z))

= 1 + τ1z + τ2z
2 + · · · , z ∈ ∆; j = 1, 2, 3, 4.

Then ς and τ are analytic and have positive real part in ∆, and satisfy
the estimates
(5.2) |ςn| ≤ 2, |τn| ≤ 2, n ∈ N.

Therefore, we have

I(z) = pj

(
ς(z)− 1

ς(z) + 1

)
, H(z) = pj

(
τ(z)− 1

τ(z) + 1

)
, z ∈ ∆; j = 1, 2, 3, 4.

By comparing the coefficients, we get

Γ2(1− λ+ [2]qλ)
m(2ℓ2 − c2) =

B1,jς1
2

,

(5.3)

Γ3(1− λ+ [3]qλ)
m(3ℓ3 − 2ℓ2c2 − c3 + c22) =

B1,jς2
2

− ς21
4
(B1,j −B2,j) ,

(5.4)

Γ2(1− λ+ [2]qλ)
m(c2 − 2ℓ2) =

B1,jτ1
2

(5.5)

and
Γ3(1− λ+ [3]qλ)

m + (6ℓ22 − 3ℓ3 − 2ℓ2c2 − c22 + c3)(5.6)

=
B1,jτ2

2
− τ21

4
(B1,j −B2,j) ,

where Bi,j(i = 1, 2; j = 1, 2, 3, 4) are given by (2.5). From (5.3) and
(5.5), we obtain

ς1 = −τ1.(5.7)

From (5.4),(5.6) and using (5.3),(5.7), we see that

ℓ2 =
B1,jς1

2Γ2[1− λ+ [2]qλ]m
+

√
1

Γ3[1− λ+ [3]qλ]m

×

√√√√((B1,j −B2,j)ς21
4

− B1,j(ς2 + ς1)

4
+

B2
1,jς

2
1

4Γ2
2[1− λ+ [2]qλ]2m

)
,

and
ℓ3 = ℓ22 +

1

3

(
ς22 − ς3

)
+
B1,j

12
(ς2 − τ2).
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These equations, together with (5.2) and Lemma 4.3, give the bounds
on |ℓ2| and |ℓ3| as asserted in (5.1). This completes the proof of Theorem
5.2. □

Corollary 5.3 ([11]). Let χ ∈ KΣs(θ, ϑ) (0 ≤ θ < 1 < ϑ), then

|ℓ2| ≤
(ϑ− θ)

π
sin

π(1− θ)

ϑ− θ
,

and

|ℓ3| ≤
1 + 2(ϑ−θ)

π sin π(1−θ)
ϑ−θ

3
.

Letting ϑ→ ∞ in Corollary (5.3), we get the result obtained by Bulut
[11, Corollary 4.2.]

Corollary 5.4. If χ ∈ KΣs(θ), (0 ≤ θ < 1), then
|ℓ2| ≤ 1− θ

and
|ℓ3| ≤

3− 2θ

3
.

Letting θ = 0 and ϑ→ ∞ in Corollary (5.3), we get

Corollary 5.5 ([11, Corollary 4.4.]). If χ belongs to KΣs, then
|ℓ2| ≤ 1, |ℓ3| ≤ 1.

6. Conclusion

We defined a new family of starlike functions which connects Janowski
starlike functions and the class of starlike functions associated with ver-
tical domain. To make this study more comprehensive, we have defined
the class of functions using a differential operator which helps in amal-
gamating the study of several classes of well-known analytic functions.
Inclusion relations, geometrical interpretation, coefficient estimates, in-
verse function coefficient estimates and solution to the Fekete-Szegő
problem are the foremost results of this paper. Also, we have pointed
out appropriate connections and applications of our main results, which
are mostly presented in the form of corollaries and remarks.

This study can be further extended by replacing the respective su-
perordinate function in (1.4) and (1.2) with a function which is not
Carathéodory (see [19]). Further, this study can be extended by taking
an trigonometric hyperbolic function, Gegenbauer polynomial, Laguerre
polynomial, Chebyshev polynomial, Fibonacci sequence, or q-Hermite
polynomial instead of considering an arbitrary h1(z) and h1(z) in Defi-
nition 1.1.
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