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Beta-Bazilevič Function

Sa’adatul Fitri1∗ and Mohamad Muslikh2

Abstract. In this paper, we introduce a relatively new class, Bβ
1 (α),

namely the class of Beta-Bazilevič function is generated by the func-
tion Bazilevič B1(α). We introduce the class in question by con-
structing the Alpha-Convex function, M(α), introduced by Miller
et al. [9]. Using Lemmas of function with positive real part, we
were given a sharp estimate of coefficient problems. The coefficient
problems to be solved are the modulus of initial coefficients f , the
modulus of inverse coefficients f−1, the modulus of the Logarith-
mic coefficients log f(z)

z
, the Fekete-Szegö problem and the second

Hankel determinant problem.

1. Introduction and Definitions

Geometric function theory is a branch of complex analysis that stud-
ies the geometric properties of analytic functions. Although this theory
appeared in early 20th century, it is still interesting as a field of research
nowadays. The base of geometric functions is the theory of the univa-
lent functions. Among interesting topics widely discussed are harmonic
theory and quasiconformal mapping, both generalizations of conformal
mapping [3].

The first results of the theory of univalent functions were obtained
by using the area principle. The collection of all analytic and univalent
functions on disk D = {z : |z| < 1}, normalized by the conditions a0 = 0
and a1 = 1 that be denoted by S. The functions f ∈ S given by

(1.1) f(z) = z +

∞∑
n=2

anz
n.
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In 1916, L. Bieberbach proved that the modulus of the second coef-
ficient for the function f, |a2| ≤ 2, using the outer area theorem and
suspected that |an| ≤ n for n ≥ 2 [4]. These results affect the study of
science in the theory of geometric functions. Therefore, it is essential to
find new theoretical results in this field with various applications [5].

Several major subclasses of S have been extensively studied, and more
characteristics can be defined, e.g. the classes convex (C), starlike (S∗),
close-to-convex (K) and Bazilevič functions. Bazilevič[2] introduced the
so-called Bazilevič functions using a differential equation of Löewner and
Kufaref in 1923. The classes of Bazilevič functions are denoted by B(α, δ)
with α ≥ 0 and δ real. The classes of Bazilevič functions are the largest
subclass of S. It is simple to show that C ⊂ S∗ ⊂ K ⊂ B(α, δ) ⊂ S.

In recent years, much of attention has been given to the subclasses
of Bazilevič functions. The topics discussed are coefficient problems
and subordination. Thomas and Marjono[8] studied coefficient prob-
lems and subordination in subclass B1(α), whose definition mimics that
of U(λ = 1). The open problem is when 0 < λ < 1. In addition to
the coefficient problem of the function f ∈ S, several problems can be
constructed from the coefficients an. Among others are inverse coeffi-
cients, logarithmic coefficients, the Fekete-Szegö problem and the sec-
ond Hankel determinant. Murugusundaramoorthy and Bulboaca stud-
ied new subclasses of analytic functions related to a shell-shaped region
in 2020[10]. They determined the estimated bounds of the four initial
coefficients, the upper bound for the Fekete–Szegö functional and for
the Hankel determinant. In 2021, Murugusundaramoorthy, G. et al.
examined initial coefficient bounds and Fekete-Szegö inequalities for a
subclass of Kamali-type starlike functions connected with the limacon
domain of bean shape[11].

We shall be concerned with the subclass B1(α) which first introduced
by Singh[12].

Definition 1.1. f ∈ B1(α) for α ≥ 0 if, and only if, for z ∈ D,

Re

{
f ′(z)

(
f(z)

z

)α−1
}
> 0.

In 2020, Fitri and Thomas introduced the class Bγ
1 (α) of Gamma-

Bazilevič functions[6]. They shown that Bγ
1 (α) is univalent and subset of

B1(α). Some coefficient problems for this functions are also studied. Def-
inition of Gamma-Bazilevič functions is analogue with Gamma-starlike
functions, Mγ defined by,

Re

{(
1 +

zf ′′(z)

f ′(z)

)γ (zf ′(z)
f(z)

)1−γ
}
> 0,
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for z ∈ D and γ ≥ 0. This class was introduced by Darus and Thomas[4].
Previosly, Miller, Mocanu and Reade[9] have studied the class of Alpha-
Convex functions, M(α) defined by,

Re

{
α

(
1 +

zf ′′(z)

f ′(z)

)
+ (1− α)

(
zf ′(z)

f(z)

)}
> 0,

for z ∈ D and α ≥ 0.

The purpose of this paper is to introduce an analogue of M(α) for
Bazilevič functions. The following is the definition in question.
Definition 1.2. Let β ≥ 0 and 0 ≤ α ≤ 1, with f(z) ̸= 0 and f ′(z) ̸= 0.
A function f ∈ S is said to be Beta-Bazilevič functions if for z ∈ D,

Re

{
β

[
zf ′(z)

f(z)1−αzα
+
zf ′′(z)

f ′(z)
+ (α− 1)

(
zf ′(z)

f(z)
− 1

)]
(1.2)

+(1− β)

[
zf ′(z)

f(z)1−αzα

]}
> 0.

We denote this class by Bβ
1 (α).

Then B0
1(α) is the class of Bazilevič functions[12], and Bγ

1 (0) is the
class of Alpha-Convex functions M(α)[9]. We also note that the case
α = 1 and γ = 0 corresponds to the class R of functions who’s derivative
has positive real part. The case α = 0 and β = 0 corresponds to the
starlike functions and when α = 0 and β = 1 to convex functions[5].
Definition 1.3. A function f ∈ S is said to be starlike functions if for
z ∈ D,

Re

{
zf ′(z)

f(z)

}
> 0.

Definition 1.4. A function f ∈ S is said to be convex functions if for
z ∈ D,

Re

{
1 + zf”(z)

f ′(z)

}
> 0.

2. Preliminaries

In this section, we recall the class P of functions with positive real
part in D, so that p ∈ P,

(2.1) p(z) = 1 +

∞∑
n=1

cnz
n,

if, and only if, Re[p(z)] > 0 for z ∈ D.
We shall use the following lemmas concerning the coefficients of p ∈ P.
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Lemma 2.1 ([7]). If p ∈ P, then for some complex valued x with |x| ≤ 1,
and some complex valued ζ with |ζ| ≤ 1,

2c2 = c21 + x
(
4− c21

)
,

4c3 = c31 + 2
(
4− c21

)
c1x− c1

(
4− c21

)
x2 + 2

(
4− c21

) (
1− |x|2

)
ζ.

Lemma 2.2 ([1]). If p ∈ P, then |cn| ≤ 2 for n ≥ 1, and∣∣∣c2 − µ

2
c21

∣∣∣ ≤ max{2, 2|µ− 1|} =

{
2, 0 ≤ µ ≤ 2,
2|µ− 1|, elsewhere.

Lemma 2.3 ([1]). Let p ∈ P. If 0 ≤ B ≤ 1 and B (2B − 1) ≤ D ≤ B,
then ∣∣c3 − 2Bc1c2 +Dc31

∣∣ ≤ 2.

Lemma 2.4 ([1]). Let p ∈ P. If 0 ≤ λ ≤ 1, then
|c3 − 2λc1c2 + λc31| ≤ 2.

3. Initial Coefficients

We first determine expressions for a2, a3 and a4 in terms of the coef-
ficients of p ∈ P. It follows from (1.2) that we get the equivalen form,

β

[
zf ′(z)

f(z)1−αzα
+
zf ′′(z)

f ′(z)
+ (α− 1)

(
zf ′(z)

f(z)
− 1

)]
(3.1)

+ (1− β)

[
zf ′(z)

f(z)1−αzα

]
= p(z),

with p ∈ P and z ∈ D.
By equating of coefficients in (3.1) gives

a2 =
c1

(1 + α)(1 + β)
,(3.2)

a3 =
1

(2 + α)(1 + 2β)

(
c2 −

(α+ α2 − 6β − 2αβ − 2)

2(1 + α2)(1 + β)2
c21

)
,

a4 =
c3

(3 + α)(1 + 3β)

− (2α+ α2 − 15β − 3αβ − 3)c1c2
(1 + α)(2 + α)(3 + α)(1 + β)(1 + 2β)(1 + 3β)

− V c31
6(1 + α)3(2 + α)(3 + α)(1 + β)3(1 + 2β)(1 + 3β)

,

where
V = 13α+ 2α2 − 7α3 − 36β + 83αβ + 76α2β
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+ 19α3β + 2α4β − 102β2 − 36αβ2 − 6α2β2 − 6.

Theorem 3.1. If f ∈ Bβ
1 (α) then

|a2| ≤
2

(1 + α)(1 + β)
; for β ≥ 0 and 0 ≤ α ≤ 1,

|a3| ≤
2

(2 + α)(1 + 2β)
; for β = 0 and α = 1,

≤ 2(3 + 8β + β2 + α2γ(2 + β) + α(1 + 6β + 2β2))

(1 + α)2(2 + α)(1 + β)2(1 + 2β)
;

for β > 0 and 0 ≤ α ≤ 1,

≤ 2(3 + 8β + β2 + α2γ(2 + β) + α(1 + 6β + 2β2))

(1 + α)2(2 + α)(1 + β)2(1 + 2β)
;

for β = 0 and 0 ≤ α < 1,

|a4| ≤
2V1

3(1 + α)3(2 + α)(3 + α)(1 + β)3(1 + 2β)(1 + 3β)
;

for β > 1 and 0 ≤ α ≤ 1,

≤ 2V1
3(1 + α)3(2 + α)(3 + α)(1 + β)3(1 + 2β)(1 + 3β)

;

for 0 ≤ β ≤ 1 and 0 ≤ α ≤ α1(β),

≤ 2

(3 + α)(1 + 3β)
; for 0 ≤ β ≤ 1 and α1(β) < α ≤ 1,

≤ 2V1
3(1 + α)3(2 + α)(3 + α)(1 + β)3(1 + 2β)(1 + 3β)

;

for 0 ≤ β < 1 and α = 0,

where,
V1 =

(
36 + 228β + 456β2 + 132β3 + 12β4

)
+ α4

(
1− β + 21β2 + 21β3 + 6β4

)
+ α3

(
5 + 7β + 147β2 + 123β3 + 30β4

)
+ α2

(
11− 85β + 495β2 + 315β3 + 54β4

)
+ α

(
19 + 185β + 681β2 + 345β3 + 42β4

)
,

and α1(β) is the positive root of the equations
12β4 + 42β3 − 48β2 − 6β +

(
34 + 188β + 153β2 + 147β3 + 42β4

)
x

+
(
19 + 211β + 237β2 + 189β3 + 54β4

)
x2

+
(
8 + 94β + 135β2 + 105β3 + 30β4

)
x3

+
(
1 + 17β + 27β2 + 21β3 + 6β4

)
x4
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= 0.

Proof. It is easy to proof the first innequality |a2| with fact |c1| ≤ 2.
Let

|a3| =
1

(2 + α)(1 + 2β)

∣∣∣∣c2 − (α+ α2 − 6β − 2αβ − 2)

2(1 + α2)(1 + β)2
c21

∣∣∣∣ .
From 2.2, we get

µ =
(α+ α2 − 6β − 2αβ − 2)

(1 + α2)(1 + β)2
,

such that
∣∣∣c2 − µ

2
c21

∣∣∣ ≤ 2 provided β = 0 and α = 1. Applying Lemma
2.2 to get the inequality for |a3|.

To prove the first and fourth inequality for a4, we use fact that the
coefficients of c3, c1c2 and c31 are positive. Next we proof tne second and
third for |a4|.

For a4, write

a4 =
1

(3 + α)(1 + 3β)

[(
c3 − c1c2 +

1

2
c31

)
+W1c1

(
(c2 −

1

2
c21)−W2c

2
1

)]
,

with

W1 =
5 + α+ 21β + 12αβ + 3α2β + 4β2 + 6αβ2 + 2α2β2

(1 + α)(2 + α)(1 + β)(1 + 2β)
,

and

W2 =
V

6(1 + α)3(2 + α)(1 + γ)3(1 + 2γ)

=
{
α4(1 + 8β + 3β2) + α3(5 + 34β − 6β2 − 9β3)

+ α2(8 + 25β − 126β2 − 63β3)− α(−1 + 40β + 246β2 + 99β3)

−(15 + 99β + 201β2 + 45β3)
}
/
{
6(1 + α)2(1 + β)2[

5 + 21β4β2 + α2β(3 + 2β) + α(1 + 12β + 6β2)
]}
.

W1 and W2 are positive when β ≥ 0 and 0 < α ≤ 1. According
Lemma 2.4, with λ = 1

2 , we get

W1c1

((
c2 −

1

2
c21

)
−W2c

2
1

)
≤W1|c1|

(
2− 1

2
|c1|2 −W2|c1|2

)
:= P (|c1|).

Let |c1| = x, then

P (x) =W1x

(
2− 1

2
x2 −W2x

2

)
.
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Since P ′(x) ≥ 0, then a function P (x) is monotone increasing functions
when 0 ≤ x ≤ 2 for β ≥ 0 and 0 < α ≤ 1. So that the maximum value
is when x = 2, which give the second inequality for |a4|,

1

(3 + α)(1 + 3β)
(2 + P (2)) .

For the third inequality, we use Lemma 2.1 to write c2 and c3 in term
of c1. Next, take c1 = c with c ∈ [0, 2], and note that |ζ| ≤ 1, we have

|a4| ≤
∆1(α, β)c

3

(12(1 + α)3(2 + α)(3 + α)(1 + β)3(1 + 2β)(1 + 3β))

+

(
5 + α+ 21β + 12αβ + 3α2β + 4β2 + 6αβ2 + 2α2β2

)
c
(
4− c2

)
|x|

2(1 + α)(2 + α)(3 + α)(1 + β)(1 + 2β)(1 + 3β)

+
c
(
4− c2

)
|x|2

4(3 + α)(1 + 3β)
+

2
(
4− c2

) (
1− |x|2

)
4(3 + α)(1 + 3β)

:= ϕ(c, |x|),
with

∆1(α, β) = 36 + 19α+ 11α2 + 5α3 + α4 + 228β + 185αβ + 85α2β

+ 7α3β − α4β + 456β2 + 681αβ2 + 495α2β2 + 147α3β2

+ 21α4β2 + 132β3 + 345αβ3 + 315α2β3 + 123α3β3

+ 21α4β3 + 12β4 + 42αβ4 + 54α2β4 + 30α3β4 + 6α4β4.

Next we have to find the maximum value of ϕ(c, |x|) on I = [0, 2]× [0, 1].
Assume that there is a critical point at (c0, |x0|) inside I. If ϕ′(c, |x|) is

the derivative of ϕ(c, |x|) with respect to |x|, then ϕ′(c, |x|) = 0 contains
the expression 4− c2. So that gives a contradiction, and the maximum
value must occur on I boundary.
On c = 0,

ϕ(0, |x|) =
2
(
1− |x|2

)
(3 + α)(1 + 3β)

≤ 2

(3 + α)(1 + 3β)
.

On c = 2,

ϕ(2, |x|) = 2V

3(1 + α)3(2 + α)(3 + α)(1 + β)3(1 + 2β)(1 + 3β)

≤ 2

(3 + α)(1 + 3β)
,

for 0 ≤ β ≤ 1 and α1(β) < α ≤ 1.
On |x| = 0,

ϕ(c, 0) =
∆1(α, β)c

3

(12(1 + α)3(2 + α)(3 + α)(1 + β)3(1 + 2β)(1 + 3β))
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≤ 2

(3 + α)(1 + 3β)
,

for c ∈ [0, 2].
Finally when |x| = 1,

ϕ(c, 1) ≤ 2

(3 + α)(1 + 3β)
.

The inequality of modulus a2 is sharp when c1 = 2. The first inequal-
ity of modulus a3 is sharp when c1 = 0 and c2 = 2, and the second and
third inequalities for modulus of a3 are sharp when c1 = c2 = 2. For
modulus of a4, the third inequality is sharp when c1 = 0 and c2 = c3 = 2,
and the other inequalities are sharp when c1 = c2 = c3 = 2. Thus, the
proof of Theorem 3.1 is complete. □

4. Fekete-Szegö Theorem

In this section, we proof the Fekete-Szegö functional for Bβ
1 (α), which

extend the result on class B1(α)[12].

Theorem 4.1. Let f ∈ Bβ
1 (α). Then for ν ∈ R

|a3 − νa22| ≤

2T

(1 + α)2(2 + α)(1 + β)2(1 + 2β)
if ν ≤ ν1(α, β),

2

(2 + α)(1 + 2β)
if ν1(α, β) ≤ ν ≤ ν2(α, β),

− 2T

(1 + α)2(2 + α)(1 + β)2(1 + 2β)
if ν ≥ ν2(α, β),

where,

ν1(α, β) =
2− α− α2 + 6β + 2αβ

4 + 2α+ 8β + 4αβ
,

ν2(α, β) =
4 + 3α+ α2 + 10β + 10αβ + 4α2β + 2β2 + 4αβ2 + 2α2β2

4 + 2α+ 8β + 4αβ
.

and
T = 3+α+8β+6αβ+2α2β+β2+2αβ2+α2β2−4ν−2αν−8βν−4αβν.

The inequalities is sharp. In particular,

|a3 − a22| ≤
2

(2 + α)(1 + 2β)
.

Proof. We now apply Lemma 2.2. From (3.2), we get

|a3 − νa22| =
2

(2 + α)(1 + 2γ)

∣∣∣c2 − µ

2
c21

∣∣∣ ,
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with

µ =

(
−2 + α+ α2 − 6β − 2αβ + 4ν + 2αν + 8βν + 4αβν

)
(1 + α)2(1 + β)2

.

To prove the second inequality, we use the fact that µ ∈ [0, 2] for 0 ≥ β
and 0 ≤ α ≤ 1, when ν1(α, β) ≤ ν ≤ ν2(α, β). For the first inequality,
we use the fact that µ− 1 is positive, and the last inequality for µ− 1 is
negative. The second inequality is sharp by choosing c1 = 0 and c2 = 2.
At the same time, the other inequalities are sharp if c1 = c2 = 2. □

5. Logarithmic Coefficients

The Logarithmic Coefficients γn of the function f(z) for z ∈ D is
defined as follows.

(5.1) log
f(z)

z
= 2

∞∑
n=1

γnzn.

Differentiating the equation (5.1) and equating the coefficients, we get

γ1 =
1

2
a2(5.2)

γ2 =
1

2

(
a3 −

1

2
a22

)
γ3 =

1

2

(
a4 − a2a3 +

1

3
a32

)
.

Subtituting (3.2) into the expression of (5.2) to obtain

γ1 =
c1

2(1 + α)(1 + β)
(5.3)

γ2 =
1

2(2 + α)(1 + 2β)

(
c2 −

(
2α+ α2 − 2β

)
c21

2(1 + α)2(1 + β)2

)

γ3 =
1

2(3 + α)(1 + 3β)

(
c3 −

(
3α+ α2 − 6β

)
c1c2

(1 + α)(2 + α)(1 + β)(1 + 2β)

−
(
−6α2 − 5α3 − α4 + 6β + 30αβ + 18α2β

)
c31

3(1 + α)3(2 + α)(1 + β)3(1 + 2β)

−
(
5α3β + α4β − 6β2 + 6αβ2

)
c31

3(1 + α)3(2 + α)(1 + β)3(1 + 2β)

)
.

For the function f ∈ Bβ
1 (α), we have a sharp bound of |γn| when

n = 1, 2, 3. Note that the |γ1| and |γ2| hold for all 0 ≥ β and 0 ≤ α ≤ 1.
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Theorem 5.1. Let f ∈ Bβ
1 (α), then

|γ1| ≤
1

(1 + α)(1 + β)
; β ≥ 0 and 0 ≤ α ≤ 1,

|γ2| ≤
1

(2 + α)(1 + 2β)
; 0 ≤ β ≤ 1

2
(2α+ α2) and 0 ≤ α ≤ 1,

≤ 1 + 4β + 4αβ + 2α2β + β2 + 2αβ2 + α2β2

(1 + α)2(2 + α)(1 + β)2(1 + 2β)
; β ≥ 1

2
(2α+ α2)

and 0 ≤ α ≤ 1,

|γ3| ≤
1

(3 + α)(1 + 3β)
; 0 ≤ β ≤ β1(α) and 0 ≤ α ≤ 1,

≤ G

(3(1 + α)3(2 + α)(3 + α)(1 + β)3(1 + 2β)(1 + 3β))
; β ≥ 1 and

0 ≤ α ≤ 1.

Where,

G =
(
6 + 3α+ 9α2 + 5α3 + α4 + 42β + 21αβ + 15α2β − 5α3β

− α4β + 150β2 + 291αβ2 + 273α2β2 + 105α3β2 + 21α4β2

+ 78β3 + 219αβ3 + 225α2β3 + 105α3β3 + 21α4β3

+12β4 + 42αβ4 + 54α2β4 + 30α3β4 + 6α4β4
)
,

and β1(α) is positive root of the equation

− 18α− 48α2 − 38α3 − 14α4 − 2α5

+
(
60 + 42α− 165α2 − 185α3 − 77α4 − 11α5

)
x

+
(
276 + 546α+ 165α2 − 107α3 − 77α4 − 11α5

)
x2

+
(
240 + 546α+ 282α2 − 12α3 − 42α4 − 6α5

)
x3

+
(
72 + 180α+ 144α2 + 36α3

)
x4

= 0.

Proof. It is known that |c1| ≤ 2, so the inequality |g1| ≤
1

(1 + α)(1 + β)
is proved. This inequality is sharp when c1 = 2.

The result for |γ2|, is obtained from the Fekete-Szegö theorem when
ν = 1/2. We apply the second inequality from Theorem 4.1 for the
first inequality and the first inequality of Theorem 4.1 for the second
inequality. The first inequality is sharp when c2 = 2 and c1 = 0, and
the second inequality is sharp by selecting c1 = 2 = c2.
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Next, we use Lemma 2.3 to prove the first inequality of |γ3|. Let,

B =
(4 + 6α+ 2α2 − 3λ+ 2αλ+ α2λ)

4(1 + α)(2 + α)
,

and
D =

(
12 + 42α+ 54α2 + 30α3 + 6α4 − 18λ− 24αλ+ 12α2λ

+ 24α3λ+ 6α4λ+ 6λ2 − 13αλ2 + 6α4λ+ 6λ2 − 13αλ2

−2α2λ2 + 7α3λ2 + 2α4λ2
)
/(24(1 + α)3(2 + α)).

Since 0 ≤ B ≤ 1, and B(2B − 1) ≤ D ≤ B, are satisfied when 0 ≤ β ≤
β1(α) and 0 ≤ α ≤ 1, then the first inequality for |γ3| is proven. For the
second inequality, rewrite γ3 as follows,

γ3 =
1

2(3 + α)(1 + 3β)

(
c3 − 2Bc1c2 +Bc31 + (D −B)c31

)
.

Since D − B ≥ 0 when β ≥ 1 and 0 ≤ α ≤ 1, by using Lemma 2.4, we
get the second inequality. Note that there is a open problem for case
β1(α) ≤ β ≤ 1 and 0 ≤ α ≤ 1.

The first inequality of |γ3| is sharp when c3 = 2 and c1 = c2 = 0.
While the second inequality is sharp by choosing c3 = c2 = c1 = 2. □

6. Inverse Coefficients

Suppose that Bβ
1 (α)

−1 is a collection of the inverse functions f−1 of
Bβ
1 (α), then we can write

f−1(ω) = ω +A2ω
2 +A3ω

3 +A4ω
4 + ...

valid in some disc |ω| ≤ ro(f).
Since f(f−1(ω)) = ω, then

A2 = −a2,(6.1)
A3 = 2a22 − a3,

A4 = −5a23 + 5a2a3 − a4.

The following theorem contains sharp bounds for modulus of A2 and A3.

Theorem 6.1. Let f ∈ Bβ
1 (α) and f−1(ω) = ω+A2ω

2+A3ω
3+A4ω

4+...,
then

|A2| ≤
2

(1 + α)(1 + β)
; β ≥ 0 and 0 ≤ α ≤ 1,

|A3| ≤
2

(2 + α)(1 + 2β)
; 0 ≤ β ≤ β1 and α1(β) ≤ α ≤ 1,

≤ 2

(2 + α)(1 + 2β)
; β ≥ β1 and 0 ≤ α ≤ 1,
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≤ A

(1 + α)2(2 + α)2(1 + β)2(1 + 2β)2
; 0 ≤ β ≤ β1 and

0 ≤ α ≤ α1(β),

where,
A = 8− 6α2 − 2α3 + 4β − 28αβ − 32α2β − 8α3β − 20β2

− 50αβ2 − 40α2β2 − 10α3β2 − 8β3 − 20αβ3 − 16α2β3 − 4α3β3,

β1 = 0.196... is positive root of 4x3 + 10x2 + 3x − 1 = 0, and α1(β) is
positive root of the equation

− 4− 2β + 10β2 + 4β3 +
(
14β + 25β2 + 10β3

)
x

+
(
3 + 16β + 20β2 + 8β3

)
x2 +

(
1 + 4β + 5β2 + 2β3

)
x3

= 0.

Proof. We again use the coefficient expression in (3.2). Since
(1 + α)(1 + β)a2 = c1

and |c1| ≤ 2, the first inequality is proven.
Next, by substituting the expression (3.2) into the expression (6.1),

we get

|A3| =
1

(2 + α)(1 + 2β)

∣∣∣∣c2 − 6 + α2 + 10β + α(5 + β)

2(1 + α)2(2 + α)(1 + β)2(1 + 2β)2
c21

∣∣∣∣ .
Let

µ =
6 + α2 + 10β + α(5 + β)

(1 + α)2(2 + α)(1 + β)2(1 + 2β)2
,

such that 0 ≤ µ ≤ 2 provided 0 ≤ β ≤ β1 and α1(β) ≤ α ≤ 1, and
when β ≥ β1 and 0 ≤ α ≤ 1. By using Lemma 2.2 gives the required
inequalities for modulus of A3.

The inequality for modulus of A2 will be sharp when c1 = 2. The first
and second inequalities for modulus of A3 are sharp by selecting c1 = 0
and c2 = −2, and the third inequality is sharp when c2 = c1 = 2. □

7. Second Hankel Determinant Problems

The Hankel determinant of the function f for q ≥ 1 and n ≥ 1, defined
by

(7.1) Hq (n) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q+1

an+1 · · · · · ·
...

...
...

...
...

an+q−1 · · · · · · an+2q−2

∣∣∣∣∣∣∣∣∣
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We prove the following theorem in case q = n = 2 for the Beta-Bazilevič
function.

Theorem 7.1. Let f ∈ Bβ
1 (α), then for β ≥ 0, and 0 < α ≤ 1,

H2(2) =
∣∣a2a4 − a23

∣∣(7.2)

≤ 4

(2 + α)2(1 + 2β)2
.

The inequality is sharp. In particular, f(z) = z+
2z3

(2 + α)(1 + 2β)
is an

example of a function that satisfies the sharp condition.

Proof. By substituting the coefficient on (3.2) into (7.2) and simplifying,
we get

H2(2) = −
(((

6α3
(
−1 + 5β + 8β2

)
+ α4

(
−1 + 5β + 8β2

)
(7.3)

+ 3α2
(
−3 + 31β + 52β2 + 4β3

)
+ 12

(
1 + 11β + 23β2 + 13β3

)
+4α

(
1 + 43β + 82β2 + 30β3

))
c41
)
/(

12(1 + α)3(2 + α)2(3 + α)(1 + β)4(1 + 2β)2(1 + 3β)
))

+
β(6 + 4α+ α2 + 6β)c21c2

(1 + α)(2 + α)2(3 + α)(1 + β)2(1 + 2β)2(1 + 3β)

− c22
(2 + α)2(1 + 2β)2

+
c1c3

(1 + α)(3 + α)(1 + β)(1 + 3β)
.

We again use Lemma 2.1, and write c1 := c with 0 ≤ c ≤ 2. Next, take
modulus and noting that |η| ≤ 1 to obtain the following espression.

H2(2) ≤
(((

6α3
(
1 + β + 7β2 + 15β3 + 9β4 + 3β5

)(7.4)

+ α4
(
1 + β + 7β2 + 15β3 + 9β4 + 3β5

)
+ 3

(
−3− 25β − 34β2 + 18β3 + 37β4 + 7β5

)
+ 3α2

(
4 + 6β + 51β2 + 111β3 + 64β4 + 16β5

)
+α

(
2− 34β + 80β2 + 360β3 + 258β4 + 54β5

))
c4
)
/(

12(1 + α)3(2 + α)2(3 + α)(1 + β)4(1 + 2β)2(1 + 3β)
))

+

(
1 +

(
11 + 4α+ α2

)
β +

(
17 + 4α+ α2

)
β2
)
c2|ζ|

(
4− c2

)
2(1 + α)(2 + α)2(3 + α)(1 + β)2(1 + 2β)2(1 + 3β)

+

(
7 + 4α+ α2

)
β3c2|ζ|

(
4− c2

)
2(1 + α)(2 + α)2(3 + α)(1 + β)2(1 + 2β)2(1 + 3β)
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+
c2|ζ|2

(
4− c2

)
4(1 + α)(3 + α)(1 + β)(1 + 3β)

+
|ζ|2

(
4− c2

)2
4(2 + α)2(1 + 2β)2

+
c
(
4− c2

) (
1− |ζ|2

)
2(1 + α)(3 + α)(1 + β)(1 + 3β)

:= ψ(α, β, |ζ|, c).

Since the derivative of ψ(α, λ, |ζ|, c) with respect to |ζ| is positive, then
ψ(α, λ, |ζ|, c) will reach the maximum value when |ζ| = 1. Then from
(7.4), we have

H2(2) ≤
(((

6α3
(
1 + β + 7β2 + 15β3 + 9β4 + 3β5

)(7.5)

+ α4
(
1 + β + 7β2 + 15β3 + 9β4 + 3β5

)
+ 3

(
−3− 25β − 34β2 + 18β3 + 37β4 + 7β5

)
+ 3α2

(
4 + 6β + 51β2 + 111β3 + 64β4 + 16β5

)
+α

(
2− 34β + 80β2 + 360β3 + 258β4 + 54β5

))
c4
)
/(

12(1 + α)3(2 + α)2(3 + α)(1 + β)4(1 + 2β)2(1 + 3β)
))

+

(
1 +

(
11 + 4α+ α2

)
β +

(
17 + 4α+ α2

)
β2
)
c2
(
4− c2

)
2(1 + α)(2 + α)2(3 + α)(1 + β)2(1 + 2β)2(1 + 3β)

+

(
7 + 4α+ α2

)
β3c2

(
4− c2

)
2(1 + α)(2 + α)2(3 + α)(1 + β)2(1 + 2β)2(1 + 3β)

+
c2
(
4− c2

)
4(1 + α)(3 + α)(1 + β)(1 + 3β)

−
(
4− c2

)2
4(2 + α)2(1 + 2β)2

:= ψ1(α, β, c).

Next, we must determine the maximum value of ψ1(α, β, c), when 0 ≤
c ≤ 2. Suppose the derivative of ψ1(α, β, c) with respect to c is ψ′

1(α, β, c).
According to basic calculus theory, ψ′

1(α, β, c) = 0 has 3 roots. But
only one root that satisfies that is c = 0. The other two roots are
not real roots. Then, we only investigate the value of ψ1(α, β, 0) and
ψ1(α, β, 2). Since ψ1(α, β, 0) ≥ ψ1(α, β, 2) when β ≥ 0 and 0 < α ≤ 1,
then ψ1(α, β, 0) is a sharp bound for H2(2). The inequality will be sharp
by choosing c1 = c3 = 0 and c2 = 2 on (7.3). □
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