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Douglas’ Factorization Theorem and Atomic System in
Hilbert Pro-C∗-Modules

Mohamed Rossafi1∗, Roumaissae Eljazzar2 and Ram Mohapatra3

Abstract. In the present paper, we introduce the generalized in-
verse operators, which have an exciting role in operator theory.
We establish Douglas’ factorization theorem type for the Hilbert
pro-C∗-module.We introduce the notion of atomic system and K-
frame in the Hilbert pro-C∗-module and study their relationship.
We also demonstrate some properties of the K-frame by using Dou-
glas’ factorization theorem.Finally we demonstrate that the sum of
two K-frames in a Hilbert pro-C∗-module with certain conditions
is once again a K-frame.

1. Introduction

Douglas [2] has studied the equation AX = B intending to find so-
lution for bounded linear operators on Hilbert spaces. A generalization
of the Douglas theorem for the Hilbert C∗-module was given in [4] and
[5]. Those authors have extended the Douglas factor decomposition for
closed densely defined operators on Hilbert spaces in the context of reg-
ular operators in Hilbert C∗-modules.

Frames were introduced by Duffin and Schaefer [3] in 1952 to analyse
some deep problems in nonharmonic Fourier series by abstracting the
fundamental notion introduced by Gabor [8] for signal processing. To-
day, frame theory is an exciting, dynamic and fast-paced subject with
applications to a wide variety of areas in mathematics and engineering,
including sampling theory, operator theory, harmonic analysis, nonlin-
ear sparse approximation, pseudodifferential operators, wavelet theory,
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wireless communication, data transmission with erasures, filter banks,
signal processing, image processing, geophysics, quantum computing,
sensor networks and more.

In 2008, Joita [12] extended the theory of frames in Hilbert modules
over pro-C∗-algebras. The concept of K-frame was first introduced by
Laura Găvruţa [9] to study atomic systems for a given bounded linear
operator K in a separable Hilbert space. It is well known that K-frames
present a generalization of ordinary frames, which permits the recon-
struction of the elements in the domain of a linear and bounded operator
in a Hilbert space.

This paper establishes Douglas’ Factorization theorem type results for
pro-C∗-modules. Moreover, we define the atomic system in the frame-
work of pro-C∗-modules and mention some properties. Also, we present
K-frame in Hilbert pro-C∗-modules and establish some results.

This article will be organized as follows: Section 3 briefly recalls some
definitions and basic properties of pro-C∗-algebra. Section 4 introduces
the concept of generalized inverse, which will be used to prove a Douglas-
type theorem on a Hilbert pro-C∗-module.

Section 5, defines the atomic system and shows that every Bessel
sequence is an atomic system for the frame operator. Finaly, we show
that the sum of two K-frames under certain conditions is again a K-
frame.

2. Preliminaries

The basic information about pro-C∗-algebras can be found in the
works [6, 7, 10, 14–16].

A C∗-algebra whose topology is induced by a family of continuous
C∗−seminorms instead of a C∗-norm is called pro-C∗-algebra. Hilbert
pro-C∗-modules are generalizations of Hilbert spaces. The inner product
takes values in a pro-C∗-algebra rather than in the field of complex
numbers.

Pro-C∗-algebra is defined as a complete Hausdorff complex topolog-
ical ∗-algebra A whose topology is determined by its continuous C∗-
seminorms in the sens that a net {aα} converges to 0 if and only if p(aα)
converges to 0 for all continuous C∗-seminorms p on A (see [10, 13, 16])
and we have:

1) p(ab) ≤ p(a)p(b)
2) p(a∗a) = p(a)2

for all a, b ∈ A. If the topology of pro-C∗-algebra is determined by only
countably many C∗-seminorms, then it is called a σ-C∗-algebra. We
denote by sp(a) the spectrum of a such that: sp(a) = {λ ∈ C : λ1A − a
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is not invertible } for all a ∈ A, where A is unital pro-C∗-algebra with
unity 1A.

Let the set of all continuous C∗-seminorms on A be denoted by S(A).
If A+ denotes the set of all positive elements of A, then A+ is a closed
convex C∗-seminorms on A.

We also denote by HA the set of all sequences (an)n with an ∈ A such
that

∑
n
a∗nan converges in A.

Example 2.1. Every C∗-algebra is a pro-C∗-algebra.
Proposition 2.2 ([10]). Let A be a unital pro-C∗-algebra with an iden-
tity 1A. Then for any p ∈ S(A), we have:

(1) p(a) = p(a∗) for all a ∈ A
(2) p (1A) = 1
(3) If 1A ≤ b, then b is invertible and b−1 ≤ 1A
(4) If a, b ∈ A+ are invertible and 0 ≤ a ≤ b, then 0 ≤ b−1 ≤ a−1

(5) If a, b ∈ A+ and a2 ≤ b2, then 0 ≤ a ≤ b

Definition 2.3 ([16]). A pre-Hilbert module over pro-C∗-algebra A is
a complex vector space E, which is also a left A-module compatible
with the complex algebra structure, equipped with an A-valued inner
product 〈., .〉 E × E → A, which is C-and A-linear in its first variable
and satisfies the following conditions:

1) 〈ξ, η〉∗ = 〈η, ξ〉 for every ξ, η ∈ E
2) 〈ξ, ξ〉 ≥ 0 for every ξ ∈ E
3) 〈ξ, ξ〉 = 0 if and only if ξ = 0

for every ξ, η ∈ E. We say E is a Hilbert A-module (or Hilbert pro-C∗-
module over A). If E is complete with respect to the topology deter-
mined by the family of seminorms

p̄E(ξ) =
√

p(〈ξ, ξ〉), ξ ∈ E, p ∈ S(A)

Let A be a pro-C∗-algebra, X and Y be Hilbert A-modules and assume
that I and J are countable index sets. A bounded A-module map from X
to Y is called operators from X to Y. We denote the set of all operators
from X to Y by HomA(X ,Y).
Definition 2.4. An A-module map T : X → Y is adjointable if there
is a map T ∗ : Y → X such that 〈Tξ, η〉 = 〈ξ, T ∗η〉 for all ξ ∈ X , η ∈ Y
and is called bounded if for all p ∈ S(A), there is Mp > 0 such that
p̄Y(Tξ) ≤ Mpp̄X (ξ) for all ξ ∈ X .

We denote by Hom∗
A(X ,Y), the set of all adjointable operator from

X to Y and Hom∗
A(X ) = Hom∗

A(X ,X )

Definition 2.5. Let A be a pro-C∗-algebra and X ,Y be two Hilbert A-
modules. The operator T : X → Y is called uniformly bounded below,
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if there exists C > 0 such that for each p ∈ S(A),
p̄Y(Tξ) ≤ Cp̄X (ξ), for all ξ ∈ X

and is called uniformly bounded above if there exists C ′ > 0 such that
for each p ∈ S(A),

p̄Y(Tξ) ≥ C ′p̄X (ξ), for all ξ ∈ X
‖T‖∞ = inf{M : M is an upper bound for T}
p̂Y(T ) = sup {p̄Y(T (x)) : ξ ∈ X , p̄X (ξ) ≤ 1}

It’s clear to see that, p̂(T ) ≤ ‖T‖∞ for all p ∈ S(A).
Definition 2.6 ([12]). A sequence {ξi}i in M(X ) is a standard frame
of multipliers in X if for each ξ ∈ X ,

∑
i
〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X ) converges

in A and there are two positive constants C and D such that
C 〈ξ, ξ〉X ≤

∑
i

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X ) ≤ D 〈ξ, ξ〉X

for all ξ ∈ X . If D = C = 1 we say that {ξi}i is a standard normalized
frame of multipliers.

Particularly, if the right inequality∑
i

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X ) ≤ D 〈ξ, ξ〉X , ∀ξ ∈ X

holds true, we call {ξi}i∈I a Bessel sequence.
Definition 2.7. Let {ξi}i be a standard frame of multipliers in X . The
module morphism U : X → HA defined by U(x) =

(
〈ξi, x〉M(X )

)
i

is
called the frame transform for {ξi}i.
Definition 2.8. Let X be a Hilbert module over a pro-C∗-algebra A and
{ξi}i be a standard frame of multipliers for X . The invertible positive
and bounded element L in Hom∗

A(X ), such that
∑
i
ξi ·〈ξi, L(ξ)〉M(X ) = ξ

for all ξ ∈ is called the frame operator associated with the standard frame
of multipliers {ξi}i.
Proposition 2.9 ([1]). . Let X be a Hilbert module over pro-C∗-algebra
A and T be an invertible element in Hom∗

A(X ) such that both are uni-
formly bounded. Then for each ξ ∈ X ,∥∥T−1

∥∥−2

∞ 〈ξ, ξ〉 ≤ 〈Tξ, Tξ〉 ≤ ‖T‖2∞ 〈ξ, ξ〉 .

Theorem 2.10 ([11]). Let T ∈ Hom∗
A(X ,Y). If T has closed range

then:
(i) Ker(T ) is a complemented submodule of X ;
(ii) Ran(T ), the range of T , is a complemented submodule of Y.



DOUGLAS’ FACTORIZATION THEOREM AND ATOMIC SYSTEM IN ... 29

Proposition 2.11 ([17]). Let T : X → X be an operator, then the
following statements are equivalent:

(i) T is a positive element in Hom∗
A(X )

(ii) for any element ξ ∈ X the inequality 〈Tξ, ξ〉 ≥ 0 holds, i.e. this
element is positive in A.

Lemma 2.12 ([10]). Let A be a pro-C∗-algebra, suppose α, β ∈ A+be
such that α ≤ β. Then p(α) ≤ p(β) and λ∗αλ ≤ λ∗βλ for each λ ∈ A.

3. Douglas’ Factorization Theorem in Hilbert
Pro−C∗−Module

We start by defining the bounded generalized inverse module map.
We give an equivalent characterization of a bounded generalized inverse
A-module map, which is the primary tool to obtain Douglas’ type factor
decomposition theorem of some uniformly bounded module maps.

Definition 3.1. Let X and Y be two Hilbert pro-C∗-modules over a pro-
C∗-algebra A, T ∈ Hom∗

A(X ,Y). If there exists a T † ∈ Hom∗
A(X ,Y)

such that
(1) TT †T = T ;
(2) T †TT † = T †;
(3)

(
TT †)∗ = TT †;

(4)
(
T †T

)∗
= T †T ,

then T † is called a bounded generalized inverse module map of T .

Remark 3.2. According to the conditions of the previous definition, we
can easily deduce that T † is unique. In fact suppose that T has another
generalized inverse which we denote by T ′. The definition 3.1 implies
Ran

(
TT †) = Ran(T ) = Ran (TT ′) and Ran

(
T †T

)
= Ran (T ∗) =

Ran (T ′T ). Note that TT †, T †T, TT ′, T ′T are all projections, hence
TT † = TT ′ and T †T = T ′T . As a consequence„ T † = T †TT † =
T †TT ′ = T ′TT ′ = T ′.

Theorem 3.3. Let T ∈ Hom∗
A(X ,Y) and let X ,Y be Hilbert pro-C∗-

modules over a pro-C∗-algebra A. Then the following statements are
equivalent:

(1) T has a generalized inverse module map in Hom∗
A(X ,Y),

(2) Ran(T ) is a closed submodule in Y.

Proof. (1) ⇒ (2) is easy to prove, see the Remark 3.2.
(2) ⇒ (1). Let Ran(T ) be closed. By Theorem 2.10, Ker(T ) and

Ran(T ) are both complemented submodules in X and in Y,
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respectively, then X = Ker(T )⊕Ran (T ∗) and Y = Ker (T ∗)⊕
Ran(T ). Define a map T † : Y 7→ X which is linear by

T †ξ =

{(
T | Ker(T )⊥

)−1
ξ, ξ ∈ Ran(T ),

0, ξ ∈ Ker (T ∗) .

and define a linear map
(
T †)∗ : X 7→ Y by

(
T †
)∗

ξ =


(
T ∗ | Ker (T ∗)⊥

)−1
ξ, ξ ∈ Ran (T ∗) ,

0, ξ ∈ Ker(T ).

To prove that T †is the generalized inverse module map of T , we
should prove that T † ∈ Hom∗

A(X ,Y), equivalently,
〈
T †ξ, η

〉
=〈

ξ,
(
T †)∗ η〉 , ξ ∈ Y, η ∈ X . The verification of this identity is

uncomplicated utilizing the orthogonal direct sum decomposi-
tions. It’s also easy to verify the conditions (1)−(4) of Definition
3.1 □

Theorem 3.4. Let X be a Hilbert A-module over a pro-C∗-algebra A.
Let T,L ∈ Hom∗

A(X ). If Ran(L) is closed, then the following statements
are equivalent:

(1) Ran(T ) ⊆ Ran(L).
(2) TT ∗ ≤ α2LL∗ for some α ≥ 0.
(3) There exists U ∈ Hom∗

A(X ) uniformly bounded such that T =
LU .

Proof. (3) ⇒ (1) is obvious.
(1) ⇒ (3) Suppose that (1) holds. For every ξ ∈ X , we have

T (ξ) ∈ Ran(L). Since L has closed range, then by Theorem
2.10 Ker(L) is a complemented submodule, which it results
that there exists a unique η ∈ KerL⊥ such tat T (ξ) = L(η).
Let’s define the map U as follow U : U(ξ) = η. Observe the
fact that then U(ξa) = ηa indicates that U is a module map,
for each a ∈ A. The construction of U gives T = LU . We
will next show that U ∈ Hom∗

A(X ). By Theorem 3.3 L has
the generalized inverse module map L† ∈ Hom∗

A(X ). Since
T = LU then L†T = L†LU . Note that kerL⊥ = Ran (L∗),
hence L†LU(ξ) = L†L(η) = η = U(ξ), for every ξ ∈ X ,
that is, L†LU = U . According to the above proof we have
U = L†T ∈ Hom∗

A(X ). In fact, U∗ = T ∗ (L†)∗.
(3) ⇒ (2) Suppose that (3) holds. then there exists U ∈ Hom∗

A(X )

such that T = LU , TT ∗ = LUU∗U∗ ≤ ‖U‖2∞ LL∗, so TT ∗ ≤
λ2LL∗, where λ = ‖U‖∞.
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(2) ⇒ (3) Let be U1 a module map defined as follow U1 : L∗X →
T ∗X such that U1L

∗(ξ) = T ∗(ξ), ∀ξ ∈ X . By (2) we have that

p̄X (U1 (L
∗ξ))2 = p̄X (T

∗)2

= p(
√

〈TT ∗ξ, ξ〉)

≤ p(
√
λ2 〈LL∗ξ, ξ〉)

= λ2p̄X (L
∗ξ)2.

As well as U1 is well defined and uniformly bounded. Since
R(L) is closed and also R (L∗) [11, Theorem 3.2.4]. Out of the
observation above, setting U1ξ = 0, ξ ∈ (L∗X )⊥, it is simple
to verify that U1 is bounded in X and from the construction
of U1 we have U1L

∗ = T ∗. Notify that L∗ (L∗)† L∗ = L∗, so
U1L

∗(ξ) = U1L
∗
(
(L∗)† L∗(ξ)

)
= T ∗

(
(L∗)† L∗(ξ)

)
, from which

it results that T ∗ = T ∗ (L∗)† L∗, i.e, T = LL†T (in this case
by using the fact

(
L†)∗ = (L∗)†), from which T = LU , where

U = L†T . □

Theorem 3.5. Let T,L ∈ Hom∗
A(X ) be two uniformly bounded opera-

tors, then
Ran(T ) +Ran(L) = Ran(

√
TT ∗ + LL∗).

Proof. Let M =

(
T −L
0 0

)
on X ⊕ X . Then we have

(Ran(T ) +Ran(L))⊕ {0} = Ran(M)

= Ran(MM∗)1/2

= Ran

(
(TT ∗ + LL∗)1/2 0

0 0

)
= Ran

(√
TT ∗ + LL∗

)
⊕ {0}.

Which gives

Ran(T ) +Ran(L) = Ran(
√
TT ∗ + LL∗). □

Corollary 3.6. Let T,L1, L2 ∈ Hom∗
A(X ). The statements below are

equivalent:
(1) Ran(T ) ⊂ Ran (L1) +Ran (L2).
(2) TT ∗ ≤ α2 (L1L

∗
1 + L2L

∗
2) for some constant α > 0.

(3) There are two uniformly bounded operators U and V such that
T = L1U + L2V .
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Proof. By using Theorems 3.3 and 3.5 we observe that the conditions
(1) and (2) are equivalent.

Since it is evident that the condition (3) implies (1), it is enough to
prove that the statement (1) implies (3).

Now if we assume that M =

(
T 0
0 0

)
and N =

(
L1 L2

0 0

)
, the

assertion (1) implies Ran(M) ⊂ Ran(N). Therefore M = NU for some
2× 2 matrix U and then Theorem 3.3 implies (3).

□

Lemma 3.7. Let A be a pro-C∗-algebra and α, β ∈ A+be such that
p(αλ) ≤ p(βλ), for all λ ∈ A+.

Then α2 ≤ β2.

Proof. Without loss of generality, assume that p(α) ≤ 1 and p(β) ≤ 1.
Suppose that the inequality α2 ≤ β2 is not true. Then there exists
x0 ∈ sp

(
α2 − β2

)
such that x0 > 0, where sp

(
α2 − β2

)
denotes the

spectrum of α2 − β2. It follows that
m = max

{
x : x ∈ sp

(
α2 − β2

)}
> 0

Let f be any continuous real-valued function defined on the real line
such that  0 ≤ f(t) ≤ 1,

f(t) = 0,
f(t) = 1,

for all t ∈ R,
for all t ∈

(
−∞, m2

]
,

for all t ∈ [m,+∞) .

Choose λ = f
(
α2 − β2

)
. Then λ ∈ A+since f is non-negative. By use

of the functional calculus, we have
p(λ

(
α2 − β2

)
λ) = max

{
xf(x)2 : x ∈ sp

(
α2 − β2

)}
(3.1)

= m

> 0

Since x > m
2 whenever f(x) 6= 0, it follows again by use of the functional

calculus that
(3.2) λ

(
α2 − β2

)
λ ≥ m

2
λ2.

Note that λβ2λ is self-adjoint, so there exists a state ρ acting on A such
that ϕ

(
λβ2λ

)
= p(λβ2λ). Then by 3.2 and the assumption p(β) ≤ 1,

we have
p(βα2β) ≥ ϕ

(
λα2λ

)
≥ ϕ

(
λβ2λ

)
+

m

2
ϕ
(
λ2
)
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≥ m+ 2

2
ϕ
(
λβ2λ

)
=

m+ 2

2
p(λβ2λ)

This shows that if λβ2λ 6= 0, then p(λα2λ) > p(λβ2λ). On the other
hand, if λβ2λ = 0, then it follows from 3.1 that p(λα2λ) > 0. So in
either case, we have

p(αλ)2 = p(λα2λ)

> p(cb2c)

= p(βλ)2,

in contradiction to the assumption that p(αλ) ≤ p(βλ). □
Theorem 3.8. Let X and Y be Hilbert A-modules. Given operators T
and L from Hom∗

A(X ,Y), the subsequent two statements are equivalent:
(i) TT ∗ ≤ LL∗;
(ii) p̄X (T

∗ξ) ≤ p̄X (L
∗ξ) for all ξ ∈ Y.

Proof. (i) ⇒ (ii) follows from Proposition 2.11 and Lemma 2.12.
(ii) ⇒ (i) let ξ ∈ Y and α = 〈TT ∗ξ, ξ〉 and β = 〈LL∗ξ, ξ〉. Then

α, β ∈ A+, for any λ ∈ A+ it is established that

p
(
α

1
2λ
)2

= p
((

α
1
2λ
)∗

α
1
2λ
)

= p(λ∗αλ)

= p(λαλ)

= p(λ 〈TT ∗ξ, ξ〉λ)
= p(〈TT ∗(ξλ), (ξλ)〉)
≤ p(〈LL∗(ξλ), (ξλ)〉)

= p
(
β

1
2λ
)2

As a result, by Lemma 3.7, we have α ≤ β and so
〈TT ∗ξ, ξ〉 ≤ 〈LL∗ξ, ξ〉

Therefore by Proposition 2.11, that TT ∗ ≤ LL∗. □

4. Atomic System in Hom∗
A(X )

Next, we introduce the concept of atomic systems for operators in
Hilbert pro-C∗-modules and we establish some results.

Definition 4.1. Let K ∈ Hom∗
A(X ), we say that {ξi}∞i=1 is an atomic

system for K if :
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i) The serie
∑
i
miξi converges for all m = (mi) ∈ HA;

ii) There exists C > 0 such that for every x ∈ X there exists
mx = (mi) ∈ HA such that 〈mx,mx〉HA

≤ C 〈x, x〉X and Kx =∑
i
miξi.

Proposition 4.2. Suppose that {ξi}∞i=1 is a Bessel sequence in X . Then
{ξi}∞i=1 is an atomic system for L, where L is the frame operator.

Proof. We have the module morphism

θ : X → HA defined by θx = {〈x, ξi〉}∞i=1,

and its adjoint

θ : HA → X defined by θ ({ci}∞i=1) =
∞∑
i=1

ciξi.

Let L = θ∗θ. Then

L : X → X , Lx =
∞∑
i=1

〈x, ξi〉 ξi

Let aξ = {ai} = {〈ξ, ξi〉}∞i=1 ∈ HA
Now

p̄X (aξ)
2 =p(〈aξ, aξ〉)

=p

(∑
i∈I

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X )

)
≤Dp̄X (ξ)

2

Then, {ξi}∞i=1 is an atomic system for L. □
Lemma 4.3. Let A be a unital pro-C∗-algebra and {ξi}j∈I be a sequence
of a finitely or countably generated Hilbert A-module X over A. Then
{ξi}i∈I is a Bessel sequence with bound D if and only if

p

(∑
i∈I

〈x, ξi〉 〈ξi, x〉

)
≤ Dp̄X (ξ)

2

for all ξ ∈ X .

Proof. “ ⇒ ” Evident
“ ⇐ ” Let T be a linear operator defined as follow T : X → HA

Tξ =
∑
i∈I

〈ξ, ξi〉 ei, ∀ξ ∈ X .

Then
p̄X (Tξ)

2 = p(〈Tξ, Tξ〉)
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= p

(∑
i∈I

〈ξ, ξi〉 〈ξi, ξ〉

)
≤ Dp̄X (ξ)

2,

which implies that T is bounded.
It is clear that T is A-linear. Then we have

〈Tξ, Tξ〉 ≤ D 〈ξ, ξ〉
equivalently,

∑
i∈I

〈ξ, ξi〉 〈ξi, ξ〉 ≤ D 〈ξ, ξ〉, as desired. □

Theorem 4.4. If K ∈ Hom∗
A(X ), then there exists an atomic system

for the operator K.

Proof. Let {ξi}i∈I be a standard normalized tight frame for X . Since

ξ =
∑
i∈I

〈ξ, ξi〉 ξi, ξ ∈ X ,

we have
Kξ =

∑
i∈I

〈ξ, ξi〉Kξi, ξ ∈ X .

For ξ ∈ H, putting ai,ξ = 〈ξ, ξi〉 and fi = Kξi for all i ∈ I, we get∑
i∈I

〈ξ, fi〉 〈fi, ξ〉 =
∑
i∈I

〈ξ,Kξi〉 〈Kξi, ξ〉

=
∑
i∈I

〈K∗ξ, ξi〉 〈ξi,K∗ξ〉

= 〈K∗ξ,K∗ξ〉

≤ ‖K∗‖2∞ 〈ξ, ξ〉 .
Therefore {fi}i∈I is a Bessel sequence for H and we conclude that the
series

∑
i∈I

cifi converges for all c = {ci}i∈I ∈ ℓ2(A) by Lemma 4.3. We

also have ∑
i∈I

ai,ξa
∗
i,ξ =

∑
i∈I

〈ξ, ξi〉 〈ξi, ξ〉

= 〈ξ, ξ〉 ,
which completes the proof. □

Our next result deals with Bessel sequences.

Theorem 4.5. Let {ξi}i∈I be a Bessel sequence for X andK ∈ Hom∗
A(X ).

Suppose that T ∈ Hom∗
A (X ,HA) is given by T (ξ) = {〈ξ, ξi〉}i∈I and

Ran(T ) is orthogonally complemented. Then the following statements
are equivalent:
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(1) {ξi}i∈I is an atomic system for K;
(2) there exists two positives values C and D such that

C−1 (p̄X (K∗ξ))2 ≤ p

(∑
i∈l

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X )

)
≤ D (p̄X (ξ))

2 ;

(3) There exists Q ∈ Hom∗
A (X ,HA) such that K = T ∗Q.

Proof. (1) ⇒ (2) For each ξ ∈ X

(p̄X (K∗ξ))2 = (sup {p(〈ξ,Ky〉) : p̄X (y) ≤ 1})2

and Ky =
∑
i
miξi. Then

(p̄X (K∗ξ))2 =

(
sup

{
p

(〈
ξ,
∑
i∈l

ξimi

〉)
: p̄X (y) ≤ 1

})2

=

(
sup

{
p

(∑
i∈I

m∗
i 〈ξi, ξ〉M(X )

)
: p̄X (y) ≤ 1

})2

≤ sup
p̄X (y)≤1

{
p

(∑
i∈I

m∗
imi

)
p

(∑
i∈l

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X )

)}

≤ Cp

(∑
i∈I

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X )

)
Then

C−1 (p̄X (K∗ξ))2 ≤ p

(∑
i∈l

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X )

)
Since {ξi}∞i=1 is Bessel sequence, then there exists positive value
D such that

p

(∑
i∈l

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X )

)
≤ D (p̄X (ξ))

2

Then

C−1 (p̄X (K∗ξ))2 ≤ p

(∑
i∈l

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X )

)
≤ D (p̄X (ξ))

2 .

(2) ⇒ (3) Since {ξi}i∈I is a Bessel sequence, we get T ∗ei = ξi, where
{ei}i∈I is the standard orthonormal basis for HA. Therefore

C−1 (p̄X (K∗ξ))2 ≤ p

(∑
i∈l

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X )

)
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= p

(∑
i∈I

〈ξ, T ∗ei〉 〈T ∗ei, ξ〉

)

= p

(∑
i∈I

〈Tξ, ei〉 〈ei, T ξ〉

)
= p̄X (Tξ)

2, ξ ∈ X .

Theorem 3.4 yields that there exists Q ∈ Hom∗
A (X ,HA) such

that K = T ∗Q.
(3) ⇒ (1) For every ξ ∈ X , we have

Qξ =
∑
i∈I

〈Qξ, ei〉 ei

Thus
T ∗Qξ =

∑
i∈I

〈Qξ, ei〉T ∗ei, ξ ∈ X

Let ci = 〈Qξ, ei〉, so for all ξ ∈ X we get∑
i∈I

cic
∗
i =

∑
i∈I

〈Qξ, ei〉 〈ei, Qξ〉

= 〈Qξ,Qξ〉

≤ ‖Q‖2∞ 〈ξ, ξ〉

Since {ξi}i∈I is a Bessel sequence for X , we get that {ξi}i∈I is
an atomic system for K. □

Corollary 4.6. Let {ξi}i∈I be a frame of multiplier for X with bounds
C,D > 0 and K ∈ Hom∗

A(X ). Then {ξi}i∈I is an atomic system for K

with bounds 1
C−1∥K∥2 and D.

Proof. Let S be the frame operator of {ξi}i∈I .We show that condition
(2) of the Theorem 4.5 is verified. Since

{
S−1ξi

}
i∈I is a frame for X

with bounds D−1, C−1 > 0 and x =
∑
n∈J

〈x, fn〉S−1fn for all x ∈ H, we
get

(p̄X (K∗ξ))2 = (sup {p(〈ξ,Ky〉) : p̄X (y) ≤ 1})2

And Ky =
∑
i
miξi.

p̄X (K
∗ξ)2 = (sup {p(〈ξ,Ky〉) : p̄X (y) ≤ 1})2

=

(
sup

{
p

〈(∑
n∈J

〈ξ, fn〉K∗S−1fn, y

)〉
: p̄X (y) ≤ 1

})2
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=

(
sup

{
p
∑
n∈J

〈ξ, fn〉
〈
K∗S−1fn, y

〉
: p̄X (y) ≤ 1

})2

≤ sup
p̄X (y)≤1

{
p

(∑
n∈J

〈
Ky, S−1fn

〉 〈
S−1fn,Ky

〉)

p

(∑
i∈I

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X )

)}

≤ sup
p̄X (y)≤1

C−1p

(∑
i∈I

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X )

)
p̄X (Ky)2

≤ C−1p̄X (K)2p

(∑
i∈I

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X )

)
Hence {ξi}i∈I is an atomic system for K. □

Theorem 4.7. Let K1,K2 ∈ Hom∗
A(X ). If {ξi}i∈I is an atomic system

for K1 and K2 and α, β are scalars, then {ξi}∞i=1 is an atomic system
for λK1 + γK2 and K1K2.

Proof. {ξ}∞i=1 is an atomic system for K1 and K2, then there are two
positives constantes 0 < λn ≤ γn < ∞ (n = 1, 2) such that

λn (p̄X (K∗
nx))

2 ≤ p

(∑
i∈l

〈x, ξi〉M(X ) 〈ξi, x〉M(X )

)
(4.1)

≤ γn (p̄X (x))
2 , for all x ∈ X .

We have
(p̄X (αK1 +K2)

∗ x)
2

= p (〈(αK1 +K2)
∗ x, (αK1 +K2)

∗ x〉)
= p (〈(αK1)

∗ x, (αK1)
∗ x〉+ 〈(βK2)

∗ x, (βK2)
∗ x〉)

≤ p(α2)Cp

(∑
i∈I

〈x, ξi〉M(X ) 〈ξi, x〉M(X )

)

+ p(β2)Dp

(∑
i∈I

〈x, ξi〉M(X ) 〈ξi, x〉M(X )

)
≤ max

(
p(α2)C, p(β2)D

)
× p

(∑
i∈I

〈x, ξi〉M(X ) 〈ξi, x〉M(X )

)
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by setting M = max(p(α2)C, p(β2)D) It follows that

M−1 (p̄X (αK1 + βK2)
∗ x)

2 ≤ p

(∑
i∈I

〈x, ξi〉M(X ) 〈ξi, x〉M(X )

)
Hence {ξi}∞i=1 satisfies the lower frame condition.

And from inequalities 4.1 , we get

p

(∑
i∈l

〈x, ξi〉M(X ) 〈ξi, x〉M(X )

)
≤ γ1 + γ2

2
(p̄X (x))

2 , for all x ∈ X

Hence {ξi}∞i=0 is an atomic system for αK1 + βK2. □

5. K-frames in Hilbert Pro-C∗-Module

Now, we define the K-frame in Hilbert pro-C∗-modules, and show
that under some conditions, every ordinary multiplier frame is a K-
frame. Then, we use Douglas’ factorization theorem to demonstrate
some K-frames properties. We finally show the relationship between
Bessel sequences and K-frame in pro-C∗-modules.

Definition 5.1. Let K ∈ Hom∗
A(X ). {ξi}∞i=0 is a sequence in X , {ξi}∞i=0

is called K-frame for X if there existe two positive constants A and B
such that

A 〈K∗ξ,K∗ξ〉X ≤
∑
i∈I

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X ) ≤ B 〈ξ, ξ〉X , ∀ξ ∈ X

A and B are respectively called lower and upper bounds for K-frame
{ξi}i∈I

Definition 5.2. Let K ∈ Hom∗
A(X ) be a bounded operator. A sequence

{ξi}i∈I in X is said to be a tight K-frame with bound A if

A 〈K∗ξ,K∗ξ〉X =
∑
i∈I

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X ) , for all ξ ∈ X

When A = 1, it is called a Parseval K-frame .

Theorem 5.3. Let K be an invertible element in Hom∗
A(X ) such that

both are uniformly bounded with ‖K‖2∞. Then every ordinary frame of
multiplier is K-frame for X .

Proof. Suppose that {ξi}∞i=0 is frame for X then there two constants A
and B such that

(5.1) A 〈ξ, ξ〉X ≤
∑
i∈I

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X ) ≤ B 〈ξ, ξ〉X , ∀ξ ∈ X
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For K an invertible element in Hom∗
A(X ), we have 〈K∗ξ,K∗ξ〉X ≤

‖K‖2∞ 〈ξ, ξ〉X . Then 1
∥K∥2∞

〈K∗ξ,K∗ξ〉X ≤ 〈ξ, ξ〉X , for all ξ ∈ X . From
the inequality 5.1, we have

A
1

‖K‖2∞
〈K∗ξ,K∗ξ〉X ≤ A 〈ξ, ξ〉X

≤
∑
i∈I

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X )

≤ B 〈ξ, ξ〉X
Hence {ξi}∞i=0 is K-frame for X . □

Proposition 5.4. Let {ξi}∞i=1 be a K-frame for X . Let L ∈ X be a
bounded uniformly operator with Ran(L) ⊆ Ran(K). Then {fi}∞i=1 is a
L-frame for X .

Proof. Let {ξi}∞i=1 be K-frame for X . Then there are positive constants
A and B such that
(5.2)

A 〈K∗ξ,K∗ξ〉X ≤
∑
i∈I

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X ) ≤ B 〈ξ, ξ〉X , ∀ξ ∈ X

Since Ran(L) ⊆ Ran(K), by Douglas’ theorem 3.4, there exists α > 0
such that LL∗ ≤ α2KK∗. From the inequality (5.2), we have

A

α2
〈L∗ξ, L∗ξ〉X ≤ A 〈K∗ξ,K∗ξ〉X

≤
∑
i∈I

〈x, ξi〉M(X ) 〈ξi, x〉M(X )

≤ B 〈ξ, ξ〉X , ∀ξ ∈ X .

Therefore {ξi}∞i=1 is a L-frame for X . □

Theorem 5.5. Let K ∈ Hom∗
A(X ) and {ξi}i∈I be a Bessel sequence for

X . Suppose that T ∈ Hom∗
A (X ,HA) is given by T (ξ) = {〈ξ, ξi〉}i∈I and

Ran(T ) is orthogonally complemented. Then {ξi}i∈I is a K-frame for
X if and only if there exists a linear bounded operator L : HA → X such
that Lei = ξi and Ran(K) ⊆ Ran(L), where {ei}i is the orthonormal
basis for HA.

Proof. Suppose that {ξi}i∈I is K-frame. Then Ap̄X (K
∗ξ)2 ≤ p̄X (Tξ)

2

for all ξ ∈ X . By Theorem 3.8, there is α > 0 such that
KK∗ ≤ αT ∗T.

Setting T ∗ = L, we get KK∗ ≤ αLL∗ and therefore Ran(K) ⊆ Ran(L).
Conversely, since Ran(K) ⊆ Ran(L), by Theorem 3.4 there exists α > 0
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such that KK∗ ≤ αLL∗. Therefore
1

α
〈K∗ξ,K∗ξ〉 ≤ 〈L∗ξ, L∗ξ〉

=
∑
i∈I

〈ξ, ξi〉 〈ξi, ξ〉 , ξ ∈ X

Then {ξi}i∈I is K-frame for X . □
Proposition 5.6. Let {ξi}i∈I be a Bessel sequence of X , {ξi}i∈I is a
K-frame with bounds A,B > 0 if and only if L ≥ AKK∗, where L is
the frame operator for {ξi}i∈I .
Proof. A sequence {ξi}i∈I is a K-frame for X if and only if

〈AKK∗ξ, ξ〉 = A 〈K∗ξ,K∗ξ〉

≤
∑
i∈I

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X )

= 〈Lξ, ξ〉
≤ B 〈ξ, ξ〉 .

Then {ξi}i∈I is a K-frame if and only if L ≥ AKK∗. □
Theorem 5.7. Let {ξi}i∈I be a Bessel sequence in X . Then {ξi}i∈I is
a K-frame for X if and only if K = L1/2L, for some U ∈ Hom∗

A(X ).
Proof. Suppose {ξi}i∈I is a K-frame, by Proposition 5.6 there exist two
positives constantes A and B

AKK∗ ≤ L1/2L1/2∗

Therefore by Douglas’ theorem 3.4, K = L1/2U , for some L bounded in
Hom∗

A(X ).

Conversly, let K = L1/2U , for some L bounded in Hom∗
A(X ). Then

by Douglas’ factorization theorem, L1/2 majorizes K∗. Then there is a
positive number A such that L ≥ A2KK∗. Therefore by Proposition 5.6
{ξi}i∈I is a K-frame for X . □
Example 5.8. Suppose that {ui}∞i=1 is an orthonormal basis in HA.
Define operators L and K on HA by Lui = ui−1 for i > 1 and Lu1 = 0
and Kui = ui+1 respectively. It is clear that {Kui}∞i=1 is a K-frame for
HA. Suppose {Kui}i∈I is a L-frame. Then by Proposition 5.6, there
exists A > 0 such that KK∗ ≥ ALL∗. Hence by Douglas, theorem,
Ran(L) ⊆ Ran(K). But this is contradiction to Ran(L) ⊈ Ran(K),
since u1 ∈ Ran(L) but u1 /∈ Ran(K).
Theorem 5.9. Let K ∈ Hom∗

A(X ) be an uniformly bounded opera-
tor such that Ran(K) is closed. The frame operator of a K-frame is
invertible on the subspace Ran(K) of X .
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Proof. Suppose {ξi}i∈I is a K-frame for X . Then there exists A > 0
such that

(5.3) A 〈K∗ξ,K∗ξ〉X ≤
∑
i∈I

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X )

Since Ran(K) is closed, then KK†ξ = ξ, for all ξ ∈ Ran(K). That is,

KK†
∣∣∣
Ran(K)

= IRan(K)

we have I∗Ran(K) =
(
K†∣∣

Ran(K)

)∗
K∗. For any ξ ∈ Ran(K), we obtain

〈ξ, ξ〉 =
〈(

K†
∣∣∣
R(K)

)∗
K∗ξ,

(
K†
∣∣∣
R(K)

)∗
K∗ξ

〉
≤
∥∥∥K†

∥∥∥2
∞

· 〈K∗ξ,K∗ξ〉

Therefore
〈K∗ξ,K∗ξ〉 ≥

∥∥∥K†
∥∥∥−2

∞
· 〈ξ, ξ〉

In combination with 5.3, we obtain∑
i∈I

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X ) ≥ A 〈K∗ξ,K∗ξ〉X

≥ A
∥∥∥K†

∥∥∥−2

∞
· 〈ξ, ξ〉 , for all ξ ∈ Ran(K).

Hence, by the definition of K-frame, we get

A
∥∥∥K†

∥∥∥−2

∞
· 〈ξ, ξ〉X ≤

∑
i∈I

〈ξ, ξi〉M(X ) 〈ξi, ξ〉M(X )

≤ B 〈ξ, ξ〉X
Therefore

A
∥∥∥K†

∥∥∥−2

∞
· 〈ξ, ξ〉X ≤ 〈Sξ, Sξ〉X

≤ B 〈ξ, ξ〉X
And so S : Ran(K) → Ran(S) is a bounded linear operator and invert-
ible on Ran(K). □

Theorem 5.10. Let K ∈ Hom∗
A(X ) be uniformly bounded such that

Ran(K) is dense. Let {ξi}i∈I be a K-frame and T ∈ Hom∗
A(X ) be

uniformly bounded such that Ran(T ) is closed. If {Tξi}i∈I is a K-frame
for X , then T is surjective.
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Proof. Let’s assume that {Tξi}i∈I is a K-frame for X with frame bounds
A and B. Then for any ξ ∈ X ,

(5.4) A 〈K∗ξ,K∗ξ〉 ≤
∑
i∈I

〈ξ, T ξi〉M(X ) 〈Tξi, ξ〉M(X ) ≤ B 〈ξ, ξ〉 .

Since Ran(K) is dense, X = Ran(K), so K∗ is injective. Then from
5.4, T ∗ is injective since Ker (T ∗) ⊆ Ker (K∗). Moreover, Ran(T ) =

Ker (T ∗)⊥ = X . Thus T is surjective. □

Theorem 5.11. Let K ∈ Hom∗
A(X ) be uniformly bounded and let

{ξi}i∈I be a K-frame for X . If T ∈ Hom∗
A(X ) is uniformly bounded

and has a closed range with TK = KT , then {Tξi}i∈I is a K-frame for
Ran(T ).

Proof. As T has a closed range, it has the generalized inverse T † such
that TT † = I. Now I = I∗ = T †∗T ∗. Then for each ξ ∈ Ran(T ),K∗ξ =
T †∗T ∗K∗ξ, so we have

〈K∗ξ,K∗ξ〉 =
〈
T †∗T ∗K∗ξ, T †∗T ∗K∗ξ

〉
≤
∥∥∥T †∗

∥∥∥2
∞
〈T ∗K∗ξ, T ∗K∗ξ〉

Therefore ∥∥∥T †∗
∥∥∥−2

∞
〈K∗ξ,K∗ξ〉 ≤ 〈T ∗K∗ξ, T ∗K∗ξ〉 .

Now for each ξ ∈ Ran(T ),∑
i∈I

〈ξ, T ξi〉X 〈Tξi, ξ〉X =
∑
i∈I

〈T ∗ξ, ξi〉X 〈ξi, T ∗ξ〉X

≥ A 〈K∗T ∗ξ,K∗T ∗ξ〉
= A 〈T ∗K∗ξ, T ∗K∗ξ〉

≥ A
∥∥∥T †∗

∥∥∥−2

∞
〈K∗ξ,K∗ξ〉 .

Since {ξi}i∈I is a Bessel sequence with bound B, for each ξ ∈ Ran(T ),
we have∑

i∈I
〈ξ, T ξi〉M(X ) 〈Tξi, ξ〉M(X ) =

∑
i∈I

〈T ∗ξ, ξi〉M(X ) 〈ξi, T
∗ξ〉M(X )

≤ B 〈T ∗ξ, T ∗ξ〉

≤ B ‖T‖2∞ 〈ξ, ξ〉 .

Therefore {Tξi}i∈I is a K-frame for Ran(T ). □

Theorem 5.12. Let K ∈ Hom∗
A(X ) be uniformly bounded such that

Ran(K) is dense. Let {ξi}i∈I be a K-frame and let T ∈ Hom∗
A(X ) be
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uniformly bounded such that Ran(T ) is closed. If {Tξi}i∈I and {T ∗ξi}i∈I
are K-frames for X , then T is invertible.

Proof. Suppose that {Tξi}i∈I is a K-frame for X with frame bounds A1

and B1. Then for any ξ ∈ X ,

A1 〈K∗ξ,K∗ξ〉 ≤
∑
i∈I

〈ξ, T ξi〉M(X ) 〈Tξi, ξ〉M(X )(5.5)

≤ B1 〈ξ, ξ〉

As Ran(K) is dense, K∗ is injective. Then from 5.5, T ∗ is injective since
Ker (T ∗) ⊆ Ker (K∗). Moreover Ran(T ) = Ker (T ∗)⊥ = X . Then T is
surjective.

Suppose {T ∗fi}∞i=1 is a K-frame for X with frame bounds A2 and B2.
Then for any ξ ∈ X ,

A2 〈K∗ξ,K∗ξ〉 ≤
∑
i∈I

〈ξ, T ∗ξi〉M(X ) 〈T
∗ξi, ξ〉M(X )(5.6)

≤ B2 〈ξ, ξ〉

As K has a dense range, K∗ is injective. Then from 5.6, T is injective
since Ker(T ) ⊆ Ker (K∗). Therefore T is bijective. Using the Bounded
Inverse Theorem, T is invertible. □

Theorem 5.13. Let K ∈ Hom∗
A(X ) and let {ξi}i∈I be a K-frame for

X and let T ∈ Hom∗
A(X ) be uniformly bounded and be a co-isometry

with TK = KT . Then {Tξi}∞i=1 is a K-frame for X .

Proof. Suppose {ξi}i∈I is a K-frame for X . For every ξ ∈ X∑
i∈I

〈ξ, T ξi〉X 〈Tξi, ξ〉X =
∑
i∈I

〈T ∗ξ, ξi〉X 〈ξi, T ∗ξ〉X

≥ A 〈K∗T ∗ξ,K∗T ∗ξ〉
= A 〈T ∗K∗ξ, T ∗K∗ξ〉
= A 〈K∗ξ,K∗ξ〉

It is obvious that {Tξi}i∈I is a Bessel sequence. Since {ξi}i∈I is a Bessel
sequence, for each ξ ∈ X we have∑

i∈I
〈ξ, T ξi〉X 〈Tξi, ξ〉X =

∑
i∈I

〈T ∗ξ, ξi〉X 〈ξi, T ∗ξ〉X

≤ B ‖T‖2∞ 〈ξ, ξ〉 .

Therefore {Tξi}i∈I is a K-frame for X . □
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6. Sums of K-Frames

In the following section we show that the sums of K-frames under
some conditions is again a K-frame in Hilbet pro-C∗-modules.

Theorem 6.1. Let {ξi}i∈I and {ηi}i∈I be two K-frames for X and let
L1 and L2 be respectively their corresponding operators in Proposition
5.6. If L1L

∗
2 and L2L

∗
1 are positive operators and Ran (L1) + Ran (L2)

is closed, then {ξi + ηi}i∈I is a K-frame for X .

Proof. Suppose that {ξi}i∈I and {ηi}i∈I are two K-frames for X . By
the assumption, there are two bounded operators L1 and L2 such that
L1ui = ξi, L2ui = ηi and Ran(K) ⊆ Ran (L1) , Ran(K) ⊆ Ran (L2), we
denote by {ui}i∈I is an orthonormal basis for HA

So Ran(K) ⊆ Ran (L1) +Ran (L2), by Corollary 3.6
KK∗ ≤ α2 (L1L

∗
1 + L2L

∗
2) , for some α > 0

For every ξ ∈ X , we have∑
i∈I

〈ξ, ξi + ηi〉 〈ξi + ηi, ξ〉 =
∑
i∈I

〈(L∗
1 + L∗

2)ξ, ui〉 〈ui, (L1
∗ + L∗

2)ξ〉

=
∑
i∈I

〈(L1 + L2)
∗ξ, ui〉 〈ui, (L1 + L2)

∗ξ〉

= 〈(L1 + L2)
∗ξ, (L1 + L2)

∗ξ〉
= 〈L1

∗ξ, L1
∗ξ〉+ 〈L1

∗ξ, L2
∗ξ〉

+ 〈L2
∗ξ, L1

∗ξ〉+ 〈L2
∗ξ, L2

∗ξ〉
≥ 〈(L1L1

∗ + L2L2
∗)ξ, ξ〉

≥ 1

α2
(〈KK∗ξ, ξ〉) .

≥ 1

α2
(〈K∗ξ,K∗ξ〉 .

Therefore {ξi + ηi}i∈I is a K-frame for X . □
Corollary 6.2. Let {ξi}i∈I and {ηi}i∈I be K-frames for X with frame
operators L1 and L2 respectively. Then K = L

1/2
1 T1 + L

1/2
2 T2, for some

bounded operators T1 and T2 in Hom∗
A(X ).

Proof. Since {ξi}i∈I and {ηi}i∈I are K-frames for X , by Proposition 5.6,
there are positive constants A1 and A2 such that

L1 ≥ A1KK∗, L2 ≥ A2KK∗

Then by Douglas’ theorem, we have

Ran(K) ⊆ Ran
(
L
1/2
1

)
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and
Ran(K) ⊆ Ran

(
L
1/2
2

)
.

Hence Ran(K) ⊆ Ran
(
S
1/2
1

)
+ Ran

(
S
1/2
2

)
. Hence by Corollary 3.6,

there exists two bounded operators T1, T2 in Hom∗
A(X ) such that K =

L
1/2
1 T1 + L

1/2
2 T2. □

Theorem 6.3. Suppose that {ξi}i∈I is a K-frame for X such that L is
its frame operator and let T be a positive operator. Then {ξi + Tξi}i∈I
is a K-frame. Furthermore {ξi + Tnfi}i∈I is a K-frame for X for any
natural number n.

Proof. Let {ξi}i∈I be a K-frame for X . Then by Proposition 5.6, there
is A > 0 such that L ≥ AKK∗. (I + T )L(I + T )∗ is the frame operator
for {ξi + Tξi}i∈I for the raison that for each ξ ∈ X ,∑

i∈I
〈ξ, (ξi + Tξi)〉 (ξi + Tξi) = (I + T )

∑
i∈I

〈ξ, (I + T )ξi〉 ξi

= (I + T )L(I + T )∗ξ

In addition, we have
(I + T )L(I + T )∗ = L+ LT ∗ + TL+ TLT ∗

≥ L

≥ AKK∗

By Propostion 5.6, we can say that {ξi + Tξi}i∈I is a K-frame for X .
For every given natural number n, the frame operator for {ξi+Tnξi}i∈I
is (I + Tn)L(I + Tn)∗ ≥ L. Therefore {ξi + Tnξi}∞i=1 is a K-frame for
X . □

Corollary 6.4. Let {ξi}i∈I be a K-frame for X and let L be its frame
operator. Suppose that {I1, I2} is a partition of N. For j = 1, 2, let Lj

be the frame operator for the Bessel sequence {ξi}i∈Ij . Then

{ξiLm
1 ξi}i∈I1 ∪ {ξi + Ln

2ξi}i∈I2
is a K-frame for X for every m,n ∈ N.

Proof. For every m ∈ N, Lm can be defined as follow

Lmξ =
∑
i∈Ij

〈
ξ, L

m−1
2 ξi

〉
L

m−1
2 ξi

For each ξ ∈ X ,∑
i∈I1

〈ξ, ξi + Lm
1 ξi〉 (ξi + Lm

1 ξi) = (I + Lm
1 )
∑
i∈I1

〈ξ, ξi + Lm
1 ξi〉 ξi
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= (I + Lm
1 )
∑
i∈I1

〈ξ, (I + Lm
1 ) ξi〉 ξi

= (I + Lm
1 )L1 (I + Lm

1 )∗ ξ

= (I + Lm
1 )
(
L1 + L

(1+m)
1

)
ξ

=
(
L1 + 2L

(1+m)
1 + L

(1+2m)
1

)
ξ.

Therefore L1 + 2L
(1+m)
1 + L

(1+2m)
1 and L2 + 2L

(1+n)
2 + L

(1+2n)
2 are the

frame operators for {ξi + Lm
1 ξi}i∈I1 and {ξi + Ln

2ξi}i∈I2 respectively. Con-
sider that L0 is the frame operator for {ξi + Lm

1 ξi}i∈I1 ∪{ξi + Ln
2ξi}i∈I2 .

As {ξi}∞i=1 is a K-frame for X , then there exists A > 0 such that L ≥
AKK∗ and L0 ≥ L1 +L2 = L ≥ AKK∗. From which {ξi + Lm

1 ξi}i∈I1 ∪
{ξi + Ln

2ξi}i∈I2 is a K-frame for X . □

Theorem 6.5. Let {ξi}i∈I and {ηi}i∈I be Parseval K-frames for X , with
synthesis operators L1 and L2 respectively. If L1L

∗
2 = 0 then {ξi + ηi}i∈I

is a 2-tight K-frame for X .

Proof. Suppose {ξi}i∈I and {ηi}i∈I are two Parseval K-frames for X .
Then there are transform operators L1, L2 ∈ Hom∗

A(X ) such that L1ei =
ξi and L2ei = ηi with Ran(K) = Ran (L1) , Ran(K) = Ran (L2) respec-
tively. For each ξ ∈ X , we have∑
i∈I

〈ξ, ξi + ηi〉M(X ) 〈ξi + ηi, ξ〉M(X ) = 〈(L1 + L2)
∗ ξ, (L1 + L2)

∗ ξ〉X

= 〈L∗
1ξ, L

∗
1ξ〉X + 〈L2L

∗
1ξ, ξ〉X

+ 〈L1L
∗
2ξ, L1L

∗
2ξ〉X + 〈L∗

2ξ, L
∗
2ξ〉X

= 〈L∗
1ξ, L

∗
1ξ〉X + 〈L∗

2ξ, L
∗
2ξ〉X

= 2 〈K∗ξ,K∗ξ〉X □

Theorem 6.6. Let {ξi}i∈I and {ηi}i∈I be K-frames for X and let L1 and
L2 be synthesis operators for sequences {ξi}i∈I and {ηi}i∈I respectively,
such that L1L

∗
2 = 0 and let Tj ∈ Hom∗

A(X ) an operator uniformly
bounded with R (Lj) ⊆ R (TjLj), for j = 1, 2. Then {T1ξi + T2ηi}i∈I is
a K-frame for X .

Proof. Suppose that {ξi}i∈I and {ηi}i∈I are two K-frames for X . Then
by Theorem 5.5, there exists an orthonormal basis {ei}∞i=1 in HA such
that L1ei = ξi, L2ei = ηi and R(K) ⊆ R (L1) , R(K) ⊆ R (L2). For each
ξ ∈ X∑

i∈I
〈ξ, T1ξi + T2ηi〉M(X ) 〈ξ, T1ξi + T2ηi〉M(X )



48 M. ROSSAFI, R. ELJAZZAR, R. MOHAPATRA

=
∑
i∈I

〈ξ, T1T1L1ei + T2L2ei〉M(X ) 〈ξ, T1L1ei + T2L2ei〉M(X )

= 〈(T1L1 + T2L2)
∗ ξ, (T1L1 + T2L2)

∗ ξ〉
= 〈(T1L1)

∗ ξ, (T1L1)
∗ ξ〉+ 〈T2L2L

∗
1T

∗
1 ξ, ξ〉

+ 〈T1L1L
∗
2T

∗
2 ξ, ξ〉+ 〈(T2L2)

∗ ξ, (T2L2)
∗ ξ〉

= 〈(T1L1)
∗ ξ, (T1L1)

∗ ξ〉+ 〈(T2L2)
∗ ξ, (T2L2)

∗ ξ〉
We have that Ran(K) ⊆ Ran (Lj) ⊆ Ran (TjLj) for j = 1, 2. So by
Douglas’ factorization theorem, for each j = 1, 2, there exists αj > 0
such that

KK∗ ≤ αj (TjLj) (TjLj)
∗

Then from the above inequality, for each ξ ∈ X∑
i∈I

〈ξ, T1ξi + T2ηi〉M(X ) 〈ξ, T1ξi + T2ηi〉M(X )

= 〈(T1L1)
∗ ξ, (T1L1)

∗ ξ〉+ 〈(T2L2)
∗ ξ, (T2L2)

∗ ξ〉

≥
(

1

α1
+

1

α2

)
〈K∗ξ,K∗ξ〉

Hence {T1ξi + T2ηi}i∈I is a K-frame for X . □
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