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Abstract. The objective of this paper is to highlight the idea of
k-weakly and 2k-weakly soft compatible mappings and their utiliza-
tion in proving the main results. For this aim, we establish some
fixed point results for the Prešić’s type contractive mappings in the
context of soft metric spaces, when the set of the parameter is finite.
Also we give an example to show that the condition of finiteness on
the set of parameter can’t be omitted. Some examples are given to
support main findings of this article. Finally, an application of a
soft version of BCP in iterated soft function systems is established.

1. Introduction

The notion of soft-set theory as a technique for approaching com-
plexity and the decision-making problem was established by Russian
researcher Molodtsov in 1999 [4]. Soft set theory is used in numerous
areas of study, including social sciences, astronomy, chemistry, econom-
ics, informatics, and medical sciences. Maji et al. [25, 26] employed the
principle of soft sets when making decisions and described several soft
set operations. Ali et al. [20] also proposed several soft set operations
that have been very effective in the area of soft set theory. Chen et
al. [2] have developed some innovative works in the settings of soft set
theory.

Soft topological spaces were investigated by Shabir and Naz [22].
Cagman et al. [23] suggested soft topological space theory and achieved
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different characteristics concerning soft topological spaces. Riaz and Fa-
tima [21] employed soft sets, soft elements, and soft points to introduce
the ideas of soft dense, non-soft dense sets, soft first category, soft sec-
ond category, and Baire’s soft space for soft metric spaces, as well as
construct the soft metric version of Baire’s category theorem. Pei and
Miao [5] examined the relationship between information technology and
soft sets. The essential properties of soft sets and soft real numbers were
proposed by Samanta and Das [29]-[31]. Soft elements and soft points
in soft sets were investigated, and the concept of soft metric spaces was
established. In their soft mappings on soft sets, Samanta and Majum-
dar [27] investigated the idea of soft groups, images, and inverse images.
Ahmad and Kharal [1] have developed soft-class mappings, soft-set im-
ages, and inverse soft-set images. Rong investigated the countability of
soft topological spaces, soft spaces, and soft Lindolof space in [33], as
well as several key conclusions based on these notions.

Roy and Samanta [32] explored some important findings with a soft
base and soft sub-base in the theory of topological spaces. In their work
on soft continuity, soft openness, and soft closeness, Zorlutuna and Cakir
[9] looked into the effect of soft-separation axioms and expanded the
pasting lemma about soft set theory. Subhashinin and Sekar investigated
numerous intriguing aspects of the soft pre-open set to define the soft
pre-topology and soft pre-sub-maximum in [10]. The concept of a soft
ideal for a soft topological space was presented by Yildirim et al. [7], and
soft I-Baire spaces for a soft topological space were constructed. Many
scholars in the last decade have been working on soft topology and soft
metric spaces (their work is noted in) [2]-[3],[6],[8],[11]-[19],[27]-[28],[34].

This article is organized as; Section 2 contains some basic of soft set
from existing literature of soft metric theory. In Section 3, we proved
soft metric version of Banach contraction principle for Prešić’s type map-
pings. In Section 4, an application of a soft version of BCP in iterated
soft function systems is established. Finally in Section 5, we conclude
our work and provide an idea that some further improvement may be
possible.

2. Preliminaries

The latter’s X, P (X), E, SP
(
X̃
)

, R(A)∗ and B(R) will be used to
signify in this work the universal set, the power set of X, the set of
parameters, the set of all soft points of X̃, the set of all non-negative
reals and the set of all non-empty bounded subsets of R respectively.

Definition 2.1 ([4]). Let X be an initial universe and E describes as
a non-empty collection of parameters and ϕ ̸= A ⊆ E. Soft set over A
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corresponds to a pair (F,A) or FA, where F is the mapping from A to
P (X) i.e. F : A → P (X). It can be written as

(F,A) = {(η, F (η)) : η ∈ A,F (η) ∈ P (X)} .

Definition 2.2 ([5],[7]). Let (F,A1) and (G,A2) be two soft sets over
a universe X.

(i) Union is defined as

(F,A1)∪̃(G,A2) =


F (η), if η ∈ A1/A2,

G(η), if η ∈ A2/A1,

F (η) ∪G(η), if η ∈ A2 ∩A1;

(ii) Intersection is defined as (H, J) = (F,A1)∩̃(G,A2), where J =
A1 ∩A2 ̸= ϕ and H(η) = F (η) ∩G(η), ∀η ∈ J.

Definition 2.3 ([5],[7]). Let (F,E) be a soft set over the universe X.
Then pair (F,E) is

(i) Soft null set if, F (η) = ϕ, ∀η ∈ E;
(ii) Soft non-null if, F (η) ̸= ϕ, for at least one η ∈ E;
(iii) Absolute soft set if, F (η) = X, ∀η ∈ E and it is denoted by

X̃;
(iv) Soft point if, F (λ) = {x} for exactly one λ ∈ E, some x ∈ X

and F (η) = ϕ for all η ∈ E \ {λ} denoted by (F x
λ , E) or simply

by F x
λ .

Soft set theory’s fundamental notions and properties can be found in
[4],[7],[15].

Definition 2.4 ([18]). A soft real set is a mapping F : A → B(R)
and it is denoted by (F,A). We suppose that â, b̂, ĉ signifing soft real
numbers, and l̄, m̄, n̄ signifying the specific kind of soft real numbers
such as ā(η) = a, for all η ∈ A etc.

Definition 2.5 ([18]). For two soft real numbers â, b̂ we say that
(i) â ≤̃ b̂ if â(η) ≤ b̂(η), ∀ η ∈ A;
(ii) â ≥̃ b̂ if â(η) ≥ b̂(η), ∀ η ∈ A;
(iii) â <̃ b̂ if â(η) < b̂(η), ∀ η ∈ A;
(iv) â >̃ b̂ if â(η) > b̂(η), ∀ η ∈ A.

Remark 2.6 ([15]). Recall that if r̂ is a soft mapping from a soft set
(F,A) to a soft set (G,B), then for each soft point F x

λ ∈ (F,A) there
exists exactly one soft point Gy

µ ∈ (G,B) such that r̂(F x
λ )=Gy

µ.

Definition 2.7 ([15]). If η ∈ A and F (η) = {x} ⊂ G(η), then a soft
point F x

η is said to belong to a soft set (G,A). We write F x
η ∈̃ (G,A).
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Definition 2.8 ([15]). Two soft points F x
α and F y

β are said to be equal
if α = β and F (α) = F (β) i.e. x = y. Thus F x

α ̸= F y
β ⇔ x ̸= y or α ̸= β.

We define the soft metric using the idea of soft points as follows:

Definition 2.9 ([15]). Let X be a universe, A be a non-empty subset of
parameters and X̃ be the absolute soft set i.e., F (λ) = X for all λ ∈ A,
where (F,A) = X̃. A mapping d : SP

(
X̃
)
× SP

(
X̃
)
→̃R(A)∗ is said

to be a soft metric on X̃ if for any Xx
λ , X

y
µ, Xz

γ ∈ SP
(
X̃
)

, the following
holds:

(i) d (Xx
λ , X

y
µ) ≥̃0̄, for all Xx

λ , X
y
µ ∈̃ X̃.

(ii) d (Xx
λ , X

y
µ) = 0̄ if and only if Xx

λ = Xy
µ.

(iii) d (Xx
λ , X

y
µ) = d (Xy

µ, Xx
λ), for all Xx

λ , X
y
µ ∈̃ X̃.

(iv) d
(
Xx

λ , X
z
γ

)
≤̃d (Xx

λ , X
y
µ) + d

(
Xy

µ, Xz
γ

)
, for all Xx

λ , X
y
µ, Xz

γ ∈̃ X̃.(
X̃, d, A

)
or simply (X̃, d) is called soft metric space with the soft set

X̃ and a soft metric d. The conditions (i), (ii), (iii) and (iv) are referred
to as soft metric axioms.

Every crisp metric d on a crisp set X can be extended to a soft metric
on the soft set X̃. Also, every parametrized family of crisp metrics can
be perceived as a soft metric but any soft metric is not merely a family
of crisp metrics.

Definition 2.10 ([15]). Let (X̃, d, E) be a soft metric space.
(i) Soft open ball with center at a soft point F x

λ and radius r̄ ≥̃ 0̄
is

B (F x
λ , r̄) =

{
F y
µ ∈̃ X̃ : d

(
F x
λ , F

y
µ

)
<̃ r̄

}
⊂ SP

(
X̃
)
;

(ii) Soft closed ball with center at a soft point F x
λ and radius

r̄ ≥̃ 0̄ is

B (F x
λ , r̄) =

{
F y
µ ∈̃ X̃ : d

(
F x
λ , F

y
µ

)
≤̃ r̄

}
⊂ SP

(
X̃
)
.

Given a soft metric space (X̃, d), a collection
{
F xα
λα

}
α∈λ of soft points

in X̃, simply denoted by
{
F x
λ,α

}
α∈Λ

. In particular, a sequence
{
F xn
λn

}
n∈N

of soft points in X̃ will be denoted by
{
F x
λ,n

}
n
.

Definition 2.11 ([15]). Let (X̃, d) be a soft metric space and
{
F x
λ,n

}
n

be a sequence of soft points in X̃, then
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(i) sequence
{
F x
λ,n

}
n

is convergent to F y
µ ∈ X̃ if, for every ϵ̄ >̃ 0̄,

∃ m ∈ N such that d
(
F x
λ,n, F

y
µ

)
<̃ ϵ̄, whenever n ≥ m. i.e.

d
(
F x
λ,n, F

y
µ

)
→ 0̄ as n → ∞;

(ii) sequence
{
F x
λ,n

}
n

is a Cauchy sequence if, for each ϵ̄ >̃ 0̄, ∃ m ∈

N such that d
(
F x
λ,i, F

y
µ,j

)
<̃ϵ̄, ∀i, j ≥ m. i.e. d

(
F x
λ,i, F

y
µ,j

)
→ 0̄

as i, j → ∞;
(iii) if limit of a sequence

{
F x
λ,n

}
n

exists then, it is unique;

(iv) every convergent sequence
{
F x
λ,n

}
n

is a Cauchy sequence in a
soft metric space (X̃, d);

(v) if for every Cauchy sequence
{
F x
λ,n

}
n

of soft points in X̃ such

that d
(
F x
λ,n, F

y
µ

)
→ 0̄ as n → ∞ for some F y

µ in X̃ then, the
pair (X̃, d) is a complete metric space.

3. Main Results

Abbas [17] generalized the Banach contraction principle for complete
metric spaces in to the setting of complete soft metric spaces (X̃, d)
with A is a (non-empty) countable finite set, and it was shown that the
restriction of finiteness on A can’t be eased. Here in this section we use
notation of soft point as Xx

λ instead of F x
λ .

Theorem 3.1 ([17]). Assume that (X̃, d) be a complete soft metric space
with countable finite set A. The soft mapping T : X̃ →̃ X̃ follows

d
(
T (Xx

λ) , T (X
y
µ)
)
≤̃c̄d

(
Xx

λ , X
y
µ

)
,

for all Xx
λ , X

y
µ ∈ SP

(
X̃
)

, and 0̄≤̃c̄<̃1̄. As such T possesses a unique

fixed soft point. i.e. Xx
λ ∈ SP

(
X̃
)

such that T (Xx
λ) = Xx

λ .

Definition 3.2. Let X ̸= 0 and A is finite set, let T : X̃2k→̃X̃ and
f : X̃→̃X̃. Then (f, T ) is called a 2k-weakly soft compatible pair
if f (T (Xx

λ , X
x
λ , . . . , X

x
λ)) = T (f (Xx

λ) , f (Xx
λ) , . . . , f (Xx

λ)), whenever
Xx

λ ∈ X̃ is such that f (Xx
λ) = T (Xx

λ , X
x
λ , . . . , X

x
λ).

In the following results; we have generalized the Banach contraction
principle for Prešić’s type contractive mappings [11],[13],[28] in setting
of soft metric spaces.
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Theorem 3.3. Let
(
X̃, d, A

)
be a soft metric space with finite set A, k

is a positive integer and S, T : X̃2k→̃X̃ and f : X̃→̃X̃ be a soft mapping
satisfying

d
(
S
(
Xx1

λ,1, X
x2
λ,2, . . . , X

x2k
λ,2k

)
, T
(
Xx2

λ,2, X
x3
λ,3, . . . , X

x2k+1

λ,2k+1

))
(3.1)

≤̃ᾱmax
{
d
(
f
(
Xxi

λ,i

)
, f
(
X

xi+1

λ,i+1

))}
,

1 ≤ i ≤ 2k and for all Xx1
λ,1, X

x2
λ,2, . . . , X

x2k+1

λ,2k+1 in X̃,

d
(
T
(
Xy1

µ,1, X
y2
µ,2, . . . , X

y2k
µ,2k

)
, S
(
Xy2

µ,2, X
y3
µ,3, . . . , X

y2k+1

µ,2k+1

))
(3.2)

≤̃ᾱmax
{
d
(
f
(
Xyi

µ,i

)
, f
(
X

yi+1

µ,i+1

))}
,

1 ≤ i ≤ 2k for all Xy1
µ,1, X

y2
µ,2, . . . , X

y2k+1

µ,2k+1 in X̃ where 0 ≤ ᾱ < 1.
(3.3)

d
(
S
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
, T
(
Xz

γ , X
z
γ , . . . , X

z
γ

))
<̃d
(
f
(
Xy

µ

)
, f(Xz

γ)
)

for all Xy
µ, Xz

γ ∈ X̃ with Xy
µ ̸= Xz

γ . Suppose that f
(
X̃
)

is complete
and (f, T ) or (f, S) is a 2k-weakly soft compatible pair. Then there is a
unique soft point Xy

µ ∈ X̃ such that

f
(
Xy

µ

)
= Xy

µ

= T
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
= S

(
Xy

µ, X
y
µ, . . . , X

y
µ

)
.

Proof. Suppose that Xx1
λ,1, X

x2
λ,2, . . . , X

x2k
λ,2k are arbitrary points in X̃ and

for n ∈ N, define

f
(
X

x2n+2k−1

λ,2n+2k−1

)
= S

(
X

x2n−1

λ,2n−1, X
x2n
λ,2n, . . . , X

x2n+2k−2

λ,2n+2k−2

)
,

and
f
(
X

x2n+2k

λ,2n+2k

)
= T

(
Xx2n

λ,2n, X
x2n+1

λ,2n+1, . . . , X
x2n+2k−1

λ,2n+2k−1

)
.

Next we show that the sequence
{
f
(
Xxn

λ,n

)}
is a Cauchy sequence.

For simplicity, set dn = d
(
f
(
Xxn

λ,n

)
, f
(
X

xn+1

λ,n+1

))
. We shall prove by

induction that inequality

dn≤̃µ̄θ̄n,(3.4)

is true for n ∈ N, where

µ̄ = max

{
d1
θ̄1

,
d2
θ̄2

, . . . ,
d2k
θ̄2k

}
, θ̄ = ᾱ

1
2k .
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By the definition of µ̄ and θ̄ inequality (3.4) is obviously true for n ∈
{1, 2, . . . , 2k}. Suppose that the following (2k − 1) inequalities

d2n≤̃µ̄θ̄2n,

d2n+1≤̃µ̄θ̄2n+1,

...
d2n+2k−2≤̃µ̄θ̄2n+2k−2,

holds. Then

d2n+2k−1 = d
(
f
(
X

x2n+2k−1

λ,2n+2k−1

)
, f
(
X

x2n+2k

λ,2n+2k

))
= d

(
S
(
X

x2n−1

λ,2n−1, X
x2n
λ,2n, . . . , X

x2n+2k−2

λ,2n+2k−2

)
, T
(
Xx2n

λ,2n, X
x2n+1

λ,2n+1, . . . , X
x2n+2k−1

λ,2n+2k−1

))
≤̃ᾱmax

{
d
(
f
(
Xxi

λ,i

)
, f
(
X

xi+1

λ,i+1

))}
= ᾱmax {d2n−1, d2n, . . . , d2n+2k−2}

≤̃ᾱmax
{
µ̄θ̄2n−1, µ̄θ̄2n, . . . , µ̄θ̄2n+2k−2

}
= ᾱµ̄θ̄2n−1

= µ̄θ̄2n+2k−1.

Hence by induction hypothesis the inequality (3.4) is true for each n ∈ N.
Now, for any n, p ∈ N, we have

d
(
f
(
Xxn

λ,n

)
, f
(
X

xn+p

λ,n+p

))
≤̃d
(
f
(
Xxn

λ,n

)
, f
(
X

xn+1

λ,n+1

))
+ d

(
f
(
X

xn+1

λ,n+1

)
, f
(
X

xn+2

λ,n+2

))
+ · · ·+ d

(
f
(
X

xn+p−1

λ,n+p−1

)
, f
(
X

xn+p

λ,n+p

))
= dn + dn+1 + · · ·+ dn+p−1

≤̃µ̄θ̄n + µ̄θ̄n+1 + · · ·+ µ̄θ̄n+p−1

= µ̄θ̄n
{
1 + θ̄ + · · ·+ θ̄p−1

}
<̃

µ̄θ̄n

1− θ̄
.

As θ̄ < 1̄, we conclude that the sequence {Xxn
λ,n} is a Cauchy sequence.

Since X̃ is complete, then there exists Xy
µ in X̃ such that

Xy
µ = lim

n→∞
f
(
Xxn

λ,n

)
.
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Then for any integer n ∈ N, we have

d
(
S
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
, f
(
X

x2n+2k−1

λ,2n+2k−1

))
= d

(
S
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
, S
(
X

x2n−1

λ,2n−1, X
x2n
λ,2n, . . . , X

x2n+2k−2

λ,2n+2k−2

))
≤̃d
(
S
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
, T
(
Xy

µ, X
y
µ, . . . , X

x2n−1

λ,2n−1

))
+ d

(
T
(
Xy

µ, X
y
µ, . . . , X

x2n−1

λ,2n−1

)
, S
(
Xy

µ, X
y
µ, . . . , X

x2n−1

λ,2n−1, X
x2n
λ,2n

))
+ d

(
S
(
Xy

µ, X
y
µ, . . . , X

x2n
λ,2n

)
, T
(
Xy

µ, X
y
µ, . . . , X

x2n
λ,2n, X

x2n+1

λ,2n+1

))
+ · · ·+ d

(
S
(
Xy

µ, X
y
µ, . . . , X

x2n+2k−4

λ,2n+2k−4

)
, T
(
Xy

µ, X
x2n−1

λ,2n−1, . . . , X
x2n+2k−3

λ,2n+2k−3

))
+ d

(
T
(
Xy

µ, X
x2n−1

λ,2n−1, . . . , X
x2n+2k−3

λ,2n+2k−3

)
, S
(
X

x2n−1

λ,2n−1, X
x2n
λ,2n, . . . , X

x2n+2k−2

λ,2n+2k−2

))
≤̃ᾱd

(
f
(
Xy

µ

)
, f
(
X

x2n−1

λ,2n−1

))
+ ᾱmax

{
d
(
f
(
Xy

µ

)
, f
(
X

x2n−1

λ,2n−1

))
, d
(
f
(
X

x2n−1

λ,2n−1

)
, f
(
Xx2n

λ,2n

))}
+ · · ·+ ᾱmax

{
d
(
f
(
Xy

µ

)
, f
(
X

x2n−1

λ,2n−1

))
, d
(
f
(
X

x2n−1

λ,2n−1

)
, f
(
Xx2n

λ,2n

))
, . . . , d

(
f
(
X

xn+k−4

λ,n+k−4

)
, f
(
X

xn+k−3

λ,n+k−3

))}
+ ᾱmax

{
d
(
Xy

µ, X
x2n−1

λ,2n−1

)
, d
(
f
(
X

x2n−1

λ,2n−1

)
, f
(
Xx2n

λ,2n

))
, . . . , d

(
f
(
X

x2n+2k−3

λ,2n+2k−3

)
, f
(
X

x2n+2k−2

λ,2n+2k−2

))}
,

as n → ∞, we get
S
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
= f

(
Xy

µ

)
.(3.5)

Consider
d
(
f
(
Xy

µ

)
, T (Xy

µ, X
y
µ, . . . , X

y
µ)
)
= d

(
S
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
, T
(
Xy

µ, X
y
µ, . . . , X

y
µ

))
≤̃ᾱ(0)

= 0.

Thus
T
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
= f

(
Xy

µ

)
.(3.6)

So that
T
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
= f

(
Xy

µ

)
= S

(
Xy

µ, X
y
µ, . . . , X

y
µ

)
.
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Suppose that f (Xy
µ) ̸= Xy

µ. Then from (3.3), we have

d
(
f2
(
Xy

µ

)
, f
(
Xy

µ

))
= d

(
S(f

(
Xy

µ

)
, f
(
Xy

µ

)
, . . . , f

(
Xy

µ

)
), T

(
Xy

µ, X
y
µ, . . . , X

y
µ

))
< d

(
f2
(
Xy

µ

)
, f
(
Xy

µ

))
.

It is a contradiction. Therefore f (Xy
µ) = Xy

µ.
Now from (3.5) and (3.6), we have

f
(
Xy

µ

)
= Xy

µ = T
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
= S

(
Xy

µ, X
y
µ, . . . , X

y
µ

)
.

For uniqueness suppose that there exists a point Xz
γ ̸= Xy

µ ∈ X̃ such
that

f(Xz
γ) = Xz

γ = T (Xz
γ , X

z
γ , . . . , X

z
γ) = S

(
Xz

γ , X
z
γ , . . . , X

z
γ

)
.

Consider

d
(
f(Xz

γ), f
(
Xy

µ

))
= d

(
S(Xz

γ , X
z
γ , . . . , X

z
γ), T

(
Xy

µ, X
y
µ, . . . , X

y
µ

))
< d

(
f(Xz

γ), f
(
Xy

µ

))
.

It is a contraction. Therefore Xz
γ = Xy

µ. □

Remark 3.4. If we set S = T and k is taken at place of 2k in the above
finding, we get the following:

Corollary 3.5. Let
(
X̃, d, A

)
be a soft metric space with A is a finite

set, k is a positive integer and T : X̃k→̃X̃ and f : X̃→̃X̃ be a soft
mapping satisfying

d
(
T
(
Xx1

λ,1, X
x2
λ,2, . . . , X

xk
λ,k

)
, T
(
Xx2

λ,2, X
x3
λ,3, . . . , X

xk+1

λ,k+1

))
(3.7)

≤̃ᾱmax
{
d
(
f
(
Xxi

λ,i

)
, f
(
X

xi+1

λ,i+1

))}
,

1 ≤ i ≤ k and for all Xx1
λ,1, X

x2
λ,2, . . . , X

xk+1

λ,k+1 in X̃ where 0≤̃ᾱ<̃1.

d
(
T
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
, T
(
Xz

γ , X
z
γ , . . . , X

z
γ

))
<̃d
(
f
(
Xy

µ

)
, f(Xz

γ)
)
,

(3.8)

for all Xy
µ, Xz

γ ∈ X̃ with Xy
µ ̸= Xz

γ . Suppose that f
(
X̃
)

is complete
and (f, T ) is a k-weakly soft compatible pair. Then there exists a unique
point Xx

λ ∈ X̃ such that

f (Xx
λ) = Xx

λ = T (Xx
λ , X

x
λ , . . . , X

x
λ) .

Remark 3.6. If we take f as identity function in Corollary 3.5, we find
the soft metric version of Prešić’s [28].
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Example 3.7. Let X=[0, 1] with the finite set A = {0, 1, 2} and map-
ping d : SP

(
X̃
)
× SP

(
X̃
)
→ R(A)∗ is the usual soft metric and the

mapping S, T and f are given as

S
(
Xx

λ , X
y
µ

)
= X

3x+2y
72

0 ,

T
(
Xx

λ , X
y
µ

)
= X

2x+3y
72

0 ,

and
f (Xx

λ) = X
x
6
0 .

We find that these mapping satisfies contractive conditions of Theorem
3.3 with ᾱ = 1̄

3 and

S(X0
0 , X

0
0 ) = T (X0

0 , X
0
0 ) = f(X0

0 ) = X0
0 .

This shows that X0
0 is the unique fixed point.

In next example, we shows that the condition of finiteness on A cannot
be omitted in the previous result.

Example 3.8. Let X=[0,1], A = {0, 1, 2} and the mapping d : SP
(
X̃
)
×

SP (X̃) → R(A)∗ is given by
d
(
Xx

λ , X
y
µ

)
= |x̄− ȳ|+ |λ̄− µ̄|,

for all Xx
λ , X

y
µ ∈ SP

(
X̃
)

, where |.| denotes the modulus of soft real
number, is a the soft metric on X̃. Furthermore, soft metric space(
X̃, d, A

)
is complete. Let T : X̃2 → X̃ such that T (Xx

λ , X
y
µ) = X

x+y
4

0

and f(Xx
λ) = Xx

0 for all x, y ∈ X and λ, µ ∈ A. Now for η ∈ A, we have

d(T
(
Xx

λ , X
y
µ

)
, T (Xy

µ,X
x
γ ))(η) = d

(
X

x+y
4

0 , X
y+z
4

0

)
(η)

=

∣∣∣∣x+ y

4
− y + z

4

∣∣∣∣
=

∣∣∣∣x− y

4
+

y − z

4

∣∣∣∣
≤
∣∣∣∣x− y

4

∣∣∣∣+ ∣∣∣∣y − z

4

∣∣∣∣
≤1

2
max

{
d
(
f (Xx

λ) , f
(
Xy

µ

))
, d
(
f(Xy

µ), f(X
z
γ)
)}

(η),

this shows that T and f satisfy the contraction ?? with ᾱ = 1̄
2 and X0

0

is the only fixed point.
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Note: The condition of finiteness of the set A can not be removed.
For example, Let A = { 1

n | n ∈ N} be an infinite set and the mapping T
and f are defined as in above example. Then the mapping satisfies the
contraction in the Corollary 3.5 but doesn’t have a fixed point.

Remark 3.9. The given Inequality (3.7) in the Corollary 3.5 can not
be relaxed as illustrated in the following example.

Example 3.10. Let X = [0, 1] ∪ [2, 3], A = {0, 1, 2} and mapping
d : SP

(
X̃
)
× SP

(
X̃
)
→ R(A)∗ given by

d
(
Xx

λ , X
y
µ

)
= |x̄− ȳ|+ λ̄− µ̄|,

for all Xx
λ , X

y
µ ∈ SP

(
X̃
)

, where |.| denotes the modulus of soft real
numbers, is a soft metric on X̃. Let T : X̃2→̃X̃ such that

T
(
Xx

λ , X
y
µ

)
= X

x+y
4

0 ,
(
Xx

λ , X
y
µ

)
∈ [0, 1]× [0, 1],

= X
1+x+y

4
0 ,

(
Xx

λ , X
y
µ

)
∈ [2, 3]× [2, 3],

= X
x+y
4

− 1
2

0 ,
(
Xx

λ , X
y
µ

)
∈ [0, 1]× [2, 3],

= X
x+y
4

− 1
2

0 ,
(
Xx

λ , X
y
µ

)
∈ [2, 3]× [0, 1],

and f (Xx
λ) = Xx

0 . Then for any Xx
λ , X

y
µ ∈ [0, 1] we have T (Xx

λ , X
y
µ) =

Xz
γ ∈ [0, 1] and for Xx

λ , X
y
µ ∈ [2, 3] we have T (Xx

λ , X
y
µ) = Xz

γ ∈ [2, 3], we
have

d
(
T
(
Xx

λ , X
y
µ

)
, T (Xy

µ, X
z
γ)
)
=

∣∣∣∣x+ y

4
− y + z

4

∣∣∣∣
≤̃
∣∣∣∣x− y

4

∣∣∣∣+ ∣∣∣∣y − z

4

∣∣∣∣
≤̃1

2
max

{
d
(
f (Xx

λ) , f(X
y
µ)
)
, d
(
f
(
Xy

µ

)
, f(Xz

γ)
)}

.

For (Xx
λ , X

y
µ) ∈ [0, 1] × [2, 3] or (Xx

λ , X
y
µ) ∈ [2, 3] × [0, 1], we have

T (Xx
λ , X

y
µ) = Xz

γ ∈ [0, 1].
Therefore, if Xy

µ ∈ [2,3], then

d
(
T
(
Xx

λ , X
y
µ

)
, T (Xy

µ, X
z
γ)
)
=

∣∣∣∣x+ y

4
− y + z

4

∣∣∣∣
≤̃1

2
max

{
d
(
f (Xx

λ) , f
(
Xy

µ

))
, d
(
f
(
Xy

µ

)
, f(Xz

γ)
)}

.

If Xy
µ ∈ [0, 1],then

d
(
f
(
Xx

λ , X
y
µ

)
, f(Xy

µ, X
z
γ)
)
=

∣∣∣∣x+ y

4
− 1

2
− y + z

4

∣∣∣∣
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=

∣∣∣∣x− y

4
− 1

2
+

y − z

4

∣∣∣∣
≤̃
∣∣∣∣x− y

4
− 1

2

∣∣∣∣+ ∣∣∣∣y − z

4

∣∣∣∣
<̃

∣∣∣∣x− y

4

∣∣∣∣+ ∣∣∣∣y − z

4

∣∣∣∣
≤̃1

2
max

{
d
(
f (Xx

λ) , f
(
Xy

µ

))
, d
(
f
(
Xy

µ

)
, f(Xz

γ)
)}

.

Thus, T and f satisfy Inequality (3.7) with ᾱ = 1̄
2 but we have T (X0

0 , X
0
0 ) =

f(X0
0 ) = X0

0 and T (X2
0 , X

2
0 ) = f(X2

0 ) = X2
0 . Therefore, the condition

(3.8) in the Corollary 3.5 can’t be relaxed.

Theorem 3.11. Let
(
X̃, d, A

)
be a complete soft metric space with

finite set A, k is a positive integer and S, T : X̃2k→̃X̃ be soft mappings
satisfying the contractive condition

d
(
S
(
Xx1

λ,1, X
x2
λ,2, . . . , X

x2k
λ,2k

)
, T
(
Xx2

λ,2, X
x3
λ,3, . . . , X

x2k+1

λ,2k+1

))
(3.9)

≤̃
2k∑
i=1

ᾱid
(
Xxi

λ,i, X
xi+1

λ,i+1

)
,

for all Xx1
λ,1, X

x2
λ,2, . . . , X

x2k+1

λ,2k+1 in X̃,

d
(
T
(
Xy1

µ,1, X
y2
µ,2, . . . , X

y2k
µ,2k

)
, S
(
Xy2

µ,2, X
y3
µ,3, . . . , X

y2k+1

µ,2k+1

))
(3.10)

≤̃
2k∑
i=1

ᾱid
(
Xyi

µ,i, X
yi+1

µ,i+1

)
,

for all Xy1
µ,1, X

y2
µ,2, . . . , X

y2k+1

µ,2k+1 in X̃, where ᾱ1, ᾱ2, . . . , ᾱ2k are non-negative
soft constants such that

∑2k
i=1 ᾱi<̃1̄ and also suppose that

d
(
S
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
, T (Xz

γ , X
z
γ , . . . , X

z
γ

)
<̃d
(
Xy

µ, X
z
γ

)
.(3.11)

Then there exits a unique soft point Xx
λ ∈ X̃ such that

T (Xx
λ , X

x
λ , . . . , X

x
λ) = Xx

λ = S (Xx
λ , X

x
λ , . . . , X

x
λ) .

Proof. Suppose that Xx1
λ,1, X

x2
λ,2, . . . , X

x2k
λ,2k are arbitrary points in X̃ and

for n ∈ N, define

X
x2n+2k−1

λ,2n+2k−1 = S
(
X

x2n−1

λ,2n−1, X
x2n
λ,2n, . . . , X

x2n+2k−2

λ,2n+2k−2

)
,

and
X

x2n+2k

λ,2n+2k = T
(
Xx2n

λ,2n, X
x2n+1

λ,2n+1, . . . , X
x2n+2k−1

λ,2n+2k−1

)
.
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Further, we show that the sequence {Xxn
λ,n} is a Cauchy sequence.

For this we set
dn = d

(
Xxn

λ,n, X
xn+1

λ,n+1

)
.

We shall prove by induction that inequality
dn≤̃µ̄θ̄n,(3.12)

is true for n ∈ N, where

µ̄ = max

{
d1
θ̄1

,
d2
θ̄2

, . . . ,
d2k
θ̄2k

}
, θ̄ =

(
2k∑
i=1

ᾱi

) 1
2k

.

By the definition of µ̄ and θ̄ inequality (3.12) is obviously true for n ∈
{1, 2, . . . , 2k}. Suppose that the following (2k − 1) inequalities

d2n≤̃µ̄θ̄2n,

d2n+1≤̃µ̄θ̄2n+1,

...
d2n+2k−2≤̃µ̄θ̄2n+2k−2,

holds. Then
d2n+2k−1 = d

(
X

x2n+2k−1

λ,2n+2k−1, X
x2n+2k

λ,2n+2k

)
= d

(
S
(
X

x2n−1

λ,2n−1, X
x2n
λ,2n, . . . , X

x2n+2k−2

λ,2n+2k−2

)
, T
(
Xx2n

λ,2n, X
x2n+1

λ,2n+1, . . . , X
x2n+2k−1

λ,2n+2k−1

))
≤̃ᾱ1d

(
X

x2n−1

λ,2n−1, X
x2n
λ,2n

)
+ ᾱ2d

(
Xx2n

λ,2n, X
x2n+1

λ,2n+1

)
+ · · ·+ ᾱ2kd

(
X

x2n+2k−2

λ,2n+2k−2, X
x2n+2k−1

λ,2n+2k−1

)
= ᾱ1d2n−1 + ᾱ2d2n + · · ·+ ᾱ2kd2n+2k−2

≤̃ᾱ1µ̄θ̄
2n−1 + ᾱ2µ̄θ̄

2n + · · ·+ ᾱ2kµ̄θ̄
2n+2k−2

= {ᾱ1 + ᾱ2 + · · ·+ ᾱ2k}µ̄θ̄2n−1

≤̃µ̄θ̄2n+2k−1.

Hence by the induction hypothesis the inequality (3.12) is true for each
n ∈ N
Now, for any n, p ∈ N, we have

d
(
Xxn

λ,n, X
xn+p

λ,n+p

)
≤̃d
(
Xxn

λ,n, X
xn+1

λ,n+1

)
+ d

(
X

xn+1

λ,n+1, X
xn+2

λ,n+2

)
+ · · ·+ d

(
X

xn+p−1

λ,n+p−1, X
xn+p

λ,n+p

)
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= dn + dn+1 + · · ·+ dn+p−1

≤̃µ̄θ̄n + µ̄θ̄n+1 + · · ·+ µ̄θ̄n+p−1

= µ̄θ̄n{1 + θ̄ + · · ·+ θ̄p−1}

<̃
µ̄θ̄n

1− θ̄
,

as θ̄ < 1̄, we conclude that the sequence {Xxn
λ,n} is a Cauchy sequence.

Since X̃ is complete, then there exists Xx
λ in X̃ such that

Xx
λ = lim

n→∞
Xxn

λ,n.

Then for any integer n ∈ N, we have

d
(
S (Xx

λ , X
x
λ , . . . , X

x
λ) , X

x2n+2k−1

λ,2n+2k−1

)
= d

(
S (Xx

λ , X
x
λ , . . . , X

x
λ) , S

(
X

x2n−1

λ,2n−1, X
x2n
λ,2n, . . . , X

x2n+2k−2

λ,2n+2k−2

))
≤̃d
(
S (Xx

λ , X
x
λ , . . . , X

x
λ) , T

(
Xx

λ , X
x
λ , . . . , X

x2n−1

λ,2n−1

))
+ d

(
T
(
Xx

λ , X
x
λ , . . . , X

x2n−1

λ,2n−1

)
, S
(
Xx

λ , X
x
λ , . . . , X

x2n−1

λ,2n−1, X
x2n
λ,2n

))
+ d

(
S
(
Xx

λ , X
x
λ , . . . , X

x2n
λ,2n

)
, T
(
Xx

λ , X
x
λ , . . . , X

x2n
λ,2n, X

x2n+1

λ,2n+1

))
+ · · ·+ d

(
S
(
Xx

λ , X
x
λ , . . . , X

x2n+2k−4

λ,2n+2k−4

)
,

T
(
Xx

λ , X
x2n−1

λ,2n−1, . . . , X
x2n+2k−3

λ,2n+2k−3

))
+ d

(
T
(
Xx

λ , X
x2n−1

λ,2n−1, . . . , X
x2n+2k−3

λ,2n+2k−3

)
,

S
(
X

x2n−1

λ,2n−1, X
x2n
λ,2n, . . . , X

x2n+2k−2

λ,2n+2k−2

))
≤̃ᾱ2kd

(
Xx

λ , X
x2n−1

λ,2n−1

)
+ ᾱ2k−1d

(
Xx

λ , X
x2n−1

λ,2n−1

)
+ ᾱ2kd

(
X

x2n−1

λ,2n−1, X
x2n
λ,2n

)
+ · · ·+ ᾱ2d

(
Xx

λ , X
x2n−1

λ,2n−1

)
+ ᾱ3d

(
X

x2n−1

λ,2n−1, X
x2n
λ,2n

)
+ · · ·+ ᾱ2kd

(
X

xn+k−4

λ,n+k−4, X
xn+k−3

λ,n+k−3

)
+ ᾱ1d

(
Xx

λ , X
x2n−1

λ,2n−1

)
+ ᾱ2d

(
X

x2n−1

λ,2n−1, X
x2n
λ,2n

)
+ · · ·+ ᾱ2kd

(
X

x2n+2k−3

λ,2n+2k−3, X
x2n+2k−2

λ,2n+2k−2

)
.

As n → ∞, we get
S (Xx

λ , X
x
λ , . . . , X

x
λ) = Xx

λ .
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Consider
d (Xx

λ , T (Xx
λ , X

x
λ , . . . , X

x
λ)) = d (S(Xx

λ , X
x
λ , . . . , X

x
λ), T (Xx

λ , X
x
λ , . . . , X

x
λ))

≤̃ᾱ(0)

= 0.

Thus
T (Xx

λ , X
x
λ , . . . , X

x
λ) = Xx

λ ,

this implies that
T (Xx

λ , X
x
λ , . . . , X

x
λ) = Xx

λ = S (Xx
λ , X

x
λ , . . . , X

x
λ) .

Suppose that there exists a soft point Xy
µ ̸= Xx

λ ∈ X̃ such that

T
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
= Xy

µ = S
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
.

Consider
d
(
Xy

µ, X
x
λ

)
= d

(
T
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
, S (Xx

λ , X
x
λ , . . . , X

x
λ)
)

< d
(
Xy

µ, X
x
λ

)
.

It is a contraction. Therefore Xy
µ = Xx

λ . □

Example 3.12. Let X=[0,1], A={0, 1, 2} and d is the usual soft metric.
Define mappings

S
(
Xx

λ , X
y
µ

)
= X

x+y
4

0 ,
(
Xx

λ , X
y
µ

)
= X

x2+y2

5
0 .

Note that S and T satisfy the conditions of Theorem 3.11 with ᾱ1 =
1̄
4 ,

ᾱ2 =
1̄
3 and S(X0

0 , X
0
0 ) = X0

0 = T (X0
0 , X

0
0 ) that is X0

0 is the unique fixed
point.

Example 3.13. Let X=[0,1], A={0, 1, 2} and d is the usual soft metric.
Define mappings

S
(
Xx

λ , X
y
µ

)
= X

3x2+2y2

48
0 , T (Xx

λ , X
y
µ) = X

2x2+3y2

48
0 ,

satisfy the contractive conditions of Theorem 3.11 with ᾱ1 =
1̄
8 , ᾱ2 =

1̄
7 .

Corollary 3.14. Let
(
X̃, d, A

)
be a complete soft metric space with

finite set A, k is a positive integer and S, T : X̃2k→̃X̃ be soft mappings
satisfy the contractive condition

d
(
S
(
Xx1

λ,1, X
x2
λ,2, . . . , X

x2k
λ,2k

)
, T
(
Xx2

λ,2, X
x3
λ,3, . . . , X

x2k+1

λ,2k+1

))
≤̃ᾱmax

{
d
(
Xxi

λ,i, X
xi+1

λ,i+1

)}
,
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1 ≤ i ≤ 2k for all Xx1
λ,1, X

x2
λ,2, . . . , X

x2k+1

λ,2k+1 in X̃,

d(T
(
Xy1

µ,1, X
y2
µ,2, . . . , X

y2k
µ,2k

)
, S
(
Xy2

µ,2, X
y3
µ,3, . . . , X

y2k+1

µ,2k+1

)
≤̃ᾱmax

{
d
(
Xyi

µ,i, X
yi+1

µ,i+1

)}
,

1 ≤ i ≤ 2k for all Xy1
µ,1, X

y2
µ,2, . . . , X

y2k+1

µ,2k+1 in X̃ where 0 ≤ ᾱ < 1.

d
(
S
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
, T
(
Xz

γ , X
z
γ , . . . , X

z
γ

))
<̃d
(
Xy

µ, X
z
γ

)
,(3.13)

for all Xy
µ, Xz

γ ∈ X̃ with Xy
µ ̸= Xz

γ . Then there exists a unique soft point
Xy

µ ∈ X̃ such that
T
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
= Xy

µ = S
(
Xy

µ, X
y
µ, . . . , X

y
µ

)
.

Example 3.15. Let X=[0, 1] with finite set A={0, 1, 2} and mapping
d : SP

(
X̃
)
×SP

(
X̃
)
→ R(A)∗ and the mapping S and T are given as

d
(
Xx

λ , X
y
µ

)
=

{
0, if x = y = 0, λ = µ = 0,

max{x, y}, otherwise.

And S and T are given by S(Xx
λ , X

y
µ) = X

x2+y
3

0 and T (Xx
λ , X

y
µ) =

X
2x+y3

2
0 . Note that S and T satisfy the contractive condition of Corollary

3.14, where ᾱ = 1̄
4 and S(X0

0 , X
0
0 ) = X0

0 = T (X0
0 , X

0
0 ) that is X0

0 is the
unique fixed point.

In the next section, we give an application of the soft Banach principle
in iterated soft function systems.

4. Applications

Let H
(
X̃
)

= {M ⊂ X̃ : M is a non-empty closed and bounded

subset of soft points of X̃} and C
(
SP

(
X̃
))

is the set of compact
subsets of soft points of X̃. Let X̃ be a complete soft metric space with
metric d and suppose that C

(
SP

(
X̃
))

⊂ H
(
X̃
)

be the soft metric
space of non-empty soft compact subsets of soft points of X̃. Metric
given by

h (M,N) = sup
{
d (Xx

λ , N) , d
(
Xy

µ,M
)
, Xx

λ ∈ M,Xy
µ ∈ N

}
,

is Hausdorff soft metric. Let M ̸= ϕ be the closed subset of soft points
of X̃. Then for δ̄>̃0̄

Mδ̄ =
{
Xx

λ ∈ X̃ : d
(
Xx

λ , X
y
µ

)
≤̃δ̄, Xy

µ ∈ M
}
.
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Let (X̃, d) be a complete soft metric space and A is a countable finite
set of parameters and

fi : X̃ → X̃,

where i = 1, 2, . . . , k be k soft mappings, which are soft Lipschitz con-
tinuous with soft Lipschitz constants L̄1, L̄2, . . . , L̄k i.e.

d
(
fi (X

x
λ) , fi

(
Xy

µ

))
≤̃L̄id

(
Xx

λ , X
y
µ

)
,

for i = 1, 2, . . . , k and Xx
λ , X

y
µ ∈ X̃. Define

F : C
(
SP

(
X̃
))

→ C
(
SP

(
X̃
))

,

by

F (M) = f1(M) ∪ f2(M) ∪ · · · ∪ fk(M), M ∈ C
(
SP

(
X̃
))

,

then F satisfies soft Lipschitz condition with respect to the Hausdorff
soft metric with soft Lipschitz constant

L̄ = max
{
L̄1, L̄2, . . . , L̄k

}
,

i.e.

h (F (M), F (N)) ≤̃L̄h (M,N) .

Particularly, if fi = 1, 2, . . . k are soft contractions on X̃, then F is a soft
contraction on C

(
SP

(
X̃
))

with respect to the Hausdorff soft metric.

F has unique fixed point M ∈ C
(
SP

(
X̃
))

.
For this, define the Hausdorff soft metric as

h(M,N) = sup
{
d (Xx

λ , N) , d
(
Xy

µ,M
)
, Xx

λ ∈ M,Xy
µ ∈ N

}
.

Suppose that M1, M2, N1, N2 are soft compact subsets of X̃ and M =
M1 ∪M2, N = N1 ∪N2. Now, we want to show that

h (M,N) ≤̃max
i=1,2

{h (Mi, Ni)} = m̄.

Let Xx
λ ∈ M , Xy

µ ∈ N and prove
d (Xx

λ , N) , d
(
Xy

µ,M
)
≤̃m̄.

Now
d (Xx

λ , N) = d (Xx
λ , N1 ∪N2)

= min {d (Xx
λ , Ni) , i = 1, 2}

≤̃d (Xx
λ , Ni)

≤̃h (Mi, Ni)

≤̃m̄,
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and also d (Xy
µ,M) ≤̃m̄. Let M,N ∈ C

(
SP

(
X̃
))

and h (M,N) = ϵ̄.
Then

M ⊂ Nϵ̄, N ⊂ Mϵ̄,

therefore, we have
f1(N) ⊂ f1(Mϵ̄), f2(N) ⊂ f2(Mϵ̄),

f1(M) ⊂ f1(Nϵ̄), f2(M) ⊂ f2(Nϵ̄).

Also
fi(Mϵ̄) ⊂ (fi(M))L̄iϵ̄

, i = 1, 2,

fi(Nϵ̄) ⊂ (fi(N))L̄iϵ̄
, i = 1, 2,

and further
fi(M) ⊂ (f1(N) ∪ f2(N))L̄ϵ̄, i = 1, 2,

fi(N) ⊂ (f1(M) ∪ f2(M))L̄ϵ̄, i = 1, 2.

By definition of the Hausdorff soft metric, we have
h(F (M), F (N))≤̃L̄ϵ̄ = L̄h(M,N).

F meets soft Lipschitz condition with the Hausdorff soft metric, then F
has an unique fixed point, according to Theorem 3.3.

Remark 4.1. If f1, f2, . . . ., fk are soft contraction mappings, and the
soft function

F (M) = f1(M) ∪ f2(M) ∪ · · · ∪ fk(M), M ∈ C
(
SP

(
X̃
))

,

is called Hutchinson soft operator and the system
Mi+1 = F (Mi),

is an iterated soft function system, then this system, by soft Banach
contraction principle, has a unique limit.

5. Conclusion

In this paper, we generalized Banach contraction principle for Prešić’s
type contraction mappings in the setting of soft metric spaces. The
fact has been substantially by furnishing with example’s. We also ex-
plained that restriction on a certain parameter set is necessary and an
application of soft version of BPC in iterated soft function systems is
established. Further some generalization for more mappings or other
metric type like b-metric, s-metric, bi-polar metric etc. can be investi-
gated. Also the application of established results are possible in decision
making problems. We hope that the results examined in this paper will
contribute significantly and scientifically soundly to the field, and will
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help researchers to further advance their theory work in the soft metric
space field and to expand it.

References

1. A. Kharal and B. Ahmad, Mappings on soft classes, New Math.
Nat. Comput., 7 (2011), pp. 471-482.

2. D. Chen, E.C.C. Tsang, D.S. Yueng and X. Wang, The parametriza-
tion reduction of soft sets and its applications, Comput. Math. with
Appl., 49 (2005), pp. 757-763.

3. D.K. Sut, An application of fuzzy soft relation in decision making
problems, Int. J. Math. Sci. Tech., 3 (2012), pp. 50-53.

4. D. Molodtsov, Soft set theory-first results, Comput. Math. with
Appl., 37 (1999), pp. 19-31.

5. D. Pie and D. Miao, Soft sets to information systems, Granul.
Comput., IEEE International Conference, 2 (2005), pp. 617-622.

6. D. Singh and I.A. Onyeozili, Some conceptual misunderstandings
of the fundamentals of soft set theory, ARPN J. Eng. Appl. Sci., 2
(2012), pp. 251-254.

7. E.D. Yildirim, A.Ç. Güler and O.B. Ozbakir, On soft Ĩ-Baire
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