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A SPECTRAL METHOD BASED ON THE SECOND

KIND CHEBYSHEV POLYNOMIALS FOR SOLVING A

CLASS OF FRACTIONAL OPTIMAL CONTROL

PROBLEMS

SOMAYEH NEMATI

Abstract. In this paper, we consider the second-kind Chebyshev
polynomials (SKCPs) for the numerical solution of the fractional
optimal control problems (FOCPs). Firstly, an introduction of the
fractional calculus and properties of the shifted SKCPs are given
and then operational matrix of fractional integration is introduced.
Next, these properties are used together with the Legendre-Gauss
quadrature formula to reduce the fractional optimal control prob-
lem to solving a system of nonlinear algebraic equations that greatly
simplifies the problem. Finally, some examples are included to con-
firm the efficiency and accuracy of the proposed method.

1. Introduction

Fractional order dynamics have been received considerable recent at-
tention and have been proved to model many real life problems such as,
mechanical systems [11], solid mechanics [22], continuum and statisti-
cal mechanics [21], fluid-dynamics [12], finance [15], viscoelastic dampers
[17], viscoelasticity [4, 5], bioengineering [20], electromagnetic waves [13],
control theory [7], etc.

FOCPs are one of the fractional dynamic systems that can be ap-
peared in several problems in science and engineering. FOCP refers
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to the minimization of an objective functional subject to dynamic con-
straints, on state and control variables, which have fractional order mod-
els. Although there are some different definitions of fractional deriva-
tives, two types of them have been used very often for FOCP which are
Riemann–Liouville and Caputo fractional derivatives. There are some
numerical methods to solve FOCPs with these two types of definitions,
for example see [1, 2, 3, 6, 14, 16, 18, 19, 26, 27, 28]. In the present pa-
per, we consider the following optimal control problem with the Caputo
fractional derivative [19]:

min J =

∫ 1

0
f(t, x(t), u(t))dt,(1.1)

subject to:

Dα
t x(t) = g (t, x(t)) + b(t)u(t), n− 1 < α ≤ n, b(t) ̸= 0,(1.2)

D(i)x(0) = xi, i = 0, 1, . . . , n− 1,(1.3)

where f and g are smooth functions of their arguments. The existence
and uniqueness of the solution for the dynamical system (1.2) have been
discussed in [10]. In this paper, we use the shifted second-kind Cheby-
shev orthogonal basis for solving problem (1.1)–(1.3). To do this, we use
operational matrix of fractional integration and Legendre-Gauss quad-
rature formula. The main advantage of this method is that the problem
is reduced to a system of algebraic equations. It can be seen that the
operational matrix of fractional integration for Chebyshev basis needs
much fewer computational efforts compared with that for Legendre ba-
sis introduced in [19] (see Section 2) and it makes our method more
computationally attractive.

The structure of this paper is arranged in the following way: In Sec-
tion 2, an introduction of fractional calculus and properties of the shifted
SKCPs are given and also, the operational matrix of fractional integra-
tion is introduced. In Section 3, a numerical method is considered to
solve problem (1.1)–(1.3). In Section 4, illustrative examples are in-
cluded to demonstrate the applicability and efficiency of the method.
Finally, a brief conclusion is given in Section 5.

2. Preliminaries and notations

In this section, we give some preliminaries which will be used further
in this work.
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Definition 2.1. The fractional derivative of x(t) in the Caputo sense is
defined as follows

Dα
t x(t) =


1

Γ(n−α)

∫ t
0 (t− τ)n−α−1 dn

dτnx(τ)dτ, n− 1 < α < n,

x(n)(t) α = n,

where n is the ceiling function of α and

Γ(α) =

∫ ∞

0
tα−1e−tdt.

Definition 2.2. The Riemann-Liouville fractional integral operator Iαt
of order α is given by

Iαt x(t) =


1

Γ(α)

∫ t
0 (t− τ)α−1x(τ)dτ, α > 0,

x(t), α = 0.

Some properties of the Riemann-Liouville fractional integral operator
Iαt and the Caputo fractional differential operator Dα

t are as follows:

(2.1) Iαt t
k =

Γ(k + 1)

Γ(k + 1 + α)
tk+α, α ≥ 0, k > −1,

Dα
t I

α
t x(t) = x(t),

(2.2) Iαt D
α
t x(t) = x(t)−

n−1∑
i=0

x(i)(0)
ti

i!
, n− 1 < α ≤ n, t > 0.

Definition 2.3. The shifted SKCP of order i is defined on [0, 1] as

ψi(t) = Ui(2t− 1), i = 0, 1, 2, . . . ,

where Ui(t) is the well-known SKCP of order i. We note that the SKCPs
are orthogonal functions on the interval [−1, 1] and can be determined
with the aid of the following recursive formula:

Ui(t) = 2tUi−1(t)− Ui−2(t), i ≥ 2,

with U0(t) = 0 and U1(t) = 2t.

The orthogonal property for the shifted SKCPs is as follows:∫ 1

0
w(t)ψi(t)ψj(t)dt =

{
π
4 , i = j,
0, otherwise,

where w(t) =
√
4t− 4t2.

The shifted SKCP of order i could be written as:

(2.3) ψi(t) =

i∑
k=0

(−1)i−k (i+ k + 1)!22k

(i− k)!(2k + 1)!
tk.
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A function x(t), square integrable on [0, 1], can be expanded using the
shifted SKCPs as follows:

(2.4) x(t) ≃
∞∑
i=0

ciψi(t),

where

(2.5) ci =
4

π

∫ 1

0
w(t)x(t)ψi(t)dt, i = 0, 1, 2, . . . .

If we consider the first N + 1 terms in (2.4), an approximation of the
function x(t) is obtained as:

x(t) ≃
N∑
i=0

ciψi(t) = CTψ(t),

in which

C = [c0, c1, . . . , cN ]T ,

and

ψ(t) = [ψ0(t), ψ1(t), . . . , ψN (t)]T .(2.6)

Considering the vector ψ(t) in equation (2.6), we get the following result:

Theorem 2.4. If ψ(t) is the shifted SKCPs vector defined by (2.6), then
the fractional Integral of order α of this vector is given by

(2.7) Iαt ψ(t) ≃ P (α)ψ(t),

where P (α) is the (N + 1) × (N + 1) operational matrix of fractional
Integration as

P (α) =


θα(0, 0) θα(0, 1) . . . θα(0, N)

θα(1, 0) θα(1, 1)
. . . θα(1, N)

...
...

. . .
...

θα(N, 0) θα(N, 1) . . . θα(N,N)

 ,
in which n is the ceiling function of α and
(2.8)

θα(i, j) =
i∑

k=0

(−1)i−k(j + 1)22(k+1)k!(i+ k + 1)!Γ
(
k + α+ 3

2

)
√
π(2k + 1)!(i− k)!Γ(k + α+ j + 3)Γ(k + α− j + 1)

.
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Proof. Using equations (2.1) and (2.3), for i = 0, 1, . . . , N we have

Iαt ψi(t) =

i∑
k=0

(−1)i−k (i+ k + 1)!22k

(i− k)!(2k + 1)!
Iαt t

k

=

i∑
k=0

(−1)i−k (i+ k + 1)!22kk!

(i− k)!(2k + 1)!Γ(k + α+ 1)
tk+α.(2.9)

Approximating tk+α using the shifted second-kind Chebyshev series gives

(2.10) tk+α =

N∑
j=0

akjψj(t),

where akj are obtained from (2.5) as follows

akj =
4(j + 1)Γ(k + α+ 3

2)Γ(k + α+ 1)
√
πΓ(k + α+ j + 3)Γ(k + α− j + 1)

, j = 0, 1, 2, . . . , N.

Substituting (2.10) into equation (2.9), we have

Iαt ψi(t) =
N∑
j=0

θα(i, j)ψj(t),

where θα(i, j) is defined by (2.8). Therefore, for i = 0, 1, . . . , N we obtain

(2.11) Iαt ψi(t) = [θα(i, 0), θα(i, 1), . . . , θα(i,N)]ψ(t).

Finally, equation (2.7) is established using equation (2.11). □

3. Numerical method

In this section, we present a numerical method to solve FOCP (1.1)–
(1.3) using properties of the shifted SKCPs . To do this, we consider
an approximation of the fractional state rate Dα

t x(t) in the dynamical
system (1.2) as:

(3.1) Dα
t x(t) ≃

N∑
i=0

ciψi(t) = CTψ(t),

where the elements ci of the vector C are unknown and ψ(t) is given
by (2.6). Considering equations (1.3), (2.2) and (3.1) and using the
operational matrix of fractional integration in equation (2.7), we have

(3.2) x(t) ≃ CTP (α)ψ(t) +
n−1∑
i=0

xi
ti

i!
.
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Now, we can approximate u(t) using the dynamical system in equation
(1.2) as:

(3.3) u(t) ≃ 1

b(t)

[
CTψ(t)− g

(
t, CTP (α)ψ(t) +

n−1∑
i=0

xi
ti

i!

)]
.

Substituting (3.2) and (3.3) into (1.1), we obtain

J [C] =

∫ 1

0
f

(
t, CTP (α)ψ(t) +

n−1∑
i=0

xi
ti

i!
,

1

b(t)

[
CTψ(t)− g

(
t, CTP (α)ψ(t) +

n−1∑
i=0

xi
ti

i!

)])
dt.(3.4)

Let us introduce

Q (C, t) = f

(
t, CTP (α)ψ(t) +

n−1∑
i=0

xi
ti

i!
,

1

b(t)

[
CTψ(t)− g

(
t, CTP (α)ψ(t) +

n−1∑
i=0

xi
ti

i!

)])
dt.

So, using Legendre-Gauss quadrature formula we have

J [C] ≃ 1

2

m∑
k=1

wkQ

(
sk + 1

2
, C

)
,

where sk, k = 1, 2, . . . ,m are m zeros of Legendre polynomial of degree
m and wk are the corresponding weights [9]. Finally, the necessary
conditions for the optimality of the performance index imply:

(3.5)
∂J

∂cj
[C] = 0, j = 0, 1, . . . , N.

Equation (3.5) forms a nonlinear system of algebraic equations in terms
of the unknown elements of the vector C. In our implementation,
we have solved this system using the Mathematica function FindRoot,
which uses the Newton’s method as the default method. After solving
this system the numerical results for x(t), u(t) and optimum value of J
are given using equations (3.2), (3.3) and (3.4), respectively.

4. Numerical examples

In this section, some examples are given to demonstrate the applicabil-
ity and accuracy of our method. The codes were written in Mathematica
software. In all the examples in this section we have used m = 10 for
Legendre-Gauss quadrature formula.
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Example 4.1. Consider a minimization problem as follows [19]:

min J =

∫ 1

0

(x(t)− t2
)2

+

(
u(t) + t4 − 20t

9
10

9Γ( 9
10)

)2
 dt,

subject to:

D1.1
t x(t) = t2x(t) + u(t),

x(0) = x′(0) = 0.

The functions x(t) = t2 and u(t) = −t4 + 20t
9
10

9Γ( 9
10

)
minimize the per-

formance index J and the minimum value is J = 0. We have solved
this problem with different values for N . For instance, with N = 3 the
operational matrix of fractional integration is obtained as:

P (1.1) =


0.452542 0.242828 0.00714199 −0.00140498
−0.35846 −0.0354935 0.107481 0.00509663
0.166877 −0.0600908 −0.0166159 0.0679421
−0.120681 −0.00390251 −0.0478958 −0.0109875

 ,
and the unknown vector C is calculated by solving the final system in
equation (3.5) with initial approximation C = [0, 0, 0, 0]T as:

C =


1.09993
0.507813

−0.0163147
0.0042012

 .
Numerical results for the minimum of J with different values of N to-
gether with the results obtained in [19] using Legendre functions are
shown in Table 1.

Table 1. Numerical results for Example 4.1

Present method Method of [19]
N J m J
3 5.82938× 10−6 3 6.0753× 10−6

4 1.46226× 10−6 4 1.67255× 10−6

5 4.3337× 10−7 5 5.91532× 10−7

7 3.5498× 10−8 7 1.21966× 10−7

8 6.00953× 10−9 8 7.03371× 10−8
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Example 4.2. Consider the following minimization problem [19]

min J =

∫ 1

0

[
et
(
x(t)− t4 + t− 1

)2
+(t2 + 1)

(
u(t) + 1− t+ t4 − 8000t

21
10

77Γ
(

1
10

))2
 dt,

subject to:

D1.9
t x(t) = x(t) + u(t),

x(0) = 1, x′(0) = −1.

In this problem the performance index J takes its minimum value
when x(t) = 1 − t + t4 and the minimum value is J = 0. By choosing
N = 3, the operational matrix of fractional integration is as follows:

P (1.9) =


0.178143 0.138152 0.031611 −0.00061084
−0.18579 −0.108697 0.00600659 0.0117374
0.113265 0.0388703 −0.0197332 0.00231601

−0.0726456 −0.0254721 −0.000646971 −0.0104707

 ,
and the unknown vector C is obtained with initial approximation C =
[0, 0, 0, 0]T as:

C =


3.27996
2.70114
0.728038
0.0128955

 .
Table 2 presents the numerical results for the minimum of performance
index J with different values of N obtained by the presented method in
this paper and the results obtained in [19] using Legendre functions.

Table 2. Numerical results for Example 4.2

Present method Method of [19]
N J m J
3 1.16577× 10−4 3 8.93768× 10−6

4 5.32891× 10−7 4 5.42028× 10−7

5 6.50811× 10−8 5 6.77757× 10−8

7 1.94565× 10−9 7 2.84624× 10−9

8 2.76563× 10−10 8 8.22283× 10−10
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Example 4.3. Consider the following minimization problem [19]

min J =

∫ 1

0

[
x2(t)− 2t

3
2x(t) + u2(t)− 3

√
π

4
e−tu(t) + e−t+t

3
2 u(t)

+t3 +
9π

64
e−2t − 3

√
π

8
e−2t+t

3
2 +

1

4
e−2t+2t

3
2 + e2t

]
dt,

subject to:
D1.5

t x(t) = ex(t) + 2etu(t),

x(0) = x′(0) = 0.

In this example the state function x(t) =
√
t3 and the control function

u(t) = 1
2e

−t

(
−et

3
2 + 3

√
π

4

)
minimize the performance index J and the

minimum value is J = 3.19452805. We applied the proposed method in
this paper with N = 2 such that for this choice we have

P (1.5) =

 0.2919 0.1946 0.0265364
−0.27244 −0.106146 0.0449077
0.147846 0.00898155 −0.0336128

 ,
and the unknown vector C is obtained with initial approximation C =
[0, 0, 0]T as:

C =

 1.32797
0.00085962
−0.00105561

 .
Finally, the performance index with N = 2 is gained J = 3.19455842.
Also, Table 3 gives the numerical results for the minimum of performance
index J with different values of N .

Table 3. Numerical results for Example 4.3

N = 3 N = 5 N = 7 Exact solution

3.19453043 3.19452812 3.19452805 3.19452805

Example 4.4. As the final example, consider the following problem
[19]:

min J =
1

2

∫ 1

0

[
x2(t) + u2(t)

]
dt,

subject to:

Dα
t x(t) = −x(t) + u(t), 0 < α ≤ 1,

x(0) = 1.
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The exact solution of this problem with α = 1 was given by [8] as:

x(t) = β sinh
(√

2t
)
+ cosh

(√
2t
)
,

u(t) =
(
β +

√
2
)
sinh

(√
2t
)
+
(√

2β + 1
)
cosh

(√
2t
)
,

where

β = −
√
2 sinh

(√
2
)
+ cosh

(√
2
)

sinh
(√

2
)
+

√
2 cosh

(√
2
) .

Numerical results for this problem are shown in Table 4 and Figures
1 and 2. In Table 4, minimum value for J when α = 1 is presented
with different values of N and Figures 1 and 2 display the approximate
solutions for x(t) and u(t), respectively, with α = 0.8, 0.9, 1 and N = 2
together with their exact solutions.

Table 4. Numerical results for Example 4.4

N = 2 N = 3 N = 4 N = 6 Exact solution

0.192756 0.192867 3.192908 0.192909 0.192909

Figure 1. Comparison of x(t) with N = 2 for Example 4.4
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Figure 2. Comparison of u(t) with N = 2 for Example 4.4

5. Conclusions

In this paper, a numerical method has been proposed for numerical
solution of the FOCPs. By using the definition of Riemann-Liouville
fractional integral operator and properties of the shifted SKCPs, the
operational matrix of fractional integration has been introduced. This
matrix and Legendre-Gauss quadrature formula have been employed
to reduce the considered problem into a system of nonlinear algebraic
equations. The method was tested on some examples and the numerical
results obtained by the proposed method in this paper have been com-
pared with the results achieved using the numerical technique discussed
in [19]. Also, the results approved that the proposed method is efficient
and has high accuracy.
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