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A NEW SEQUENCE SPACE AND NORM OF CERTAIN

MATRIX OPERATORS ON THIS SPACE
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Abstract. In the present paper, we introduce the sequence space

lp(E,∆) =

x = (xn)
∞
n=1 :

∞∑
n=1

∣∣∣∣∣∣
∑
j∈En

xj −
∑

j∈En+1

xj

∣∣∣∣∣∣
p

< ∞

 ,

where E = (En) is a partition of finite subsets of the positive in-
tegers and p ≥ 1. We investigate its topological properties and
inclusion relations. Moreover, we consider the problem of finding
the norm of certain matrix operators from lp into lp(E,∆), and
apply our results to Copson and Hilbert matrices.

1. Introduction

Suppose that ω is the space of all real-valued sequences. Any vector
subspace of ω is called a sequence space. Suppose that E = (En) is a
partition of finite subsets of the positive integers such that

maxEn < minEn+1,(1.1)

for n = 1, 2, . . .. We introduce the sequence space lp(E) by

lp(E) =

x = (xn) ∈ ω :

∞∑
n=1

∣∣∣∣∣∣
∑
j∈En

xj

∣∣∣∣∣∣
p

< ∞

 , (1 ≤ p < ∞),

with the semi-norm

∥x∥p,E =

 ∞∑
n=1

∣∣∣∣∣∣
∑
j∈En

xj

∣∣∣∣∣∣
p1/p

.
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It should be noted that in the special case En = {n} for n = 1, 2, . . .,
we have lp(E) = lp and ∥x∥p,E = ∥x∥p. The reader can refer to [5], for
more details on this sequence space lp(E).

Also, the difference sequence space lp(∆) is introduced by Kizmaz [9],
which is defined by

lp(∆) =

{
x = (xn) :

∞∑
n=1

|xn − xn+1|p < ∞

}
,

with semi-norm

∥x∥p,∆ =

( ∞∑
n=1

|xn − xn+1|p
) 1

p

.

Suppose that X,Y are two sequence spaces and A = (ank) is an
infinite matrix of real numbers ank, where n, k ∈ N = {1, 2, . . .}. It is
said that A defines a matrix mapping from X into Y , and is denoted
by A : X → Y , if for every sequence x = (xk) ∈ X the sequence
Ax = {(Ax)n}∞n=1 exists and is in Y , where

(Ax)n =

∞∑
k=1

ankxk,

for n = 1, 2, . . ..
Let X be a sequence space. The matrix domain XA of an infinite

matrix A is defined by

XA = {x = (xn) ∈ ω : Ax ∈ X} .(1.2)

Note that XA is a sequence space that can be the expansion or con-
traction or the overlap of the original space X. A matrix A = (ank) is
said a triangle if ank = 0 for k > n and ann ̸= 0 for all n ∈ N. The
sequence spaces XA and X are linearly isomorphic, i.e., XA

∼= X, where
A is triangle.

The matrix transformations on sequence spaces that are the matrix
domains of triangle matrices has been investigated for classical spaces lp,
l∞, c and c0, before. For example, some matrix domains of the difference
operator are considered in [1, 3, 4, 9, 11]. In these studies the matrix
domains are gained by triangle matrices, hence these spaces are normed
sequence spaces. One can refer to Chapter 4 of [2], for more details on
the domain of triangle matrices in some sequence spaces. The matrix
domains which are presented in this paper are specified by the certain
non-triangle matrices, so we should not expect that related spaces are
normed sequence spaces.

In this paper, we want to extend the normed sequence space lp(∆) to
semi-normed space lp(E,∆), investigate some topological properties of
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this space and derive inclusion relations concerning with its. Moreover,
we investigated the inequality

∥Ax∥p,E,∆ ≤ U∥x∥p,
for all sequence x ∈ lp. The constant U is not depending on x, and
we want to find the smallest possible value of U . We use the notation
∥A∥p,E,∆ for the norm of A as an operator from lp into lp(E,∆), and
∥A∥p,∆ for the norm of A as an operator from lp into lp(∆). Recently,
the problem of finding the upper bound of certain matrix operators are
studied in [6, 8, 10] on the sequence spaces lp(w), d(w, p) and lp(∆). In
the present paper, we compute this problem for matrix operators such
as Copson and Hilbert from lp into lp(E,∆).

In a similar way, the Authors introduced the sequence space lp(∆, E)
and obtained the norm of certain matrix operators on this space [12].

2. The sequence space lp(E,∆) of non-absolute type

Let E = (En) be a partition of the positive integers that satisfies the
condition (1.1). We define the sequence space lp(E,∆) by

lp(E,∆) =

x = (xn)
∞
n=1 :

∞∑
n=1

∣∣∣∣∣∣
∑
j∈En

xj −
∑

j∈En+1

xj

∣∣∣∣∣∣
p

< ∞

 ,

with the semi-norm

∥x∥p,E,∆ =

 ∞∑
n=1

∣∣∣∣∣∣
∑
j∈En

xj −
∑

j∈En+1

xj

∣∣∣∣∣∣
p1/p

.(2.1)

It should be noted that the function ∥.∥p,E,∆ is not a norm, since by
choosing x = (1, 1, 1, . . .) and En = {2n − 1, 2n} for all n, ∥x∥E,∆ = 0
while x ̸= 0. It is also significant that in the special case En = {n} for
n = 1, 2, . . ., we have

∥x∥p,E,∆ = ∥x∥p,∆, lp(E,∆) = lp(∆).

By the notation of (1.2), we can redefine the space lp(E,∆) as follows:

lp(E,∆) = (lp)A,

where A = (ank) is defined by

ank =

 1 if k ∈ En

−1 if k ∈ En+1

0 otherwise,

Throughout this study, we assume p ≥ 1 and E = (En) is a partition
of finite subsets of the positive integers that satisfies the condition (1.1),
and also |Ek| is the cardinal number of the set Ek. The main purpose of
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this section is to consider some properties of the sequence space lp(E,∆)
and is to derive some inclusion relations related to these spaces. At first
we bring the following theorem which is essential in the study.

Theorem 2.1. The set lp(E,∆) becomes a vector space with coordi-
natewise addition and scalar multiplication, which is the complete semi-
normed space by ∥.∥p,E,∆ defined by (2.1).

Proof. The proof is routine, so we omit the details. □

It must be mentioned that the absolute property does not hold on the
space lp(E,∆), that is ∥x∥p,E,∆ ̸= ∥|x|∥p,E,∆ for at least one sequence
in the space lp(E,∆), and this says that lp(E,∆) is a sequence space of
nonabsolute type, where |x| = (|xk|).

Theorem 2.2. If

K =

x = (xn) :
∑
i∈En

xi =
∑

i∈En+1

xi, ∀n

 ,

then we have lp(E,∆)/K ≃ lp(∆).

Proof. Consider the map T : lp(E,∆) −→ lp(∆) defined by

(Tx)n =
∑
i∈En

xi,

for all x ∈ lp(∆, E) and for all n. The map T is well defined and
surjective also kerT = K. So the proof is finished by applying the first
isomorphism. □

Theorem 2.3. We have the following statements:

(i) lp(E) ⊂ lp(E,∆), furthermore the inclusion is strictly holds.
(ii) If

En = {Nn−N + 1, Nn−N + 2, . . . , Nn}

for all n, then lp(∆) ⊂ lp(E,∆). Moreover, this inclusion is
strict when N > 1.

Proof. (i) By using the inequality ∥x∥p,E,∆ ≤ 2∥x∥p,E , the proof
is obvious. If the sequence x = (xk) is defined such that∑

i∈Ek
xi = 1, for k = 1, 2, . . .. We have x ∈ lp(E,∆) while

x ̸∈ lp(E), hence the inclusion is strictly holds.
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(ii) Since∑
i∈En

xi −
∑

i∈En−1

xi = (xnN−N+1 − xnN−N+2)

+ 2(xnN−N+2 − xnN−N+3)

+ · · ·+N(xnN − xnN+1)

+ (N − 1)(xnN+1 − xnN+2)

+ · · ·+ (xnN+N−1 − xnN+N ),

It is clear x ∈ lp(∆) implies that x ∈ lp(E,∆), by applying
Minkowski’s inequality. Moreover if N > 1, we define the se-
quences x = (xk) such that

xk =

 1 if k = nN −N + 1
−1 if k = nN −N + 2
0 otherwise,

obviously x ∈ lp(E,∆)− lp(∆).
□

In general, neither of the spaces lp(E,∆) and lp(∆) includes the other
one. Since if E2n−1 = {3n− 2}, E2n = {3n− 1, 3n} for n = 1, 2, . . ., x =
(1, 1, 1, . . . .) and y = (0, 1,−1, 0, 1,−1, . . .), we have x ∈ lp(∆)−lp(E,∆)
and y ∈ lp(E,∆)− lp(∆). This statement says that there is no inclusion
between these two sequence spaces.

Theorem 2.4. If supn |En| < ∞, then lp ⊂ lp(E). Moreover if |En| > 1
for an infinite number of n, then the inclusion is strict.

Proof. Let ζ = supn |En|. To prove the validity of the inclusion lp ⊂
lp(E), it suffices to show

∥x∥p,E ≤ ζ
p−1
p ∥x∥p,(2.2)

for each x ∈ lp. Note that ζ = 1, when p = 1. Suppose that x = (xn) ∈ lp
is an arbitrary sequence. By applying Hölder’s inequality, we have∣∣∣∣∣∣

∑
j∈En

xj

∣∣∣∣∣∣
p

≤ |En|p−1
∑
j∈Ek

|xj |p,

so

∥x∥pp,E ≤ ζp−1∥x∥pp,E .

Moreover, let |En| > 1 for an infinite number of n. One can choose
a sequence (nj) such that |Enj | > 1 for j = 1, 2, . . .. If the sequence
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x = (xk) is defined by

xk =

 1 if k = minEnj

−1 if k = minEnj + 1
0 otherwise,

(2.3)

for k = 1, 2, . . .. It is obvious that
∑

i∈Ek
xi = 0, so x ∈ lp(E) while

x ̸∈ lp. Hence x ∈ lp(E) − lp, and the inclusion lp ⊂ lp(E) strictly
holds. □

Corollary 2.5. If supn |En| < ∞, then lp ⊂ lp(E,∆). Moreover if
|En| > 1 for an infinite number of n, then the inclusion is strict.

Proof. By applying Theorem 2.4 and the part (i) of Theorem 2.3, the
proof is trivial. □

One may expect a similar result for the space lp(E,∆) as was observed
for the space lp, and ask the following natural question: Is the space
lp(E,∆) a semi-inner product space for p = 2? The answer is positive
and is given by the following theorem:

Theorem 2.6. Except the case p = 2, the space lp(E,∆) is not a semi-
inner product space.

Proof. If we define

< x, y >=

∞∑
n=1

∑
i,j∈En

xiyj ,

then it is a semi-inner product on the space l2(E,∆) and

∥x∥22,E,∆ =

∞∑
k=1

∣∣∣∣∣∣
∑
j∈Ek

xj −
∑

j∈Ek+1

xj

∣∣∣∣∣∣
2

= ∥xE,∆∥22
=< xE,∆, xE,∆ >,

where

xE,∆ =

∑
i∈E1

xi −
∑
i∈E2

xi,
∑
i∈E2

xi −
∑
i∈E3

xi, . . .

 .

Now consider the sequences x and y such that∑
i∈Ek

xi =

{
1 k = 1, 2
0 k ≥ 3,
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and ∑
i∈Ek

yi =

{
1 k = 1
2 k ≥ 2.

We see that

∥x+ y∥2p,E,∆ + ∥x− y∥2p,E,∆ ̸= 2
(
∥x∥2p,E,∆ + ∥y∥2p,E,∆

)
, (p ̸= 2).

Since the equation 2 = 2
2
p has only one root p = 2, the semi-norm of the

space lp(E,∆) does not satisfy the parallelogram equality, which means
that the semi-norm cannot be obtained from the semi-inner product.
Hence the space lp(E,∆) with p ̸= 2 is not a semi-inner product space.

□

Suppose that X is a semi-normed space with a semi-norm g. A se-
quence (bn) of the elements of semi-normed space X is called a Schauder
basis (or briefly a basis) for X if and only if, for each x ∈ X there exists
a unique sequence of scalars (αn) such that

lim
n→∞

g

(
x−

n∑
k=1

αkbk

)
= 0.

The series
∑∞

k=1 αkbk which has the sum x is then called the expansion
of x with respect to (bn), and written as x =

∑∞
k=1 αkbk. In the next,

we will introduce a sequence of the points of the space lp(E,∆) which
forms a basis for the space lp(E,∆).

Theorem 2.7. If the sequence b(k) = {b(k)j }∞j=1 is defined such that∑
j∈En

b
(k)
j =

{
0 n < k
1 n ≥ k,

and the remaining elements are zero, for k = 1, 2, . . .. Then the sequence{
b(k)
}∞
k=1

is a basis for the space lp(E,∆), and any x ∈ lp(E,∆) has a
unique representation of the form

x =

∞∑
k=1

αkb
(k),

where

αk =
∑
j∈Ek

xj , k = 1, 2, . . . .

Proof. The proof is routine, so we omit the details. □
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3. Upper bound of matrix operators from lp into lp(E,∆)

In this section, we tend to compute the norm of certain matrix op-
erators such as Copson and Hilbert from lp into lp(E,∆) is considered,
where p ≥ 1. At first, we prove a theorem that give us the norm of
operators from l1 into l1(E,∆).

Theorem 3.1. If A = (an,k) is a matrix operator and

M = sup
k

∞∑
n=1

∣∣∣∣∣∣
∑
i∈En

ai,k −
∑

i∈En+1

ai,k

∣∣∣∣∣∣ < ∞,

then A is a bounded operator from l1 into l1(E,∆) and ∥A∥1,E,∆ = M .
In particular if ∑

i∈En

ai,k ≥
∑

i∈En+1

ai,k,

for all n, k, then

∥A∥1,E,∆ = sup
k

∑
i∈E1

ai,k.

Proof. Suppose that x is in l1 and

uk =

∞∑
n=1

∣∣∣∣∣∣
∑
i∈En

ai,k −
∑

i∈En+1

ai,k

∣∣∣∣∣∣ ,
for all k. We have

∥Ax∥1,E,∆ ≤
∞∑
n=1

∞∑
k=1

∣∣∣∣∣∣
∑
i∈En

ai,k −
∑

i∈En+1

ai,k

∣∣∣∣∣∣ |xk|
=

∞∑
k=1

uk |xk|

≤ M∥x∥1.
which says that ∥A∥1,E,∆ ⩽ M . Conversely, we take x = en which en
denotes the sequence having 1 in place n and 0 elsewhere, then ∥x∥1 = 1
and ∥Ax∥1,E,∆ = un which proves that ∥A∥1,E,∆ = M . □

Now we are ready to compute the norms of Copson and Hilbert op-
erators from sequence space l1 into l1(E,∆). We recall that the Copson
matrix operator C = (cn,k) is defined by

cn,k =

{
1
k for n ≤ k
0 for n > k.

Corollary 3.2. If C is the Copson operator and |En| ≥ |En+1| for all
n, then C is a bounded operator from l1 into l1(E,∆) and ∥C∥1,E,∆ = 1.
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Proof. Since

M = sup
k

∑
i∈E1

ci,k = c1,1 = 1,

the result will gain by Theorem 3.1. □

Corollary 3.3. If C is the Copson operator and En = {n} for all n,
then C is a bounded operator from l1 into l1(∆) and ∥C∥1,∆ = 1.

Remember that the Hilbert matrix H = (hn,k) is defined by

hn,k =
1

n+ k
, (n, k = 1, 2, . . .).

Corollary 3.4. If H is the Hilbert matrix and |En| ≥ |En+1| for all n,
then H is a bounded operator from l1 into l1(E,∆) and

∥H∥1,E,∆ =
1

2
+ · · ·+ 1

maxE1 + 1
.

Proof. Since M = supk
∑

i∈E1
hi,k, we obtain the desired result from

Theorem 3.1. □

Corollary 3.5. If H is the Hilbert matrix, then H is a bounded operator
from l1 into l1(∆) and ∥H∥1,∆ = 1

2 .

Proof. Let En = {n} in Corollary 3.4, so the proof is obvious. □

In the sequel, we want to find the norm of Copson and Hilbert matrix
operators from lp into lp(E,∆) for p > 1. To do this, we state the Schur’s
Theorem and a lemma which are needed to prove our main results.

Theorem 3.6 ([7], Theorem 275). Let p > 1 and B = (bn,k) be a matrix
operator with bn,k ≥ 0 for all n, k. Suppose that C, R are two strictly
positive numbers such that

∞∑
n=1

bn,k ≤ C for all k,

∞∑
k=1

bn,k ≤ R for all n,

(bounds for column and row sums respectively). Then

∥B∥p ≤ R(p−1)/pC1/p.

Lemma 3.7. If A = (an,k) and B = (bn,k) are two matrix operators
such that

bn,k =
∑
i∈En

ai,k −
∑

i∈En+1

ai,k,
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then

∥A∥p,E,∆ = ∥B∥p.
Hence, if B is a bounded operator on lp, then A is also a bounded operator
from lp into lp(E,∆).

In below, we compute the norm of the Copson matrix operator for
p > 1.

Theorem 3.8. Suppose that p > 1 and N is a positive integer and
En = {nN −N + 1, nN −N + 2, . . . , nN} for all n. If C is the Copson
matrix operator, then it is a bounded operator from lp into lp(E,∆) and

∥C∥p,E,∆ ≤
(
N +

N − 1

N + 1
+

N − 2

N + 2
+ · · ·+ 1

2N − 1

) p−1
p

.

In particular if En = {n} for all n, then we have ∥C∥p,E,∆ = 1.

Proof. By using Lemma 3.7 ∥C∥p,E,∆ = ∥B∥p, where

bn,k =
∑
i∈En

ci,k −
∑

i∈En+1

ci,k.

Let C,R be defined as in Theorem 3.6. We deduce that Rn ≤ R1 and
Cn ≤ 1 for all n. Since

b1,k =


1 for k ≤ N
2N−k

k for N < k ≤ 2N − 1
0 for k ≥ 2N,

and

R1 = N +
N − 1

N + 1
+

N − 2

N + 2
+ · · ·+ 1

2N − 1
,

it can conclude that ∥C∥p,∆,E ≤ R1
(p−1)/p. In particular if En = {n}

for all n, then R1 = 1 so ∥C∥p,E,∆ ≤ 1. Now let x = e1, then Cx = x
and this completes the proof of the theorem. □

At last, we solve the problem of finding the norm of the Hilbert matrix
operator for p > 1.

Theorem 3.9. Let H be the Hilbert operator and p > 1. If N is a
positive integer and En = {nN −N +1, nN −N +2, . . . , nN} for all n,
then H is a bounded operator from lp into lp(E,∆) and

∥H∥p,E,∆ ≤
(
1

2
+

2

3
+ · · ·+ N + 1

N
+ · · ·+ 1

2N

) p−1
p
(
1

2
+ · · ·+ 1

N + 1

) 1
p

.
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Proof. By using Lemma 3.7 ∥H∥p,E,∆ = ∥B∥p, where

bn,k =
∑
i∈En

hi,k −
∑

i∈En+1

hi,k

Let C,R be defined as in Theorem 3.6. We deduce that Rn ≤ R1 and
Cn ≤ C1 for all n. But

R1 =

∞∑
k=1

b1,k =
1

2
+

2

3
+ · · ·+ N + 1

N
+ · · ·+ 1

2N
,

and

C1 =
∞∑
n=1

bn,1 =
1

2
+ · · ·+ 1

N + 1
,

hence the result is gained. □
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