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Notes about Quasi-Mixing Operators

Mansooreh Moosapoor1∗ and Ismail Nikoufar2

Abstract. In this article, we introduce quasi-mixing operators
and construct various examples. We prove that quasi-mixing opera-
tors exist on all finite-dimensional and infinite-dimensional Banach
spaces. We also prove that an invertible operator T is quasi-mixing
if and only if T−1 is quasi-mixing. We state some sufficient condi-
tions under which an operator is quasi-mixing. Moreover, we prove
that the direct sum of two operators is quasi-mixing if and only if
any of them is quasi-mixing.

1. Introduction

Let X be a Banach space, and B(X) the set of bounded linear oper-
ators on X. An operator T ∈ B(X) is named topologically transitive
if, for any two nonempty open sets U ⊆ X and V ⊆ X, there exists
a non-negative integer n such that Tn(U) ∩ V ̸= ϕ. This definition is
equivalent to the condition that

∪∞
n=0T

n(U) = X for any nonempty
open set U ⊆ X [7, Proposition 1.10]. Also, topological transitivity
is equivalent to this condition that there exists an element x ∈ X with
such property that orb(T, x) = {x, Tx, . . . , Tnx, . . .} is dense in X which
is named hypercyclicity. Hence, hypercyclicity occurs only on separable
Banach spaces. So, we consider X a separable Banach space in this
paper.

One can see [3, 4, 6, 10] for a history and more information.
If for any two nonempty open sets U ⊆ X and V ⊆ X, a natural

number N exists such that for any n ≥ N , Tn(U) ∩ V ≠ ϕ, then we
call the operator T a mixing operator. Hence, these operators satisfied
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much stronger conditions concerning topologically transitive operators.
Any separable infinite-dimensional Banach spaces support mixing oper-
ators [8, Theorem 2.6]. However, these operators do not exist in finite-
dimensional Banach spaces. Obviously, mixing operators are hypercyclic
and hypercyclic operators can not be constructed on finite-dimensional
spaces [7, Corollary 2.59]. Authors in [5] characterized mixing weighted
backward shift operators. Also, the mixing of composition operators is
investigated in [2, 11].

A generalization of the concept of mixing is super-mixing. An opera-
tor T ∈ B(X) is named super-mixing if, for any nonempty open subset
V of X,

∪∞
i=0

∩∞
n=iT

n(V ) is dense in X [1]. There are a criterion and
some exciting results about this type of operator in [1]. One can also
see [9] for more results.

Let us replace V with U in the definition of a mixing operator. That
means, consider this property that for any nonempty open set U ⊆ X,
there is a natural number M such that for any n ≥ M , Tn(U) ∩ U ̸= ϕ
or equivalently

∪∞
i=0

∩∞
n=iT

n(U) ∩ U ̸= ϕ. In this way, we obtain a new
class of operators, and we call them quasi-mixing operators.

We organize the article as follows. In Section 2, we present some
examples of quasi-mixing operators. We prove that quasi-mixing oper-
ators exist on both infinite-dimensional and finite-dimensional Banach
spaces. We prove that quasi-mixing preserves under quasi-conjugacy.
Also, we state that an invertible operator T is quasi-mixing if and only
if its inverse is quasi-mixing. Section 3 states some sufficient condi-
tions for quasi-mixing operators by using a set of points with particular
properties, and with using open sets and neighborhoods of zero. In
Section 4, we investigate the properties of the direct sum of the quasi-
mixing operators. We demonstrate that the direct sum of two operators
is quasi-mixing if and only if any of them is quasi-mixing.

2. Definitions and Some Results

We start this section with our main definition.

Definition 2.1. Let T ∈ B(X). We say the operator T is quasi-mixing
if for any nonempty open set U of X, there exists the natural number
M such that for any n ≥ M , Tn(U) ∩ U ̸= ϕ.

By the definition of a mixing operator and Definition 2.1, the following
lemma can be stated immediately.

Lemma 2.2. Let T ∈ B(X).
(i) If T is mixing, then T is quasi-mixing.
(ii) If T is super-mixing, then T is quasi-mixing.
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By using Lemma 2.2, one can construct various examples of quasi-
mixing operators.
Example 2.3. Let D be the derivation operator on H(C), the space of
holomorphic functions. Then, λD is a mixing operator on H(C) for any
λ ̸= 0. Hence, λD is quasi-mixing for any λ ̸= 0.

But there is no operator T which λT is hypercyclic for any λ ̸= 0 [7,
p. 60].

In the following, we make some quasi-mixing operators using weighted
backward shifts on lp spaces. Recall that if (ei)i≥1 is the canonical basis
for lp, 1 ≤ p ≤ ∞, then the weighted shift Bw with weight (wn)n≥1 is
defined by Bw(e1) = 0 and Bw(en) = wnen−1, for any n ≥ 2 [8].
Example 2.4. Assume Bw is a weighted backward shift on lp with
1 ≤ p < ∞. Suppose that (wn)

∞
n=1 is its weight, where wn > 0 for any

n. Then I+Bw is mixing [8, Lemma 2.3]. Hence, I+Bw is quasi-mixing
by Lemma 2.2.
Example 2.5. It is proved in [5, Theorem 1.2] that a weighted back-
ward shift Bw on l2(N) with weight (wn)

∞
n=1 is mixing if and only if

limn
∏n

i=1wi = ∞. Hence, any weighted shift with such property is
quasi-mixing.

In Example 2.3, Example 2.4, and Example 2.5, we construct oper-
ators that are mixing and quasi-mixing. But there are quasi-mixing
operators that are not mixing, as we show in the subsequent example.
Example 2.6. Assume X is a Banach space with infinite-dimensional
or finite-dimensional. Suppose I : X → X is the identity operator. Then
I is a quasi-mixing operator, since for any open and nonempty U ,

In(U) ∩ U = U ∩ U = U ̸= ϕ.

But I is not mixing, since for any nonempty open sets U and V , U ∩ V
may be empty.

Now, this question arises which Banach spaces support quasi-mixing
operators? Infinite-dimensional Banach spaces, finite-dimensional Ba-
nach spaces, or both of them? We answer this question in the following
theorem.
Theorem 2.7. Quasi-mixing operators exist on any infinite-dimensional
and finite-dimensional Banach space.
Proof. Mixing operators can be found in any infinite-dimensional sepa-
rable Banach space [8, Theorem 2.6]. Also, mixing operators are quasi-
mixing. So, we conclude that quasi-mixing operators exist in any infinite-
dimensional Banach space.
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Moreover, by Example 2.6, the identity operator on any finite- dimen-
sional space is quasi-mixing. □

According to our discussion in the introduction, we know that mix-
ing operators exist only in infinite-dimensional spaces. So, Theorem 2.7
shows that the set of mixing operators is a proper subset of the set
of quasi-mixing operators. Since by Theorem 2.7, quasi-mixing opera-
tors exist on any infinite-dimensional and finite-dimensional separable
Banach space.

Let T ∈ B(X) and S ∈ B(Y ), where Y is a Banach space. The
operators T and S are quasi-conjugate if a continuous operator Φ :
X → Y exists with dense range such that T ◦ Φ = Φ ◦ S. It is well-
known that the mixing property preserves under quasi-conjugacy. We
show in the next proposition that quasi-mixing property preserves under
quasi-conjugacy, too.

Proposition 2.8. Quasi-mixing property is preserved under quasi-
conjugacy.

Proof. Assume T ∈ B(X) is quasi-mixing. Assume S ∈ B(Y ) is quasi-
conjugate to T . Suppose U ⊆ Y is a nonempty open set. Since the
operator Φ is continuous, Φ−1(U) is open. So, there is M ∈ N such that
for any n ≥ M ,

Tn
(
Φ−1(U)

)
∩ Φ−1(U) ̸= ϕ.

Therefore, for any n ≥ M , there is xn ∈ Φ−1(U) such that Tnxn ∈
Φ−1(U). So, for any n ≥ M ,

Φ(xn) ∈ U, Tnxn ∈ Φ−1(U).

Note that Tnxn ∈ Φ−1(U) indicates that Φ◦Tnxn ∈ U . Hence Sn◦Φxn ∈
U , because of Sn ◦ Φ = Φ ◦ Tn.

Therefore, for any n ≥ M , Φ(xn) ∈ U and Sn (Φ(xn)) ∈ U . That
means Sn(U) ∩ U ̸= ϕ for any n ≥ M . Hence, S is quasi-mixing either.

□

In the following theorem, we show that for an invertible operator T ,
if the operator T is quasi-mixing, then the operator T−1 is quasi-mixing
and vice versa.

Theorem 2.9. Suppose T ∈ B(X) is an invertible operator. Then the
operator T is quasi-mixing if and only if T−1 is quasi-mixing.

Proof. Assume U ⊆ X is nonempty and open. Suppose T is quasi-
mixing. Therefore, there is M ∈ N which for any n ≥ M ,

(2.1) Tn(U) ∩ U ̸= ϕ.
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It follows from (2.1) that T−n(U) ∩ U ̸= ϕ. Hence, for any n ≥ M ,
(2.2) (T−1)n(U) ∩ U ̸= ϕ.

So, T−1 is quasi-mixing. The proof of the converse of the theorem is
similar. □
Theorem 2.10. Suppose T ∈ B(X) is quasi-mixing. Then for any
q ∈ N, T q is quasi-mixing.
Proof. Let q ∈ N and U ⊆ X be a nonempty open set. Since the operator
T is quasi-mixing , there exists a natural number M such that for any
n ≥ M ,

Tn(U) ∩ U ̸= ϕ.

Especially, for any m ∈ N with mq ≥ M , Tmq(U)∩U ̸= ϕ. Therefore,
(T q)m(U)∩U ̸= ϕ for any m ≥

[
M
q

]
+1. That means T q is quasi-mixing.

□
The following corollary is straightforward, by Theorem 2.9 and The-

orem 2.10.
Corollary 2.11. Assume T ∈ B(X) is an invertible operator. If T is
quasi-mixing, then T p and T−p are quasi-mixing for any p ∈ N.

3. Some Sufficient Conditions

The points that iterates of an operator tending to itself, can play an
essential role for quasi-mixing of an operator, as we will see in the first
theorem of this section.
Theorem 3.1. Let T ∈ B(X). Let F := {w ∈ X : Tnw → w}. If F is
dense in X, then T is quasi-mixing.
Proof. Let U ⊆ X be a nonempty open set. By density of F it is
concluded that U ∩ F ̸= ϕ. Hence, there exists a ∈ U ∩ F . Therefore,
ε > 0 can be found such that B(a, ε) ⊆ U . Hence, Tna → a. So, there
is M ∈ N such that for any n ≥ M ,

∥Tna− a∥ < ε.

Hence, for any n ≥ M ,
Tna ∈ B(a, ε) ⊆ U.

So, Tn(U) ∩ U ̸= ϕ for any n ≥ M . □
As well as we can state another sufficient condition as follows.

Theorem 3.2. Suppose T ∈ B(X) and Z0 is a dense subset of X. If
there is S : Z0 → Z0 such that for any z ∈ Z0,

(1) Snz → z,
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(2) TSz = z.
Then T is quasi-mixing.

Proof. Similar to the proof of Theorem 3.1, for any open set U ⊆ X,
there is z ∈ Z0 ∩ U , and M ∈ N such that Tnz ∈ U for any n ≥ M .

By condition (2), TnSnz = z for any z ∈ Z0. So, for any n ≥ M ,
Tn(Snz) ∈ U . But Snz ∈ U . Hence, for any n ≥ M , Tn(U)∩U ̸= ϕ. □

The idea of the following theorem is given from [7, Proposition 2.37]
that states a sufficient condition for quasi-mixing operators.

Theorem 3.3. Suppose T ∈ B(X). Assume for any nonempty open set
U ⊆ X and any neighborhood W of zero, M ∈ N exists such that for
any n ≥ M ,
(3.1) Tn(U) ∩W ̸= ϕ, Tn(W ) ∩ U ̸= ϕ.

Then T is quasi-mixing.

Proof. Let U be an open set. So, there is an open set U1 and a neigh-
borhood W1 of zero such that U1 +W1 ⊆ U [7, Lemma 2.36]. By (3.1),
for this U1 and W1, M ∈ N can be chosen such that for any n ≥ M

(3.2) Tn(U1) ∩W1 ̸= ϕ, Tn(W1) ∩ U1 ̸= ϕ.

Hence, for any n ≥ M , there is un ∈ U1 and wn ∈ W1 such that
(3.3) Tnun ∈ W1, Tnwn ∈ U1.

But un + wn ∈ U1 +W1 ⊆ U and Tn(un + wn) ∈ U1 +W1 ⊆ U . Hence,
for any n ≥ M , Tn(U) ∩ U ̸= ϕ. Therefore, T is quasi-mixing. □

By the idea of [8, Theorem 3.2], we state the following theorem.

Theorem 3.4. Suppose T ∈ B(X) and suppose p ∈ N. Assume for any
nonempty open set U ⊆ X and any neighborhood W of zero, M ∈ N
exists such that
(3.4) Tn(U) ∩W ̸= ϕ, Tn+p(W ) ∩ U ̸= ϕ,

for any n ≥ M . Then T is quasi-mixing.

Proof. Let U be an open set, and W be a neighborhood of zero. Set
W0 = W ∩ T−p(W ). So, W is an open and nonempty set. By (3.4),
there is M ∈ N such that for any n ≥ M ,
(3.5) Tn(U) ∩W0 ̸= ϕ, Tn+p(W0) ∩ U ̸= ϕ.

So, for any n ≥ M ,
(3.6)
Tn(U) ∩W ∩ T−p(W ) ≠ ϕ, Tn+p(W ) ∩ Tn+p

(
T−p(W )

)
∩ U ̸= ϕ.
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Hence, for any n ≥ M ,

(3.7) Tn(U) ∩ T−p(W ) ̸= ϕ, Tn+p(W ) ∩ U ̸= ϕ.

This implies for any n ≥ M ,

(3.8) Tn+p(U) ∩W ̸= ϕ, Tn+p(W ) ∩ U ̸= ϕ.

Therefore, T is quasi-mixing by Theorem 3.3. □

By setting p = 1 in Theorem 3.4, we deduce the following corollary.

Corollary 3.5. Suppose T ∈ B(X). Assume for any nonempty open
set U ⊆ X and any neighborhood W of zero, M ∈ N exists such that

(3.9) Tn(U) ∩W ̸= ϕ, Tn+1(W ) ∩ U ̸= ϕ

for any n ≥ M . Then T is quasi-mixing.

4. Direct Sum of Quasi-mixing Operators

Let X and Y be two Banach spaces. Suppose T ∈ B(X) and S ∈ B(Y ).
By T ⊕ S we mean the direct sum of T and S. For any x⊕ y ∈ X ⊕ Y ,
(T ⊕ S)(x⊕ y) is defined by (T ⊕ S)(x⊕ y) = Tx⊕ Sy.

In this section, we investigate the notion of the quasi-mixing operators
for the direct sum of the operators. It is investigated that T⊕S is mixing
if and only if T and S are mixing [7, Proposition 2.40]. We want to know
whether it is true for quasi-mixing operators or not. First, we show that
quasi-mixing of the two operators leads to quasi-mixing of their direct
sum as follows.

Theorem 4.1. If T ∈ B(X) and S ∈ B(Y ) are quasi-mixing, then T⊕S
is quasi-mixing on X ⊕Y . Especially, T ⊕T is quasi-mixing on X ⊕X.

Proof. Let U ⊆ X and V ⊆ Y be nonempty open sets. By quasi-mixing
of T , there is M1 ∈ N such that for any n ≥ M1,

(4.1) Tn(U) ∩ U ̸= ϕ.

By quasi-mixing of S, there is M2 ∈ N such that for any n ≥ M2,

(4.2) Sn(V ) ∩ V ̸= ϕ.

If we set M := max{M1,M2}, then for any n ≥ M ,

(T ⊕ S)n(U ⊕ V ) ∩ (U ⊕ V ) = (Tn(U)⊕ Sn(V )) ∩ (U ⊕ V )

= (Tn(U) ∩ U)⊕ (Sn(V ) ∩ V )

̸= ϕ.

Hence, T ⊕ S is quasi-mixing. □
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Example 4.2. Let Bw be a weighted backward shift on l2(N) with
weight (wn)

∞
n=1 such that limn

∏n
i=1wi = ∞. Let I be the identity op-

erator on l2(N). By Example 2.5, Bw is quasi-mixing and by Example
2.6, I is quasi-mixing. So, by Theorem 4.1, Bw ⊕ I is quasi-mixing on
l2(N)⊕ l2(N). But it is not hard to see that Bw ⊕ I is not mixing.

Now, this question appears when quasi-mixing of T ⊕S implies quasi-
mixing of T and S? In the upcoming theorem, we establish that the
answer to this question is positive.

Theorem 4.3. If T ⊕ S is a quasi-mixing operator on X ⊕ Y , then T
is quasi-mixing on X, and S is quasi-mixing on Y .

Proof. Assume U ⊆ X and V ⊆ Y are nonempty open sets. By quasi-
mixing of T ⊕ S, there is M ∈ N such that for any n ≥ M ,

(T ⊕ S)n(U ⊕ V ) ∩ (U ⊕ V ) ̸= ϕ.

So, for any n ≥ M ,
Tn(U) ∩ U ̸= ϕ, Sn(V ) ∩ V ̸= ϕ.

That means T and S are quasi-mixing. □
As a consequence of Theorems 4.1 and 4.3 we reach the following

corollary.

Corollary 4.4. T ⊕ S is quasi-mixing on X ⊕ Y if and only if T is
quasi-mixing on X, and S is quasi-mixing on Y .

As well as we derive the following corollary if we replace S by T in
Corollary 4.4.

Corollary 4.5. An operator T on X is quasi-mixing if and only if T⊕T
is quasi-mixing on X ⊕X.
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