Beta-Bazilevi¢ Function
Sa'adatul Fitri and Mohamad Muslikh

Print ISSN  2322-5807

Sahand Communications in Volume 21. No. 2. March 2024
: : Online ISSN  2423-3900

Mathematical Analysis

Print ISSN: 2322-5807
Online ISSN: 2423-3900
Volume: 21

Number: 2

Pages: 179-193

Sahand Commun. Math. Anal.
DOI: 10.22130/scma.2023.2004270.1351 .

g
€
s
=
°
"
£
w
2
2
-]
£
o

Sahand Mountain, Maragheh, Iran.




Sahand Communications in Mathematical Analysis (SCMA) Vol. 21 No. 2 (2024), 179-193
http://scma.maragheh.ac.ir

DOI: 10.22130/scma.2023.2004270.1351

Beta-Bazilevic Function

Sa’adatul Fitri'* and Mohamad Muslikh?

ABSTRACT. In this paper, we introduce a relatively new class, Bf(a),
namely the class of Beta-Bazilevi¢ function is generated by the func-
tion Bazilevi¢ Bi(a). We introduce the class in question by con-
structing the Alpha-Convex function, M(«), introduced by Miller
et al. [9]. Using Lemmas of function with positive real part, we
were given a sharp estimate of coefficient problems. The coefficient
problems to be solved are the modulus of initial coefficients f, the
modulus of inverse coefficients f~!, the modulus of the Logarith-
mic coefficients log @, the Fekete-Szegd problem and the second

Hankel determinant problem.

1. INTRODUCTION AND DEFINITIONS

Geometric function theory is a branch of complex analysis that stud-
ies the geometric properties of analytic functions. Although this theory
appeared in early 20th century, it is still interesting as a field of research
nowadays. The base of geometric functions is the theory of the univa-
lent functions. Among interesting topics widely discussed are harmonic
theory and quasiconformal mapping, both generalizations of conformal
mapping [3].

The first results of the theory of univalent functions were obtained
by using the area principle. The collection of all analytic and univalent
functions on disk D = {z : |2| < 1}, normalized by the conditions ag = 0
and a; = 1 that be denoted by S. The functions f € S given by

(1.1) f(2) :z—}—Zanz”.
n=2
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In 1916, L. Bieberbach proved that the modulus of the second coef-
ficient for the function f, |ay| < 2, using the outer area theorem and
suspected that |a,| < n for n > 2 [4]. These results affect the study of
science in the theory of geometric functions. Therefore, it is essential to
find new theoretical results in this field with various applications [5].

Several major subclasses of S have been extensively studied, and more
characteristics can be defined, e.g. the classes convex (C), starlike (S*),
close-to-convex (K) and Bazilevi¢ functions. Bazilevi¢[2] introduced the
so-called Bazilevi¢ functions using a differential equation of Léoewner and
Kufaref in 1923. The classes of Bazilevi¢ functions are denoted by B(a, d)
with o > 0 and J real. The classes of Bazilevi¢ functions are the largest
subclass of S. It is simple to show that C € §* C K C B(«a,d) C S.

In recent years, much of attention has been given to the subclasses
of Bazilevi¢ functions. The topics discussed are coefficient problems
and subordination. Thomas and Marjono[8] studied coefficient prob-
lems and subordination in subclass By (), whose definition mimics that
of U(A = 1). The open problem is when 0 < A < 1. In addition to
the coefficient problem of the function f € S, several problems can be
constructed from the coefficients a,,. Among others are inverse coeffi-
cients, logarithmic coefficients, the Fekete-Szegd problem and the sec-
ond Hankel determinant. Murugusundaramoorthy and Bulboaca stud-
ied new subclasses of analytic functions related to a shell-shaped region
in 2020[10]. They determined the estimated bounds of the four initial
coefficients, the upper bound for the Fekete-Szegé functional and for
the Hankel determinant. In 2021, Murugusundaramoorthy, G. et al.
examined initial coefficient bounds and Fekete-Szegd inequalities for a
subclass of Kamali-type starlike functions connected with the limacon
domain of bean shape[l1].

We shall be concerned with the subclass B;(«) which first introduced
by Singh[12].

Definition 1.1. f € Bj(«) for a > 0 if, and only if, for z € D,

Re {f’(z) (f(;))al} > 0.

In 2020, Fitri and Thomas introduced the class B](a) of Gamma-
Bazilevi¢ functions[6]. They shown that B] («) is univalent and subset of
Bi (). Some coefficient problems for this functions are also studied. Def-

inition of Gamma-Bazilevi¢ functions is analogue with Gamma-starlike
functions, M7 defined by,

re{ (14 22) ()




BETA-BAZILEVIC FUNCTION 181

for z € D and v > 0. This class was introduced by Darus and Thomas[4].
Previosly, Miller, Mocanu and Reade[9] have studied the class of Alpha-
Convex functions, M(«a) defined by,

wloor ) s () o

for z€e DD and o > 0.

The purpose of this paper is to introduce an analogue of M(«) for
Bazilevi¢ functions. The following is the definition in question.

Definition 1.2. Let 8 > 0and 0 < a < 1, with f(z) # 0 and f'(z) # 0.
A function f € S is said to be Beta-Bazilevi¢ functions if for z € D,

(1.2) Re {,6’ [fé{i(z)za + Z]{/’;S) +(@—1) <Z;;S) — 1)}

-0 ]}

> 0.

We denote this class by B'IB ().

Then BY(a) is the class of Bazilevi¢ functions[12], and B](0) is the
class of Alpha-Convex functions M(«)[9]. We also note that the case
a = 1 and v = 0 corresponds to the class R of functions who’s derivative
has positive real part. The case a = 0 and 8 = 0 corresponds to the
starlike functions and when o = 0 and 8 = 1 to convex functions[p].

Definition 1.3. A function f € § is said to be starlike functions if for
z €D,
/
Re{zf <Z)} > 0.
f(2)
Definition 1.4. A function f € S is said to be convex functions if for

zeD,
Re{l — )<Z)} >0,

2. PRELIMINARIES

In this section, we recall the class P of functions with positive real
part in D, so that p € P,

(2.1) p(z) = 1+chz",
n=1

if, and only if, Re[p(z)] > 0 for z € D.
We shall use the following lemmas concerning the coefficients of p € P.
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Lemma 2.1 ([[7]). Ifp € P, then for some complex valued x with |z| < 1,
and some complex valued ¢ with |¢| < 1,

2co :c%+:1:(4fc%),

4cg :c§’+2(4—c%)clm—cl (4—0%)x2—|—2(4—c%) (1- |x|2)C
Lemma 2.2 ([l)). If p € P, then |cy| <2 forn > 1, and

2, 0<pu<2,

H o
_ < — =
‘62 201‘ < max{2, 2 — 1]} { 2| — 1|, elsewhere.

Lemma 2.3 ([l]). Letpe P. If0< B <1and B(2B—1) <D < B,
then
‘03 — 2Bcico + DC?‘ < 2.

Lemma 2.4 ([l]). Letpe P. If 0 < XA <1, then
les — 2hcrea + Acd| < 2.

3. INITIAL COEFFICIENTS

We first determine expressions for as,as and a4 in terms of the coef-
ficients of p € P. It follows from ([l.2) that we get the equivalen form,

o o (4]
s8]

=p(2),
with p € P and z € D.
By equating of coefficients in (B) gives

(82) e = G55
B 1 ( _(a+0®—68-2a8-2) 2>
BT Rrar2) 7T 20 a2 )
— 3
M= B a)(1+3p)
B (2a + a? — 158 — 3aB — 3)cica
(I+a)(2+a)3+a)(1+6)(1+28)(1+33)
Vel
61+ P2+ a)3+ oz)(ll—i— B)3(1+28)(1 +38)’
where

V = 13a + 202 — 7a® — 368 + 8303 + 76023
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+ 19038 + 2043 — 1023? — 3605 — 60232 — 6.
Theorem 3.1. If f € Bf(a) then

\ag\g( i for B>0and0<a <1,

2
1+a)(1+p)
i for 6=0and a=1,

2
o5l < G 2m)

23488+ B2+ a*y(2+ 8) + a1+ 68 +25%))
- (14 a)2(2+a)(1+ B)%(1+2p8) ’
for 6>0and0<a <1,
23488+ B2+ a®y(2+ B) + a(l+68+25%))
- (1+a)2(2+a)(1+B)%(1 +26) ’
for 8=0and 0 <a<l,
las| < 2V ;
31+ a)324+ )3+ a)(1+8)3(1+28)(1+38)
for 8>1and0<a <1,
< 2 .
T 314+ )24+ a)B+a)(1+B)3(1+28)(1+36)
for 0< 8 <1and0<a<a(p),
2
= Bra)(i+3p)

s for 0<B<1land i(B)<a<l,

2V '
=30 raPRra)Bra) 1t AP1128)(1130)
for 0< B <1and a=0,

where,
Vi = (36 + 2283 + 4563 + 1325° + 123*)
+at (1-8+2158% +2158° + 65%)
+o® (54 78 + 1475% + 1238° + 308")
+a? (11 — 855 + 49582 + 3153° + 543*)
+ (19 + 18543 + 6815% + 3453 + 428%)

and a1(B) is the positive root of the equations

128% +428° — 483% — 68 + (34 + 1883 + 15353 + 1478° + 423%) «

+ (19 + 2118 + 2378% + 18953° + 543") z?
+ (8 4 948 + 13537 + 1058° + 303%) 2®
+ (14178 + 2758% + 218° + 638*) 2*

183



184 S. FITRI AND M. MUSLIKH

=0.
Proof. 1t is easy to proof the first innequality |agz| with fact |c1| < 2.
Let
1
2+a)(1+2p)
From @, we get

(a+a?—-68—2a8-2) ,
21+ad)(1+p8)2 |

|@3| = Co —
(

_ (a+a®—68—2a8-2)
1+a®)(1+p5)?2 7

such that ‘02 — gcﬂ < 2 provided 8 = 0 and o = 1. Applying Lemma
@ to get the inequality for |as|.

To prove the first and fourth inequality for a4, we use fact that the
coefficients of c3, cico and ¢ are positive. Next we proof tne second and
third for |a4].

For a4, write

ay = a7 a)zl 35 |:<C;3 —c1e9 + ;é{’) + Wiy ((62 — %C%) — Wgcfﬂ ,
with
- 54+ a+ 218+ 12a8 + 3028 + 452 + 6ap% + 2a2 5>
(I1+a)2+a)(1+B)(1+208) ’
and
Wy = 4

6(14+ a)3(24 a)(1+7)3(1 + 29)

= {a*(1+ 8B +38%) +a’(5+ 348 — 68% — 958°)

+ a2 (8 4 258 — 1264% — 635°) — a(—1 + 408 + 24632 + 995%)
—(15+ 998 + 2018% + 458%)} / {6(1 + )*(1 + B)?

[54 218487 + a®B(3 + 2B) + a1 + 128+ 66%)] } .

Wy and Ws are positive when f > 0 and 0 < a < 1. According
Lemma P.4, with \ = %, we get

1 1
W101 <(62 — 26%) — WQC%) § W1|Cl| <2 — §|Cl|2 — W2’61|2>

= P(|e1)).

Let |c1| = x, then

1
P(z) =Wz (2 - 51‘2 - W2x2> .
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Since P’(x) > 0, then a function P(z) is monotone increasing functions
when 0 <z <2for > 0and 0 < a < 1. So that the maximum value
is when x = 2, which give the second inequality for |ay4],

1

2+ P(2)).
(3+a)(1+3ﬂ)( 2))
For the third inequality, we use Lemma to write ¢y and c3 in term
of ¢1. Next, take ¢; = ¢ with ¢ € [0, 2], and note that |¢| < 1, we have
A1 (Oé, ﬁ)C?)

ol = BT aPer B o)+ AP0 T 2500 1 39))

(5+a+ 218+ 12ap + 3a?B + 4% + 6a5* + 202 5%) ¢ (4 — ?) |z|

21+ a)(2+ )3+ a)(1 + B)(1 +26)(1 + 34)
c(4—c?) |z)? 2(4-c) (1-|z?)
A3+ a)(1+38) " 4B +a)(1l+3B)
= ¢(c, |x),
with
Aq(, B) = 36 + 19a + 11a? + 502 + ot + 2286 + 18508 + 85024
+ 7038 — o*B + 456 8% + 681a8% + 4950252 + 1470332
+ 21a* 6% + 13282 + 345082 + 315023° + 1230333
+ 21062 4+ 128* + 4208* + 5402 B* + 3003 8* + 6a* B2
Next we have to find the maximum value of ¢(c, |z|) on I = [0,2] x [0, 1].
Assume that there is a critical point at (cg, |zg|) inside I. If ¢/ (¢, |z]) is
the derivative of ¢(c, |x|) with respect to |z|, then ¢(c, |z|) = 0 contains

the expression 4 — ¢. So that gives a contradiction, and the maximum
value must occur on I boundary.

On c= 07
2(1—[z?) 2
W01 = B0 +38) < Brad 138
On c= 27
P(2,|z|) = o

31+ a)24+a)34+a)(1+8)3(1+28)(1+38)

2
= B+ a)(1+38)’
for 0 < <1land a1(f) <a<1.
On |z| =0,
Aq(a, B)c3
(12(1+ )2+ a)(3+ a)(1 + B)*(1 +28)(1 + 35))

¢(Cv 0) =
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2
<
T B4+ a)(1+36)
for ¢ € [0, 2].
Finally when |z| = 1,

2
o) S BT

The inequality of modulus as is sharp when ¢; = 2. The first inequal-
ity of modulus ag is sharp when ¢; = 0 and ¢ = 2, and the second and
third inequalities for modulus of a3 are sharp when ¢; = ¢g = 2. For
modulus of a4, the third inequality is sharp when ¢; = 0 and ¢ = ¢35 = 2,
and the other inequalities are sharp when ¢; = co = ¢3 = 2. Thus, the
proof of Theorem is complete. O

4. FEKETE-SZEGO THEOREM

In this section, we proof the Fekete-Szego functional for Bf (a), which
extend the result on class By (a)[12].

Theorem 4.1. Let f € Bf(a). Then for v € R
laz — va3| <
2T
(1+ a);(Q +a) (14 B)%(1+28)

if v<w(a,p),
2+ a)(1+20) - if vi(a,B) <v <o, ),

Tt et Rz Y Eeh)

where,
2 —a—a? 468+ 208
vle, f) = 4+2a+88+4aB
valct, B) = 4+ 3a+a? 4108 + 1008 + 4026 + 26% + 4ap? +2a252.
’ 4420+ 88+ 4af
and

T = 3+a+83+6af+2a%6+ 3 +2a8%+a?B% —4v —2av —8Bv — 4afv.

The inequalities is sharp. In particular,

2
s — a2l = G AT am)

Proof. We now apply Lemma @ From (@), we get
2
(24 a)(1 + 2y

H o9
91

jag — va3| = ,

)\02_
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with
B (—2—1—04—1—042 —6ﬁ—2aﬁ+4u+2au+8ﬂy+4aﬂy)
H= 1+ a)?(1+ B)? '
To prove the second inequality, we use the fact that p € [0,2] for 0 >
and 0 < a < 1, when v (a, 8) < v < o, ). For the first inequality,
we use the fact that p — 1 is positive, and the last inequality for p—1 is

negative. The second inequality is sharp by choosing ¢; = 0 and ¢y = 2.
At the same time, the other inequalities are sharp if ¢; = cg = 2. O

5. LOGARITHMIC COEFFICIENTS

The Logarithmic Coefficients 7, of the function f(z) for z € D is
defined as follows.

f2) o
(5.1) log —= = Qnynzn.
o n=1
Differentiating the equation (5) and equating the coefficients, we get
1
(5.2) Y1 = 5&2
1 1,
Y2 = ) az — 5(12
1

— 4 1 3
3= 5 | @4 T G203 34y |-
Subtituting (B™) into the expression of (B2) to obtain

c1
63 =i aaTs

1 (2a+a* = 28) ¢}
7902+ a)(1 + 28) (CQ 21+ a)2(1+ /3)2>
1 (3a +a?— 6,8) c1¢2
=93+ a)(1 + 38) (C?’ T ()2 +a)(1+B)(1+28)
(—6042 — 503 — ot 4+ 68 + 3003 + 180425) 3
- 3(1+0a)?2+a)(l+B)°(1+25)
(5B + a*B — 642 + 6a3%) ¢}
31+ aP+a)(l+ B3+ 2ﬁ)> '

For the function f € B’f (o), we have a sharp bound of |vy,| when
n =1,2,3. Note that the |y;| and |y2| hold for all 0 > fand 0 < o < 1.
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Theorem 5.1. Let f € Blﬁ(a), then

1
|’Yl|§m; B>0and0<a<1,
1 . 1 2
|y2] < TR 0§6§§(2a+a)and0§a§1,
1+48+4af + 2028 + 5% + 2a8% + o252 1 )
S T Ararera(ifiarz O PZaletad)
and 0 < a <1,
1
< Grayras 0 SA S Aile) mdosasl,
S BUraPRraBral AP 2B) 3y P2
0<a<l.

Where,

G = (6 + 3a + 9a® + 5a° + o' + 428 + 21af + 150?58 — 5a*3
— o*B + 15082 + 291a8% + 27302 8% + 1050352 + 21a* 52
+ 7863 + 21908 + 2250232 4+ 10502 3% + 21a* 83
+128* + 4208* + 540”B8* + 300°8* + 6apY)

and f1(a) is positive root of the equation

— 18a — 48a” — 38a° — 140 — 20°

+ (60 + 42 — 1650* — 1850° — 77a* — 11a°) »

+ (276 + 546 + 1650 — 107a” — 77at — 11a°) 2
(240 + 546a + 2820° — 120 — 420" — 60°) z°
(

_|_
+ (72 + 180a + 1440* + 360°) z*
= 0.

1

Proof. It is known that |c1| < 2, so the inequalit <
f |1|— q y|gl|_(1+a)(1+ﬁ)

is proved. This inequality is sharp when ¢y = 2.

The result for |y2], is obtained from the Fekete-Szego theorem when
v = 1/2. We apply the second inequality from Theorem @ for the
first inequality and the first inequality of Theorem for the second
inequality. The first inequality is sharp when c; = 2 and ¢; = 0, and
the second inequality is sharp by selecting ¢; = 2 = cs.
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Next, we use Lemma @ to prove the first inequality of |y3|. Let,

(44 6a + 202 — 3\ + 20\ + a?))

b= 11+ a)(2+a) ’

and
D = (12 + 42a + 540® + 300” + 6a* — 18\ — 24a) + 12a°A
+ 2403 ) + 60\ 4 6)% — 13aA? + 60\ 4 6)% — 13a\?
—202 X2 + 7N+ 2a*2?) /(24(1 + a)3(2 + a)).

Since 0 < B <1, and B(2B — 1) < D < B, are satisfied when 0 < 8 <
f1(a) and 0 < o < 1, then the first inequality for |y3| is proven. For the
second inequality, rewrite -3 as follows,
e
BZ 9B+ a)(1 +38)
Since D — B > 0 when § > 1 and 0 < a < 1, by using Lemma @, we
get the second inequality. Note that there is a open problem for case
fila) <p<land 0 <a<l1.
The first inequality of |v3| is sharp when ¢3 = 2 and ¢; = ¢2 = 0.
While the second inequality is sharp by choosing c3 =co =¢c; =2. 0O

¢3 — 2Bcics + Bei + (D — B)e}) .

6. INVERSE COEFFICIENTS
Suppose that Bf (a)~!is a collection of the inverse functions f~! of
Bf(a), then we can write
fHw) = w+ Agw? + Asw® + Agwt + ...

valid in some disc |w| < ro(f).
Since f(f~}(w)) = w, then

(6.1) Ag = —ag,

Az = 2a% —as,

Ay = —5a§ + basas — a4.
The following theorem contains sharp bounds for modulus of A5 and As.
Theorem 6.1. Let f € Bf(a) and f~1(w) = wtAsw?+Aswd+ Ayt +...,

then

2
(1+a)(1+28)
2+

|Ag| < (
2
(2+a)(1+2B)
2
(

; B>20and 0 < a <,

|As] < ; 0< B <prand ar(f) <a<l,

< : > d0o<a<il1
_(2+a)1+25)a/8_ﬁlan O_Oé_ )
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A
S UTaP@ralipRsope 0SP=hrand

0<a<ai(B),
where,
A=8—60%—20 448 — 2803 — 32026 — 8a33 — 20°
—50a3% — 40a26% — 10a36% — 883 — 20a8% — 16a%5% — 40353,

B1 = 0.196... is positive root of 4x> + 1022 + 3z — 1 = 0, and a1 (B) is
positive root of the equation

—4—28+ 108> +45% + (148 + 258% + 108%) ©
+ (34168 +208% +88%) 2® + (1 + 48 + 58* + 28°) 2*
= 0.
Proof. We again use the coefficient expression in (@) Since
1+a)(1+p)az=cy

and |c1| < 2, the first inequality is proven.
Next, by substituting the expression (@) into the expression (@),

we get

W 6+0+108+a(5+8)

C 21+ a2t o)1+ A1+ 28

|As| =

1
(2+a)(1+2P)
Let

_ 6+ a?+ 108+ a5+ B)
P AP+ o)+ BR(L+ 28

such that 0 < p < 2 provided 0 < 8 < 81 and_a;1(8) < o < 1, and
when 8 > 1 and 0 < a < 1. By using Lemma P.9 gives the required
inequalities for modulus of As.

The inequality for modulus of A will be sharp when ¢; = 2. The first
and second inequalities for modulus of A3 are sharp by selecting ¢; = 0
and co = —2, and the third inequality is sharp when ¢y = ¢; = 2. O

7. SECOND HANKEL DETERMINANT PROBLEMS

The Hankel determinant of the function f for ¢ > 1 and n > 1, defined

Qp Gp+1  *° OGpigtl

an4q-1 " Tt Ap42g—2
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We prove the following theorem in case ¢ = n = 2 for the Beta-Bazilevic¢
function.

Theorem 7.1. Let f € Bf(a), then for >0, and 0 < a < 1,

(7.2) Hy(2) = ‘a2a4 — a%’
4
< .
(2+ «)?(1+206)2
. L . 223 .
The inequality is sharp. In particular, f(z) = z + is an

(2+ a)(1+25)
example of a function that satisfies the sharp condition.

Proof. By substituting the coefficient on (B3) into ([C2) and simplifying,
we get
(7.3) H(2) = — (((60” (-1 458+ 85%) +a* (—1+58+867)
+3a” (=3 + 318 + 528% + 48%)
+12(1+ 118 + 238% + 135°)
+do (14438 + 825° + 305°)) ¢}) /
(12(1+ @)*(2 + @)?(3 + &) (1 + B) (1 + 2B)*(1 + 38)))
n B(6 +4da + a® +68)c2cy
(1+a)2+a)?(3+a)(1+8)*(1+28)*(1+3p)
B c3 n c1C3
2+a)2(1+28)?2  (1+a)B+a)(1+B)(1+33)
We again use Lemma @, and write ¢; := ¢ with 0 < ¢ < 2. Next, take
modulus and noting that || < 1 to obtain the following espression.

(7.4)

Hy(2) < (((60® (1+ B+ 178% + 158° + 98" + 38°)

+at (14 8+78%+158° +98* + 35°)

+3(—3— 258 — 3457 + 188° + 373" + 75°)

+3a® (4+ 68 + 5187 + 1115 + 648" + 163°)

+o (2 — 348 + 808 + 36053° + 2583" + 545%)) ¢*) /

(12(1+ @2+ a)’(B+ ) (1 + 8)' (1 +28)*(1 + 38)))
(1+ (114+4a+a?) B+ (17 + 4o+ o?) §2) A[¢] (4 — 2)

21+ )2+ a)?2(34+ a)(1+ B)2(1 +28)%(1 + 3p)
(7+ 4o+ a?) B3c*|¢| (4 — )

2(1+a)2+a)?(B+ o)1+ B)%(1+26)%(1 4+ 38)

+
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*|¢* (4 - ¢?) L leP (4’
41+ a)B+a)1+5)(1+38) 42+ a)?(1+2p)?
c(4=c*) (1-1¢P)

+
2(1+a)(3+a)(1 + B)(1 +38)
= 1(a, B,[¢], o).
Since the derivative of (v, A, [(], ¢) with respect to |(] is positive, then
W(a, A\, |C|, ¢) will reach the maximum value when || = 1. Then from

([-4), we have
(7.5)

Hy(2) < (((60° (1+ B+ 78% + 158% + 98 + 35°)
+a* (14+8+78%+158° +98* +35°)
+3(—3—253 —345% + 188° + 378" + 78°)
+3a” (4+ 68 + 515% + 1115° + 648" + 163°)
+or (2 — 348 + 805 4 3608° + 258" + 545°)) ¢*) /
(121 + @)*(2+ a)®(3 + a) (L + B) (1 +28)*(1 + 38)))
(1+ (11 +4a+a?) B+ (17T+4a+a?) %) ? (4 — 2)
21+ )2+ a)?(34+ a)(1+ B)2(1 +28)%2(1 + 3P)
(7 + 4o+ a2) B3c? (4 — 02)

AT )2+ 2B o)1+ B2+ 28)2(1 + 35)
2 (4 — 02) (4 — 02)2
41+a)B3+a)1+B)(1+38) 42+ a)2(1+28)2

=1(a, B, c).

Next, we must determine the maximum value of ¢ («, 3, c), when 0 <
¢ < 2. Suppose the derivative of ¢ (a, 8, ¢) with respect to cis ¥ (a, 3, ¢).
According to basic calculus theory, ¥ («,8,¢) = 0 has 3 roots. But
only one root that satisfies that is ¢ = 0. The other two roots are
not real roots. Then, we only investigate the value of 1 (a, 3,0) and
1 (a, B,2). Since 1 (e, 5,0) > Y1(a, 5,2) when > 0and 0 < a < 1,
then 11 (e, 8,0) is a sharp bound for Hs(2). The inequality will be sharp
by choosing ¢; = ¢3 =0 and ¢ca = 2 on ((@) O
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