Document Type : Research Paper

Author

Department of Basic Sciences, Shahid Sattari Aeronautical University of Science and Technology, Tehran, Iran.

Abstract

This paper is devoted to introduce a new concept of bases for the range of the operator $K$. Actually, we consider controlled $K$-orthonormal and controlled $K$-Riesz bases which are a generalization of ordinary bases in Hilbert spaces. In the sequel, we give some characterizations of these  sequences. Next, we construct some new controlled bases with operator theory tools.  Finally, some dual characterizations are given.

Keywords

Main Subjects

1. A. Ahmadi and A. Rahimi, K-orthonormal and K-Riesz bases, Sahand Commun. Math. Anal., 18 (2021), pp. 9–72.
2. S.T. Ali, J.P. Antoine and J.P. Gazeau, Continuous frames in Hilbert space, Ann. Physics., 222 (1993), pp. 1–37.
3. M.S. Asghari, On the Riesz fusion bases in Hilbert spaces, J. Egypt. Math. Soc., 21 (2013), pp. 79–86.
4. J.P. Aubin, Applied functional analysis, John Wiley & Sons, 2011.
5. P. Balazs, G.P. Antoine and A. Gryboś, Weighted and controlled frames: Mutual relationship and first numerical properties, Int. J. Wavelets Multiresolut. Inf. Process., 8 (2010), pp. 109–132.
6. P. Balazs, M. Dörfler, N. Holighaus, F. Jaillet and G. Velasco, Theory, implementation and applications of nonstationary Gabor frames, J. Comput. Appl. Math., 236 (2011), pp. 1481–1496.
7. P. Balazs, B. Laback, G. Eckel, and W.A. Deutsch, Time-frequency sparsity by removing perceptually irrelevant components using a simple model of simultaneous masking, IEEE Trans. Audio. Speech. Language Process., 18 (2010), pp. 34–49.
8. N. Bari, Sur les bases dans l’espace de Hilbert, C. R. (Dokl.) Acad. Sci. URSS., 54 (1946), pp. 379–382.
9. N. Bari, Biorthogonal systems and bases in Hilbert space, In: Mathematics, Vol. IV, Uch. Zap. Mosk. Gos. Univ., 148, (1951), pp. 69–107.
10. J.J. Benedetto and S. Li, The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal., 5 (1998), pp. 389–427.
11. H. Bölcskei, F. Hlawatsch and H.G. Feichtinger, Frame-theoretic analysis of oversampled filter banks, IEEE Trans. Signal Processing., 46 (1998), pp. 3256–3268.
12. I. Bogdanova, P. Vandergheynst, J.P. Antoine, L. Jacques and M. Morvidone, Stereographic wavelet frames on the sphere, Appl. Comput. Harmon. Anal., 16 (2005), pp. 223–252.
13. O. Christensen, An introduction to frames and Riesz bases, Birkhäuser, 2016.
14. N. Cotfas and J.P. Gazeau, Finite tight frames and some applications, J. Phys. A., 43 (2010), p. 193001.
15. S. Dahlke, M. Fornasier, and T. Raasch, Adaptive Frame Methods for Elliptic Operator Equations, Adv. Comput. Math., 27 (2007), pp. 27–63.
16. R.G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Am. Math. Soc., 17 (1966), pp. 413–415.
17. R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), 341–366.
18. H.G. Feichtinger and T. Werther, Atomic systems for subspaces, In: Zayed, L. (ed.) Proceedings SampTA 2001, Orlando, (2001), pp. 163–165.
19. D. Gabor, Theory of communication. Part 1: The analysis of information, Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 93 (1946), 429–441.
20. L. Găvruţa, Frames for operators, Appl. Comput. Harmon. Anal., 32 (2012), pp. 139–144.
21. T.N. Goodman and S.L. Lee, Wavelets of multiplicity r, Trans. Amer. Math. Soc., 342 (1994), pp. 307–324.
22. Y. Huang and D. Hua, K-Riesz frames and the stability of K-Riesz frames for Hilbert spaces, Sci. Sin., Math., 47 (2017), pp. 383–396.
23. L. Jacques, Ondelettes, repéres et couronne solaire, Thése de Doctorat, Univ. Cath. Louvain, Louvain-la-Neuve, (2004).
24. A. Khosravi and K. Musazadeh, Controlled fusion frames, Methods Funct. Anal. Topology., 18 (2012), pp. 256–265.
25. M. Mahmoudieh, H. Hosseinnezhad and Gh. Abbaspour Tabadkan, Some properties of controlled K-frames in Hilbert spaces, Wavelets and Linear Algebra, 7 (2020), pp. 47–56.
26. P. Majdak, P. Balazs, W. Kreuzer, and M. Dörfler, A timefrequency method for increasing the signal-to-noise ratio in system identification with exponential sweeps, Proceedings of the 36th International Conference on Acoustics, Speech and Signal Processing, ICASSP 2011, Prag, (2011).
27. K. Musazadeh and H. Khandani, Some results on controlled frames in Hilbert spaces, Acta Math. Sci., 36 (2016), pp. 655–665.
28. M. Nouri, A. Rahimi and S. Najafzadeh, Controlled K-frames in Hilbert spaces, J. of Ramanujan Society of Math. and Math. Sci., 4 (2015), pp. 39–50.
29. A. Rahimi and A. Fereydooni, Controlled G-frames and their Gmultipliers in Hilbert spaces, An. St. Univ. Ovidius Constanta, 21 (2013), pp. 223–236.
30. M. Rashidi Kouchi, A. Rahimi and F.A. Shah, Duals and multipliers of controlled frames in Hilbert spaces, Int. J. Wavelets Multiresolut. Inf. Process., 16 (2018), p. 1850057.
31. M. Rashidi Kouchi and A. Rahimi, On controlled frames in Hilbert C∗-modules, Int. J. Wavelets Multiresolut. Inf. Process., 15 (2017), p. 1750038.
32. R. Stevenson. Adaptive solution of operator equations using wavelet frames, SIAM J. Numer. Anal., 41 (2003), pp. 1074–1100.
33. W. Sun, G-frames and g-Riesz bases, Results. Math., 322 (2006), pp. 437–452.
34. X. Xiao, Y. Zhu and L. Găvruţa, Some properties of K-frames in Hilbert spaces, J. Math. Anal. Appl., 63 (2013), pp. 1243–1255.