Document Type : Research Paper

Authors

1 Department of Mathematics, Babol Noshirvani University of Technology, Shariati Ave., Babol 47148-71167, Iran.

2 Institute of Science and Technology, Federal University of S˜ao Paulo, S˜ao Jos´e dos Campos-SP, 12247-014, Brazil.

Abstract

A generalized integral operator of order $\alpha$ of a real function $f$  including a parameter set $P$, namely $K_P^\alpha f(t)$ has been introduced by O. P.  Agrawal  (Computers and Mathematics with Applications, 59 (2010) 1852--1864), which is a generalization of some important fractional integrals such as the Riemann-Liouville fractional integral. Using pseudo-analysis, this paper introduces a pseudo-operator integral of order $\alpha$ including a parameter set $P$  in a semiring $([a, b], \oplus, \odot)$, which is  a generalization of  $K_P^\alpha f(t)$. We also discuss some particular cases and we obtain the well-known H\"{o}lder's and Minkowski's  inequalities  for this kind of pseudo-operator integral. The results given in this paper provide a generalization of several inequalities obtained in earlier studies.

Keywords

Main Subjects

1. S. Abbaszadeh, A. Ebadian and M. Jaddi, Hölder integral inequalities with different pseudo-operations, Asian-Eur. J. Math., 12 (3) (2019), 1950032-1–1950032-15.
2. H. Agahi, Y. Ouyang, R. Mesiar, E. Pap and M. Štrboja, Hölder and Minkowski type inequalities for pseudo-integral, Appl., Math. Comput., 217 (2011), pp. 8630-8639.
3. H. Agahi, A. Babakhani and R. Mesiar, Pseudo-fractional integral inequality of Chebyshev type, Inf. Sci., 301 (2015), pp. 161-168.
4. O. P. Agrawal, Generalized Variational Problems and Euler Lagrange equations, Comput. Math. Appl., 59 (2010), pp. 1852-1864.
5. T.A. Aljaaidi and D.B. Pachpatte, The Minkowski’s inequalities via ψ-Riemann-Liouville fractional integral operators, Rend. Circ. Mat. Palermo, II. Ser 70 (2021), pp. 893-906.
6. M. Hosseini, A. Babakhani, H. Agahi and S.H. Rasouli, On pseudofractional integral inequalities related to Hermite-Hadamard type, Soft Comp., 20 (2016), pp. 2521-2529.
7. A. Babakhani and G.S.F. Frederico, On a Caputo-type fractional derivative respect to another function using a generator by pseudooperations, J. Pseudo-Differ. Oper. Appl., 12 (2021), Article number: 59.
8. A. Babakhani, Minkowski’s inequality for variational fractional integrals, Kyungpook Math. J., 60 (2020), pp. 289-295.
9. A. Babakhani, M. Yadollahzadeh and A. Neamaty, Some properties of pseudo-fractional operators, J. Pseudo-Differ. Oper. Appl., 9 (2018), pp. 677-700.
10. A. Babakhani, H. Agahi and R. Mesiar, A (⋆, ∗)-based Minkowski inequality for Sugeno fractional integral of order α > 0, Fract. Calc. Appl. Anal., 18 (4) (2015), pp. 862-874.
11. Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (1) (2010), pp. 51-58.
12. Z. Dahmani, L. Tabharit and S. Taf, New generalisations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2 (2010), pp. 93-99.
13. G. Grüss, Über das maximum des absoluten betrages von $\frac{1}{b-a}\int_{a}^{b}f(x) g(x)dx-\frac{1}{(b-a)^2}\int_{a}^{b}f(x) dx\int_{a}^{b}g(x) dx$, Math. Z., 39 (1935), pp. 215-226.
14. A.A. Kilbas, H.M. Srivastava and J. Trujillo, Theory and Applications of the Fractional Differential Equations, Vol. 204. Elsevier Amsterdam, 2006.
15. W. Kuich, Semirings, Automata, Languages, Sringer, Berlin 1986.
16. D.Q. Li, X.Q. Song, T. Yue and Y.Z. Song, Generalization of the Lyapunov type inequality for pseudo-integrals, Appl. Math. Comput., 241 (2014), pp. 64-69.
17. R. Mesiar and J. Rybárik, Pseudo-arithmetical operations, Tatra Mt. Math. Publ., 2 (1993), pp. 185-192.
18. D.S. Oliveira, ψ-Mittag-Leffler pseudo-fractional operators, J. Pseudo-Differ. Oper. Appl., 12 (2021), Article number: 40.
19. E. Pap, g-calculus, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. Ser. Mat., 23 (1993), pp. 145-156.
20. E. Pap, Pseudo-additive measures and their applications, Handbook of Measure Theory, 1403-1465, Elsevier, Amsterdam, 2002.
21. E. Pap and M. Štrboja, Generalization of the Jensen inequality for pseudo-integral, Infor. Sci., 180 (2010), pp. 543-548.
22. E. Pap, M. Štrboja and I. Rudas, Pseudo-Lp space and convergence, Fuzzy Sets Syst., 238 (2014), pp. 113-128.
23. H. Ichihashi, H. Tanaka and K. Asai, Fuzzy Integrals Based on Pseudo-additions and Multiplications, J. of Math. Ana. ana Appl., 130 (1988), pp. 354-364.
24. W. Rudin, Real and Complex Analysis, Third edition, McGraw- Hill, New York, 1987.
25. M. ˇ Strboja, T. Grbi´c , I. ˇ Stajner-Papuga, G. Gruji´c and S. Medi´c , Jensen and Chebyshev inequalities for pseudo-integrals of set-valued functions, Fuzzy Sets Syst., 222 (2013), pp. 18-32.
26. J.F. Tian and M.H. Ha, Extensions of Hölder’s inequality via pseudo-integral, Math. Probl. Eng., Article ID 4080619 (2018), pp. 1-5.
27. F. Usta, H. Budak, F. Ertugral and M.Z. Sarikaya, The Minkowski’s inequalities utilizing newly defined generalized fractional integral operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68 (1) (2019), pp. 686-701.
28. J. Vanterler da C. Sousa and E. Capelas de Oliveira, The Minkowski’s inequality by means of a genrealized fractional integral, AIMS Math., 3 (1) (2018) , pp. 131-147.
29. J. Vanterler da C. Sousa, Gastão S. F. Frederico and E. Capelas de Oliveira, ψ-Hilfer pseudo-fractional operator: new results about fractional calculus, Comput. Appl. Math., 39 (4) (2020), Article number: 254, pp. 1-37.
30. J. Vanterler da C. Sousa, R.F. Camargo, E. Capelas de Oliveira and G.S.F. Frederico, Pseudo-fractional differential equations and generalized g-Laplace transform, J. Pseudo-Differ. Oper. Appl., 12 (3) (2021), Article number: 44, pp. 1-27.
31. M. Yadollahzadeh, A. Babakhani and A. Neamaty, Hermite- Hadamard’s inequality for pseudo-fractional integral operators, Stoch. Anal. Appl., 37 (4) (2019), pp. 620-635.
32. D. Zhang and E. Pap, Fubini theorem and generalized Minkowski inequality for the pseudo-integral, Int. J. Approx. Reason., 122 (2020), pp. 9-23.