Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 1-12 http://scma.maragheh.ac.ir

A NEW SEQUENCE SPACE AND NORM OF CERTAIN MATRIX OPERATORS ON THIS SPACE

HADI ROOPAEI¹ AND DAVOUD FOROUTANNIA^{2*}

ABSTRACT. In the present paper, we introduce the sequence space

$$l_p(E,\Delta) = \left\{ x = (x_n)_{n=1}^{\infty} : \sum_{n=1}^{\infty} \left| \sum_{j \in E_n} x_j - \sum_{j \in E_{n+1}} x_j \right|^p < \infty \right\},\,$$

where $E = (E_n)$ is a partition of finite subsets of the positive integers and $p \ge 1$. We investigate its topological properties and inclusion relations. Moreover, we consider the problem of finding the norm of certain matrix operators from l_p into $l_p(E, \Delta)$, and apply our results to Copson and Hilbert matrices.

1. INTRODUCTION

Suppose that ω is the space of all real-valued sequences. Any vector subspace of ω is called a sequence space. Suppose that $E = (E_n)$ is a partition of finite subsets of the positive integers such that

$$(1.1) \qquad \max E_n < \min E_{n+1}$$

for $n = 1, 2, \ldots$ We introduce the sequence space $l_p(E)$ by

$$l_p(E) = \left\{ x = (x_n) \in \omega : \sum_{n=1}^{\infty} \left| \sum_{j \in E_n} x_j \right|^p < \infty \right\}, \quad (1 \le p < \infty),$$

with the semi-norm

$$\|x\|_{p,E} = \left(\sum_{n=1}^{\infty} \left|\sum_{j \in E_n} x_j\right|^p\right)^{1/p}$$

- /

²⁰¹⁰ Mathematics Subject Classification. 46A45, 46B20, 40C05, 40G05.

Key words and phrases. Difference sequence space, Matrix domains, Norm, Copson matrix, Hilbert matrix.

Received: 6 October 2015, Accepted: 27 December 2015.

^{*} Corresponding author.

It should be noted that in the special case $E_n = \{n\}$ for n = 1, 2, ...,we have $l_p(E) = l_p$ and $||x||_{p,E} = ||x||_p$. The reader can refer to [5], for more details on this sequence space $l_p(E)$.

Also, the difference sequence space $l_p(\Delta)$ is introduced by Kizmaz [9], which is defined by

$$l_p(\Delta) = \left\{ x = (x_n) : \sum_{n=1}^{\infty} |x_n - x_{n+1}|^p < \infty \right\},\$$

with semi-norm

$$||x||_{p,\Delta} = \left(\sum_{n=1}^{\infty} |x_n - x_{n+1}|^p\right)^{\frac{1}{p}}.$$

Suppose that X, Y are two sequence spaces and $A = (a_{nk})$ is an infinite matrix of real numbers a_{nk} , where $n, k \in \mathbb{N} = \{1, 2, ...\}$. It is said that A defines a matrix mapping from X into Y, and is denoted by $A : X \to Y$, if for every sequence $x = (x_k) \in X$ the sequence $Ax = \{(Ax)_n\}_{n=1}^{\infty}$ exists and is in Y, where

$$(Ax)_n = \sum_{k=1}^{\infty} a_{nk} x_k,$$

for n = 1, 2, ...

Let X be a sequence space. The matrix domain X_A of an infinite matrix A is defined by

(1.2)
$$X_A = \{x = (x_n) \in \omega : Ax \in X\}.$$

Note that X_A is a sequence space that can be the expansion or contraction or the overlap of the original space X. A matrix $A = (a_{nk})$ is said a triangle if $a_{nk} = 0$ for k > n and $a_{nn} \neq 0$ for all $n \in \mathbb{N}$. The sequence spaces X_A and X are linearly isomorphic, i.e., $X_A \cong X$, where A is triangle.

The matrix transformations on sequence spaces that are the matrix domains of triangle matrices has been investigated for classical spaces l_p , l_{∞} , c and c_0 , before. For example, some matrix domains of the difference operator are considered in [1, 3, 4, 9, 11]. In these studies the matrix domains are gained by triangle matrices, hence these spaces are normed sequence spaces. One can refer to Chapter 4 of [2], for more details on the domain of triangle matrices in some sequence spaces. The matrix domains which are presented in this paper are specified by the certain non-triangle matrices, so we should not expect that related spaces are normed sequence spaces.

In this paper, we want to extend the normed sequence space $l_p(\Delta)$ to semi-normed space $l_p(E, \Delta)$, investigate some topological properties of this space and derive inclusion relations concerning with its. Moreover, we investigated the inequality

$$||Ax||_{p,E,\Delta} \le U||x||_p,$$

for all sequence $x \in l_p$. The constant U is not depending on x, and we want to find the smallest possible value of U. We use the notation $||A||_{p,E,\Delta}$ for the norm of A as an operator from l_p into $l_p(E,\Delta)$, and $||A||_{p,\Delta}$ for the norm of A as an operator from l_p into $l_p(\Delta)$. Recently, the problem of finding the upper bound of certain matrix operators are studied in [6, 8, 10] on the sequence spaces $l_p(w)$, d(w, p) and $l_p(\Delta)$. In the present paper, we compute this problem for matrix operators such as Copson and Hilbert from l_p into $l_p(E, \Delta)$.

In a similar way, the Authors introduced the sequence space $l_p(\Delta, E)$ and obtained the norm of certain matrix operators on this space [12].

2. The sequence space $l_p(E, \Delta)$ of non-absolute type

Let $E = (E_n)$ be a partition of the positive integers that satisfies the condition (1.1). We define the sequence space $l_p(E, \Delta)$ by

$$l_p(E,\Delta) = \left\{ x = (x_n)_{n=1}^{\infty} : \sum_{n=1}^{\infty} \left| \sum_{j \in E_n} x_j - \sum_{j \in E_{n+1}} x_j \right|^p < \infty \right\},$$

with the semi-norm

(2.1)
$$||x||_{p,E,\Delta} = \left(\sum_{n=1}^{\infty} \left|\sum_{j\in E_n} x_j - \sum_{j\in E_{n+1}} x_j\right|^p\right)^{1/p}$$

It should be noted that the function $\|.\|_{p,E,\Delta}$ is not a norm, since by choosing x = (1, 1, 1, ...) and $E_n = \{2n - 1, 2n\}$ for all n, $\|x\|_{E,\Delta} = 0$ while $x \neq 0$. It is also significant that in the special case $E_n = \{n\}$ for n = 1, 2, ..., we have

$$||x||_{p,E,\Delta} = ||x||_{p,\Delta}, \qquad l_p(E,\Delta) = l_p(\Delta).$$

By the notation of (1.2), we can redefine the space $l_p(E, \Delta)$ as follows:

$$l_p(E,\Delta) = (l_p)_A,$$

where $A = (a_{nk})$ is defined by

$$a_{nk} = \begin{cases} 1 & \text{if } k \in E_n \\ -1 & \text{if } k \in E_{n+1} \\ 0 & \text{otherwise,} \end{cases}$$

Throughout this study, we assume $p \ge 1$ and $E = (E_n)$ is a partition of finite subsets of the positive integers that satisfies the condition (1.1), and also $|E_k|$ is the cardinal number of the set E_k . The main purpose of this section is to consider some properties of the sequence space $l_p(E, \Delta)$ and is to derive some inclusion relations related to these spaces. At first we bring the following theorem which is essential in the study.

Theorem 2.1. The set $l_p(E, \Delta)$ becomes a vector space with coordinatewise addition and scalar multiplication, which is the complete seminormed space by $\|.\|_{p,E,\Delta}$ defined by (2.1).

Proof. The proof is routine, so we omit the details.

It must be mentioned that the absolute property does not hold on the space $l_p(E, \Delta)$, that is $||x||_{p,E,\Delta} \neq |||x|||_{p,E,\Delta}$ for at least one sequence in the space $l_p(E, \Delta)$, and this says that $l_p(E, \Delta)$ is a sequence space of nonabsolute type, where $|x| = (|x_k|)$.

Theorem 2.2. If

$$K = \left\{ x = (x_n) : \sum_{i \in E_n} x_i = \sum_{i \in E_{n+1}} x_i, \forall n \right\},\$$

then we have $l_p(E, \Delta)/K \simeq l_p(\Delta)$.

Proof. Consider the map $T: l_p(E, \Delta) \longrightarrow l_p(\Delta)$ defined by

$$(Tx)_n = \sum_{i \in E_n} x_i,$$

for all $x \in l_p(\Delta, E)$ and for all n. The map T is well defined and surjective also ker T = K. So the proof is finished by applying the first isomorphism.

Theorem 2.3. We have the following statements:

(i) l_p(E) ⊂ l_p(E, Δ), furthermore the inclusion is strictly holds.
(ii) If

 $E_n = \{Nn - N + 1, Nn - N + 2, \dots, Nn\}$

for all n, then $l_p(\Delta) \subset l_p(E, \Delta)$. Moreover, this inclusion is strict when N > 1.

Proof. (i) By using the inequality $||x||_{p,E,\Delta} \leq 2||x||_{p,E}$, the proof is obvious. If the sequence $x = (x_k)$ is defined such that $\sum_{i \in E_k} x_i = 1$, for $k = 1, 2, \ldots$ We have $x \in l_p(E, \Delta)$ while $x \notin l_p(E)$, hence the inclusion is strictly holds.

(ii) Since

$$\sum_{i \in E_n} x_i - \sum_{i \in E_{n-1}} x_i = (x_{nN-N+1} - x_{nN-N+2}) + 2(x_{nN-N+2} - x_{nN-N+3}) + \dots + N(x_{nN} - x_{nN+1}) + (N-1)(x_{nN+1} - x_{nN+2}) + \dots + (x_{nN+N-1} - x_{nN+N})$$

It is clear $x \in l_p(\Delta)$ implies that $x \in l_p(E, \Delta)$, by applying Minkowski's inequality. Moreover if N > 1, we define the sequences $x = (x_k)$ such that

$$x_k = \begin{cases} 1 & \text{if } k = nN - N + 1\\ -1 & \text{if } k = nN - N + 2\\ 0 & \text{otherwise,} \end{cases}$$

obviously $x \in l_p(E, \Delta) - l_p(\Delta)$.

In general, neither of the spaces $l_p(E, \Delta)$ and $l_p(\Delta)$ includes the other one. Since if $E_{2n-1} = \{3n-2\}, E_{2n} = \{3n-1, 3n\}$ for n = 1, 2, ..., x =(1, 1, 1, ...) and y = (0, 1, -1, 0, 1, -1, ...), we have $x \in l_p(\Delta) - l_p(E, \Delta)$ and $y \in l_p(E, \Delta) - l_p(\Delta)$. This statement says that there is no inclusion between these two sequence spaces.

Theorem 2.4. If $\sup_n |E_n| < \infty$, then $l_p \subset l_p(E)$. Moreover if $|E_n| > 1$ for an infinite number of n, then the inclusion is strict.

Proof. Let $\zeta = \sup_n |E_n|$. To prove the validity of the inclusion $l_p \subset l_p(E)$, it suffices to show

(2.2)
$$\|x\|_{p,E} \le \zeta^{\frac{p-1}{p}} \|x\|_p,$$

for each $x \in l_p$. Note that $\zeta = 1$, when p = 1. Suppose that $x = (x_n) \in l_p$ is an arbitrary sequence. By applying Hölder's inequality, we have

$$\left|\sum_{j\in E_n} x_j\right|^p \le |E_n|^{p-1} \sum_{j\in E_k} |x_j|^p,$$

 \mathbf{SO}

$$||x||_{p,E}^{p} \le \zeta^{p-1} ||x||_{p,E}^{p}.$$

Moreover, let $|E_n| > 1$ for an infinite number of n. One can choose a sequence (n_j) such that $|E_{n_j}| > 1$ for $j = 1, 2, \ldots$ If the sequence

 $x = (x_k)$ is defined by

(2.3)
$$x_k = \begin{cases} 1 & \text{if } k = \min E_{n_j} \\ -1 & \text{if } k = \min E_{n_j} + 1 \\ 0 & \text{otherwise,} \end{cases}$$

for k = 1, 2, ... It is obvious that $\sum_{i \in E_k} x_i = 0$, so $x \in l_p(E)$ while $x \notin l_p$. Hence $x \in l_p(E) - l_p$, and the inclusion $l_p \subset l_p(E)$ strictly holds.

Corollary 2.5. If $\sup_n |E_n| < \infty$, then $l_p \subset l_p(E, \Delta)$. Moreover if $|E_n| > 1$ for an infinite number of n, then the inclusion is strict.

Proof. By applying Theorem 2.4 and the part (i) of Theorem 2.3, the proof is trivial. \Box

One may expect a similar result for the space $l_p(E, \Delta)$ as was observed for the space l_p , and ask the following natural question: Is the space $l_p(E, \Delta)$ a semi-inner product space for p = 2? The answer is positive and is given by the following theorem:

Theorem 2.6. Except the case p = 2, the space $l_p(E, \Delta)$ is not a semiinner product space.

Proof. If we define

$$\langle x, y \rangle = \sum_{n=1}^{\infty} \sum_{i,j \in E_n} x_i y_j,$$

then it is a semi-inner product on the space $l_2(E, \Delta)$ and

$$\|x\|_{2,E,\Delta}^{2} = \sum_{k=1}^{\infty} \left| \sum_{j \in E_{k}} x_{j} - \sum_{j \in E_{k+1}} x_{j} \right|^{2}$$
$$= \|x_{E,\Delta}\|_{2}^{2}$$
$$= \langle x_{E,\Delta}, x_{E,\Delta} \rangle,$$

where

$$x_{E,\Delta} = \left(\sum_{i \in E_1} x_i - \sum_{i \in E_2} x_i, \sum_{i \in E_2} x_i - \sum_{i \in E_3} x_i, \ldots\right).$$

Now consider the sequences x and y such that

$$\sum_{i \in E_k} x_i = \begin{cases} 1 & k = 1, 2\\ 0 & k \ge 3, \end{cases}$$

and

$$\sum_{i \in E_k} y_i = \begin{cases} 1 & k = 1\\ 2 & k \ge 2. \end{cases}$$

We see that

$$\|x+y\|_{p,E,\Delta}^2 + \|x-y\|_{p,E,\Delta}^2 \neq 2\left(\|x\|_{p,E,\Delta}^2 + \|y\|_{p,E,\Delta}^2\right), \quad (p \neq 2).$$

Since the equation $2 = 2^{\frac{2}{p}}$ has only one root p = 2, the semi-norm of the space $l_p(E, \Delta)$ does not satisfy the parallelogram equality, which means that the semi-norm cannot be obtained from the semi-inner product. Hence the space $l_p(E, \Delta)$ with $p \neq 2$ is not a semi-inner product space.

Suppose that X is a semi-normed space with a semi-norm g. A sequence (b_n) of the elements of semi-normed space X is called a Schauder basis (or briefly a basis) for X if and only if, for each $x \in X$ there exists a unique sequence of scalars (α_n) such that

$$\lim_{n \to \infty} g\left(x - \sum_{k=1}^{n} \alpha_k b_k\right) = 0.$$

The series $\sum_{k=1}^{\infty} \alpha_k b_k$ which has the sum x is then called the expansion of x with respect to (b_n) , and written as $x = \sum_{k=1}^{\infty} \alpha_k b_k$. In the next, we will introduce a sequence of the points of the space $l_p(E, \Delta)$ which forms a basis for the space $l_p(E, \Delta)$.

Theorem 2.7. If the sequence $b^{(k)} = \{b_j^{(k)}\}_{j=1}^{\infty}$ is defined such that

$$\sum_{j \in E_n} b_j^{(k)} = \begin{cases} 0 & n < k\\ 1 & n \ge k, \end{cases}$$

and the remaining elements are zero, for k = 1, 2, ... Then the sequence $\{b^{(k)}\}_{k=1}^{\infty}$ is a basis for the space $l_p(E, \Delta)$, and any $x \in l_p(E, \Delta)$ has a unique representation of the form

$$x = \sum_{k=1}^{\infty} \alpha_k b^{(k)},$$

where

$$\alpha_k = \sum_{j \in E_k} x_j, \quad k = 1, 2, \dots$$

Proof. The proof is routine, so we omit the details.

3. Upper bound of matrix operators from l_p into $l_p(E, \Delta)$

In this section, we tend to compute the norm of certain matrix operators such as Copson and Hilbert from l_p into $l_p(E, \Delta)$ is considered, where $p \geq 1$. At first, we prove a theorem that give us the norm of operators from l_1 into $l_1(E, \Delta)$.

Theorem 3.1. If $A = (a_{n,k})$ is a matrix operator and

$$M = \sup_{k} \sum_{n=1}^{\infty} \left| \sum_{i \in E_n} a_{i,k} - \sum_{i \in E_{n+1}} a_{i,k} \right| < \infty,$$

then A is a bounded operator from l_1 into $l_1(E, \Delta)$ and $||A||_{1,E,\Delta} = M$. In particular if

$$\sum_{i \in E_n} a_{i,k} \ge \sum_{i \in E_{n+1}} a_{i,k},$$

for all n, k, then

$$||A||_{1,E,\Delta} = \sup_k \sum_{i \in E_1} a_{i,k}.$$

Proof. Suppose that x is in l_1 and

$$u_k = \sum_{n=1}^{\infty} \left| \sum_{i \in E_n} a_{i,k} - \sum_{i \in E_{n+1}} a_{i,k} \right|,$$

for all k. We have

$$||Ax||_{1,E,\Delta} \le \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \left| \sum_{i \in E_n} a_{i,k} - \sum_{i \in E_{n+1}} a_{i,k} \right| |x_k|$$

= $\sum_{k=1}^{\infty} u_k |x_k|$
 $\le M ||x||_1.$

which says that $||A||_{1,E,\Delta} \leq M$. Conversely, we take $x = e_n$ which e_n denotes the sequence having 1 in place n and 0 elsewhere, then $||x||_1 = 1$ and $||Ax||_{1,E,\Delta} = u_n$ which proves that $||A||_{1,E,\Delta} = M$.

Now we are ready to compute the norms of Copson and Hilbert operators from sequence space l_1 into $l_1(E, \Delta)$. We recall that the Copson matrix operator $C = (c_{n,k})$ is defined by

$$c_{n,k} = \begin{cases} \frac{1}{k} & \text{for } n \le k\\ 0 & \text{for } n > k. \end{cases}$$

Corollary 3.2. If C is the Copson operator and $|E_n| \ge |E_{n+1}|$ for all n, then C is a bounded operator from l_1 into $l_1(E, \Delta)$ and $||C||_{1,E,\Delta} = 1$.

Proof. Since

$$M = \sup_{k} \sum_{i \in E_1} c_{i,k} = c_{1,1} = 1,$$

the result will gain by Theorem 3.1.

Corollary 3.3. If C is the Copson operator and $E_n = \{n\}$ for all n, then C is a bounded operator from l_1 into $l_1(\Delta)$ and $||C||_{1,\Delta} = 1$.

Remember that the Hilbert matrix $H = (h_{n,k})$ is defined by

$$h_{n,k} = \frac{1}{n+k}, \quad (n,k=1,2,\ldots).$$

Corollary 3.4. If H is the Hilbert matrix and $|E_n| \ge |E_{n+1}|$ for all n, then H is a bounded operator from l_1 into $l_1(E, \Delta)$ and

$$||H||_{1,E,\Delta} = \frac{1}{2} + \dots + \frac{1}{\max E_1 + 1}$$

Proof. Since $M = \sup_k \sum_{i \in E_1} h_{i,k}$, we obtain the desired result from Theorem 3.1.

Corollary 3.5. If *H* is the Hilbert matrix, then *H* is a bounded operator from l_1 into $l_1(\Delta)$ and $||H||_{1,\Delta} = \frac{1}{2}$.

Proof. Let $E_n = \{n\}$ in Corollary 3.4, so the proof is obvious.

In the sequel, we want to find the norm of Copson and Hilbert matrix operators from l_p into $l_p(E, \Delta)$ for p > 1. To do this, we state the Schur's Theorem and a lemma which are needed to prove our main results.

Theorem 3.6 ([7], Theorem 275). Let p > 1 and $B = (b_{n,k})$ be a matrix operator with $b_{n,k} \ge 0$ for all n, k. Suppose that C, R are two strictly positive numbers such that

$$\sum_{n=1}^{\infty} b_{n,k} \le C \quad \text{for all } k,$$
$$\sum_{k=1}^{\infty} b_{n,k} \le R \quad \text{for all } n,$$

(bounds for column and row sums respectively). Then

$$||B||_p \leq R^{(p-1)/p} C^{1/p}.$$

Lemma 3.7. If $A = (a_{n,k})$ and $B = (b_{n,k})$ are two matrix operators such that

$$b_{n,k} = \sum_{i \in E_n} a_{i,k} - \sum_{i \in E_{n+1}} a_{i,k},$$

then

$$||A||_{p,E,\Delta} = ||B||_p.$$

Hence, if B is a bounded operator on l_p , then A is also a bounded operator from l_p into $l_p(E, \Delta)$.

In below, we compute the norm of the Copson matrix operator for p > 1.

Theorem 3.8. Suppose that p > 1 and N is a positive integer and $E_n = \{nN - N + 1, nN - N + 2, ..., nN\}$ for all n. If C is the Copson matrix operator, then it is a bounded operator from l_p into $l_p(E, \Delta)$ and

$$||C||_{p,E,\Delta} \le \left(N + \frac{N-1}{N+1} + \frac{N-2}{N+2} + \dots + \frac{1}{2N-1}\right)^{\frac{p-1}{p}}.$$

In particular if $E_n = \{n\}$ for all n, then we have $||C||_{p,E,\Delta} = 1$.

Proof. By using Lemma 3.7 $||C||_{p,E,\Delta} = ||B||_p$, where

$$b_{n,k} = \sum_{i \in E_n} c_{i,k} - \sum_{i \in E_{n+1}} c_{i,k}.$$

Let C, R be defined as in Theorem 3.6. We deduce that $R_n \leq R_1$ and $C_n \leq 1$ for all n. Since

$$b_{1,k} = \begin{cases} 1 & \text{for } k \le N \\ \frac{2N-k}{k} & \text{for } N < k \le 2N - 1 \\ 0 & \text{for } k \ge 2N, \end{cases}$$

and

$$R_1 = N + \frac{N-1}{N+1} + \frac{N-2}{N+2} + \dots + \frac{1}{2N-1},$$

it can conclude that $||C||_{p,\Delta,E} \leq R_1^{(p-1)/p}$. In particular if $E_n = \{n\}$ for all n, then $R_1 = 1$ so $||C||_{p,E,\Delta} \leq 1$. Now let $x = e_1$, then Cx = x and this completes the proof of the theorem.

At last, we solve the problem of finding the norm of the Hilbert matrix operator for p > 1.

Theorem 3.9. Let H be the Hilbert operator and p > 1. If N is a positive integer and $E_n = \{nN - N + 1, nN - N + 2, ..., nN\}$ for all n, then H is a bounded operator from l_p into $l_p(E, \Delta)$ and

$$\|H\|_{p,E,\Delta} \le \left(\frac{1}{2} + \frac{2}{3} + \dots + \frac{N+1}{N} + \dots + \frac{1}{2N}\right)^{\frac{p-1}{p}} \left(\frac{1}{2} + \dots + \frac{1}{N+1}\right)^{\frac{1}{p}}.$$

Proof. By using Lemma 3.7 $||H||_{p,E,\Delta} = ||B||_p$, where

$$b_{n,k} = \sum_{i \in E_n} h_{i,k} - \sum_{i \in E_{n+1}} h_{i,k}$$

Let C, R be defined as in Theorem 3.6. We deduce that $R_n \leq R_1$ and $C_n \leq C_1$ for all n. But

$$R_1 = \sum_{k=1}^{\infty} b_{1,k} = \frac{1}{2} + \frac{2}{3} + \dots + \frac{N+1}{N} + \dots + \frac{1}{2N},$$

and

$$C_1 = \sum_{n=1}^{\infty} b_{n,1} = \frac{1}{2} + \dots + \frac{1}{N+1},$$

hence the result is gained.

References

- B. Altay and F. Başar, The fine spectrum and the matrix domain of the difference operator Δ on the sequence space lp, (0 (2007) 1–11.
- F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, İstanbul, 2012.
- F. Başar and B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukr. Math. J., 55(1) (2003) 136–147.
- F. Başar, B. Altay, and M. Mursaleen, Some generalizations of the space bup of p-bounded variation sequences, Nonlinear Anal., 68(2) (2008) 273–287.
- D. Foroutannia, On the block sequence space l_p(E) and related matrix transformations, Turk. J. Math., 39 (2015) 830–841.
- 6. D. Foroutannia, Upper bound and lower bound for matrix opwrators on weighted sequence spaces, Doctoral dissertation, Zahedan, 2007.
- G.H. Hardy, J.E. Littlewood, and G. Polya, *Inequalities*, 2nd edition, Cambridge University press, Cambridge, 2001.
- 8. G.J.O. Jameson and R. Lashkaripour, Norms of certain operators on weighted l_p spaces and Lorentz sequence spaces, J. Inequal. Pure Appl. Math., 3(1) (2002) Article 6.
- H. Kizmaz, On certain sequence spaces I, Canad. Math. Bull., 25(2) (1981) 169– 176.
- R. Lashkaripour and J. Fathi, Norms of matrix operators on bv_p, J. Math. Inequal., 6(4) (2012) 589–592.
- M. Mursaleen and A. K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comput. Modelling, 52 (2010) 603–617.
- 12. H. Roopaei and D. Foroutannia, *The norm of certain matrix operators on the new difference sequence spaces*, preprint.

 2 Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 7713936417, Rafsanjan, Iran.

E-mail address: foroutan@vru.ac.ir

 $^{^1}$ Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 7713936417, Rafsanjan, Iran.

E-mail address: h.roopaei@gmail.com