%0 Journal Article
%T The Study of Felbin and $BS$ Fuzzy Normed Linear Spaces
%J Sahand Communications in Mathematical Analysis
%I University of Maragheh
%Z 2322-5807
%A Yaqub Azari, Farnaz
%A Sadeqi, Ildar
%D 2022
%\ 06/01/2022
%V 19
%N 2
%P 49-64
%! The Study of Felbin and $BS$ Fuzzy Normed Linear Spaces
%K Fuzzy number
%K Fuzzy normed linear space (FNLS)
%K Fuzzy bounded operator
%R 10.22130/scma.2022.544742.1033
%X In this paper, we first show that the induced topologies by Felbin and Bag-Samanta type fuzzy norms on a linear space $X$ are equivalent. So all results in Felbin-fuzzy normed linear spaces are valid in Bag-Samanta fuzzy normed linear spaces and vice versa. Using this, we will be able to define a fuzzy norm on $FB(X,Y)$, the space of all fuzzy bounded linear operators from $X$ into $Y$, where $X$ and $Y$ are fuzzy normed linear spaces.
%U https://scma.maragheh.ac.ir/article_252079_e381e776c648062c670cd7f438f1c4bf.pdf