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THE APPROXIMATE SOLUTIONS OF FREDHOLM

INTEGRAL EQUATIONS ON CANTOR SETS WITHIN

LOCAL FRACTIONAL OPERATORS

HASSAN KAMIL JASSIM1

Abstract. In this paper, we apply the local fractional Adomian
decomposition and variational iteration methods to obtain the an-
alytic approximate solutions of Fredholm integral equations of the
second kind within local fractional derivative operators. The itera-
tion procedure is based on local fractional derivative. The obtained
results reveal that the proposed methods are very efficient and sim-
ple tools for solving local fractional integral equations.

1. Introduction

Integral equation is encountered in a variety of applications in many
fields including continuum mechanics, potential theory, geophysics, elec-
tricity and magnetism, kinetic theory of gases, hereditary phenomena in
physics and biology, renewal theory, quantum mechanics, radiation, opti-
mization, optimal control systems, communication theory, mathematical
economics, population genetics, queuing theory, medicine, mathematical
problems of radioactive equilibrium, the particle transport problems of
astrophysics and reactor theory, acoustics, fluid mechanics, steady state
heat conduction, and radioactive heat transfer problems. Fredholm in-
tegral equation is one of the most important integral equations [2, 5].
Many initial and boundary value problems associated with ordinary dif-
ferential equations and partial differential equation can be transformed
into problems of solving some approximate integral equations [10].
The most standard form of Fredholm integral equations of the second
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kind within local fractional derivative operator is given by the form

(1.1) u(x) = f(x) +
1

Γ(1 + α)

∫ b

a
K(x, t)u(t)(dt)α, 0 < α ≤ 1

or equivalently

(1.2) u(x) = f(x) +
1

Γ(1 + α)
g(x)

∫ b

a
h(t)u(t)(dt)α, 0 < α ≤ 1

where K(x, t) is the kernel of the local fractional integral equation, and
f(x) a local fractional continuous function. The limits of integration
a and b are constants and the unknown function u(x) appears linearly
under the integral sign.
In this paper our aim is to investigate the application of the local frac-
tional Adomian decomposition method and local fractional variational
iteration method for solving the local fractional integral equations in the
sense of local fractional derivative operators. To illustrate the validity
and advantages of the methods, we will apply them to the local frac-
tional Fredholm integral equations of the second kind. We will mostly
use degenerate or separable kernels. A degenerate or a separable ker-
nel is a function that can be expressed as the sum of the product of
two functions wich depends only on one variable. Such a kernel can be
expressed in the form K(x, t) = g(x)h(t) . This paper is organized as
follows: In Section 2, the basic mathematical tools are reviewed. Section
3 gives the analysis of the methods used in this paper. An illustrative
example is shown in Section 4. Conclusions are in Section 5.

2. Preliminaries

In this section, we present some basic definitions and notations of the
local fractional operators (see [1, 3, 4, 6, 7, 8, 9, 11, 12]).

Definition 2.1. The local fractional derivative of ψ(x) of order α at
x = x0 is given by

ψ(α)(x0) =
dα

dxα
ψ(x)|x=x0(2.1)

= lim
x→x0

△α(ψ(x)− ψ(x0))

(x− x0)α
,

where △α(ψ(x)− ψ(x0) ∼= Γ(α+ 1)(ψ(x)− ψ(x0)).
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The formulas of local fractional derivatives of special functions used
in this paper are as follows:

D(α)
x aψ(x) = aD(α)

x ψ(x),(2.2)

dα

dxα

(
xnα

Γ(1 + nα)

)
=

x(n−1)α

Γ(1 + (n− 1)α)
(2.3)

Definition 2.2. The local fractional integral of ψ(x) in the interval [a, b]
is given by

aI
(α)
b ψ(x) =

1

Γ(1 + α)

∫ b

a
ψ(t)(dt)α(2.4)

=
1

Γ(1 + α)
lim

△t−→0

N−1∑
j=0

ψ(tj)(△tj)α,

where the partition of the interval [a, b] is denoted as (tj , tj+1), j =
0, . . . , N − 1, t0 = a and tN = b with △tj = tj+1 − tj and △t =
max {△t0,△t1, . . .}.

The formulas of local fractional integrals of special functions used in
current paper are as follows:

0I
(α)
x aψ(t) = a0I

(α)
x ψ(t),(2.5)

0I
(α)
x

(
tnα

Γ(1 + nα)

)
=

x(n+1)α

Γ(1 + (n+ 1)α)
.(2.6)

Definition 2.3. The Mittage Leffler function, sine function and cosine
function are defined as

Eα(x
α) =

∞∑
k=0

xkα

Γ(1 + kα)
, 0 < α ≤ 1,(2.7)

sinα(x
α) =

∞∑
k=0

(−1)k
x(2k+1)α

Γ(1 + (2k + 1)α)
, 0 < α ≤ 1(2.8)

cosα(x
α) =

∞∑
k=0

(−1)k
x2kα

Γ(1 + 2kα)
, 0 < α ≤ 1.(2.9)

3. Analytical Methods

3.1. Local Fractional Adomian Decomposition Method. The lo-
cal fractional Adomian decomposition method consists of decomposing
the unknown function u(x) of any equation into a sum of an infinite
number of components defined by the decomposition series

(3.1) u(x) =

∞∑
n=0

un(x),
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where the components un(x), n ≥ 0 will be determined recurrently.
The local fractional Adomian decomposition method concerns itself with
finding the components u0, u1, u2, . . . individually. As we have seen be-
fore, the determination of these components can be achieved in an easy
way through a recurrence relation that usually involves simple integrals
that can be easily evaluated. To establish the recurrence relation, we
substitute (3.1) into (1.1) to obtain

(3.2)
∞∑
n=0

un(x) = f(x) +
1

Γ(1 + α)

∫ b

a
K(x, t)

( ∞∑
n=0

un(t)

)
(dt)α,

or equivalently
(3.3)

u0(x)+u1(x)+· · · = f(x)+
1

Γ(1 + α)

∫ b

a
K(x, t) (u0(t) + u1(t) + · · · ) (dt)α.

The zeroth component u0(x) is identified by all terms that are not
included under the integral sign. This means that the components
un(x), n ≥ 0 of the unknown function u(x) are completely determined
by setting the recurrence relation

u0(x) = f(x),

un+1(x) =
1

Γ(1 + α)

∫ b

a
K(x, t) (un(t)) (dt)

α, n ≥ 0.(3.4)

3.2. Local Fractional Variational Iteration Method. The local
fractional variational iteration method works effectively if the kernel
K(x, t) is separable and can be written in the form K(x, t) = g(x)h(t).
Differentiating both sides of (1.2) with respect to x gives

(3.5) u(α)(x) = f (α)(x) +
1

Γ(1 + α)
g(α)(x)

∫ b

a
h(t)u(t)(dt)α.

According to the rule of local fractional variational iteration method,
the correction local fractional functional for (3.5) is given by

un+1(x) = un(x) +0 I
(α)
x

(
λ(ξ)α

Γ(1 + α)

[
u(α)n (ξ)− f (α)(ξ)(3.6)

− 1

Γ(1 + α)
g(α)(ξ)

∫ b

a
h(r)u∼n (r)(dr)

α

])
,

where λ(ξ)α

Γ(1+α) is a general fractal Lagranges multiplier. The local frac-

tional variational iteration method is used by applying two essential

steps. It is required first to determine the Lagrange multiplier λ(ξ)α

Γ(1+α)

that can be identified optimally via integration by parts and by using a
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restricted variation. However, λ(ξ)α

Γ(1+α) = −1 for local fractional integro-

differential equation (3.5)of order α. Having determined the Lagrange
multiplier, an iteration formula, without restricted variation, given by

un+1(x) = un(x)−0 I
(α)
x

(
u(α)n (ξ)− f (α)(ξ)(3.7)

− 1

Γ(1 + α)
g(α)(ξ)

∫ b

a
h(r)un(r)(dr)

α

)
, n ≥ 0,

is used for determination of the successive approximations of the solution
un+1(x), n ≥ 0 . The zeroth approximation u0(x) can be any selective
function. However, the given initial value u(0) is preferably used for the
selective zeroth approximation u0(x) as will be seen later. Consequently,
the solution is given by

(3.8) u(x) = lim
n→∞

un(x).

4. An Illustrative Paradigm

Let us consider the following Fredholm integral equation involving
local fractional operator in the form:
(4.1)

u(x) = Eα(x
α)− xα

Γ(1 + α)
+

1

Γ(1 + α)

∫ 1

0

xα

Γ(1 + α)

tα

Γ(1 + α)
u(t)(dt)α,

(I) Local Fractional Adomian Decomposition Method (LFADM).
Suppose that the solution

(4.2) u(x) =

∞∑
n=0

un(x).

Substituting (4.2) into both sides of (4.1) gives

∞∑
n=0

un(x) = Eα(x
α)− xα

Γ(1 + α)

(4.3)

+
1

Γ(1 + α)

∫ 1

0

xα

Γ(1 + α)

tα

Γ(1 + α)

( ∞∑
n=0

un(t)

)
(dt)α.

From (4.3), we obtain the following recurrence relation

u0(x) = Eα(x
α)− xα

Γ(1 + α)
,

un+1(x) =
1

Γ(1 + α)

∫ 1

0

xα

Γ(1 + α)

tα

Γ(1 + α)
un(t)(dt)

α, n ≥ 0.(4.4)
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Therefore, we have

u0(x) = Eα(x
α)− xα

Γ(1 + α)
,

u1(x) =
1

Γ(1 + α)

∫ 1

0

xα

Γ(1 + α)

tα

Γ(1 + α)
u0(t)(dt)

α

=
1

Γ(1 + α)

xα

Γ(1 + α)

∫ 1

0

tα

Γ(1 + α)

(
Eα(t

α)− tα

Γ(1 + α)

)
(dt)α

=
2

3

xα

Γ(1 + α)
,

u2(x) =
1

Γ(1 + α)

∫ 1

0

xα

Γ(1 + α)

tα

Γ(1 + α)
u1(t)(dt)

α

=
1

Γ(1 + α)

xα

Γ(1 + α)

∫ 1

0

tα

Γ(1 + α)

(
2

3

tα

Γ(1 + α)

)
(dt)α

=
2

9

xα

Γ(1 + α)
,

u3(x) =
1

Γ(1 + α)

∫ 1

0

xα

Γ(1 + α)

tα

Γ(1 + α)
u2(t)(dt)

α

=
1

Γ(1 + α)

xα

Γ(1 + α)

∫ 1

0

tα

Γ(1 + α)

(
2

9

tα

Γ(1 + α)

)
(dt)α

=
2

27

xα

Γ(1 + α)
,

u4(x) =
2

81

xα

Γ(1 + α)
,

and so on. Using (4.2) gives the series solution

(4.5) u(x) = Eα(x
α)− xα

Γ(1 + α)
+

2

3

xα

Γ(1 + α)

[
1 +

1

3
+

1

9
+ · · ·

]
.

The series solution (4.5) converges to the closed form solution

(4.6) u(x) = Eα(x
α).
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(II) Local Fractional Variational Iteration Method (LFVIM).
We can write (4.1) in the form
(4.7)

u(x) = Eα(x
α)− xα

Γ(1 + α)
+

1

Γ(1 + α)

xα

Γ(1 + α)

∫ 1

0

tα

Γ(1 + α)
u(t)(dt)α.

In view of (3.7) and (4.7) the local fractional iteration algorithm can be
written as follows:

un+1(x) = un(x)−0 I
(α)
x

(
u(α)n (ξ)− Eα(ξ

α) + 1(4.8)

− 1

Γ(1 + α)

∫ 1

0

rα

Γ(1 + α)
un(r)(dr)

α

)
, n ≥ 0,

where we used λ(ξ)α

Γ(1+α) = −1 . Notice that the initial condition u(0) = 1

is obtained by substituting x = 0 into (4.8). Therefore, we have

u0(x) = 1,

u1(x) = u0(x)−0 I
(α)
x

(
u
(α)
0 (ξ)− Eα(ξ

α) + 1− 1

Γ(1 + α)

∫ 1

0

rα

Γ(1 + α)
u0(r)(dr)

α

)
= Eα(x

α)− 1

2

xα

Γ(1 + α)
,

u2(x) = u1(x)−0 I
(α)
x

(
u
(α)
1 (ξ)− Eα(ξ

α) + 1− 1

Γ(1 + α)

∫ 1

0

rα

Γ(1 + α)
u1(r)(dr)

α

)
= Eα(x

α)− 1

6

xα

Γ(1 + α)
,

u3(x) = u2(x)−0 I
(α)
x

(
u
(α)
2 (ξ)− Eα(ξ

α) + 1− 1

Γ(1 + α)

∫ 1

0

rα

Γ(1 + α)
u2(r)(dr)

α

)
= Eα(x

α)− 1

18

xα

Γ(1 + α)
,

un(x) = Eα(x
α)− 1

2× 3n−1

xα

Γ(1 + α)
, n ≥ 1.

Finally, the solution is

u(x) = lim
n→∞

un(x)(4.9)

= lim
n→∞

[
Eα(x

α)− 1

2× 3n−1

xα

Γ(1 + α)

]
= Eα(x

α).

5. Conclusions

In this work, the analytical approximate solutions for the Fredholm
integral equations of the second kind involving local fractional derivative
operators are investigated by using the local fractional Adomian decom-
position method and local fractional variational iteration method . The
obtained results demonstrate the reliability of the methodology and its
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wider applicability to local fractional integral equations and hence can
be extended to other problems of diversified nonlinear nature.
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